Disentangling the Energy Loss Contributions in the Cold QCD Medium

C-J. Naïm

Center for Frontiers in Nuclear Science

Cold Nuclear Matter Effects: from the LHC to the EIC

January 15, 2025

Proton-proton collisions

At large momentum transfer in pp, scale $Q \gg \Lambda_{QCD} \approx 200 \text{ MeV}$

$$\mathrm{pp} o \gamma^{\star}/Z^0 o \ell^+\ell^- + \mathrm{X} \; \mathsf{(Drell-Yan)}$$

Factorization of cross section = approximation

$$\frac{\mathrm{d}\sigma_{\mathrm{pp}}}{\mathrm{d}y\mathrm{d}Q} = \sum_{i,j} \int \mathrm{d}x_{1} f_{i}^{\mathsf{p}}\left(x_{1},\mu\right) \int \mathrm{d}x_{2} f_{j}^{\mathsf{p}}\left(x_{2},\mu\right) \frac{\mathrm{d}\hat{\sigma}_{ij}\left(x_{1},x_{2},\mu'\right)}{\mathrm{d}y\mathrm{d}Q} + \mathcal{O}\left(\frac{\Lambda_{\mathrm{p}}^{n}}{Q^{n}}\right)$$

- $ightharpoonup \hat{\sigma}_{ij}$: partonic cross section calculable in perturbation theory
- \triangleright x₁, x₂: fraction of momentum carried by the parton in proton
- $ightharpoonup f_{i,j}$: Parton Distribution Function (PDF), **universal**

Proton-nucleus collisions

Cross section in pA collisions assuming collinear factorization

$$\frac{\mathrm{d}\sigma_{\mathrm{pA}}}{\mathrm{d}y\mathrm{d}Q} = \sum_{i,j} \int \mathrm{d}x_1 f_i^\mathsf{p}\left(x_1,\mu\right) \int \mathrm{d}x_2 f_j^\mathsf{A}\left(x_2,\mu\right) \frac{\mathrm{d}\hat{\sigma}_{ij}\left(x_1,x_2,\mu'\right)}{\mathrm{d}y\mathrm{d}Q} + \mathcal{O}\left(\frac{\Lambda_\mathsf{A}^n}{Q^n}\right)$$

Probing the PDF of a nucleus (without nuclear effects)

$$f_i^{\mathsf{A}} = Z f_i^{\mathsf{p}} + (A - Z) f_i^{\mathsf{n}}$$
 $\sigma_{\mathrm{pA}} = Z \sigma_{\mathrm{pp}} + (A - Z) \sigma_{\mathrm{pn}} \approx \mathsf{A} \sigma_{\mathrm{pp}}$

Investigate nuclear effects via

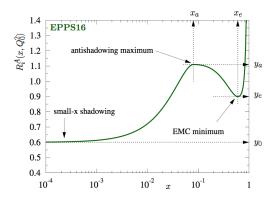
$$R_{\mathrm{pA}} \equiv rac{1}{A} rac{\mathsf{d}\sigma_{\mathrm{pA}}}{\mathsf{d}\sigma_{\mathrm{pp}}} pprox 1$$

Let's now study the data in hadron-nucleus collisions

Proton-nucleus collisions

Why study these data:

- a laboratory to study QCD from SPS to LHC energies
- ▶ to probe the boundaries of **collinear factorization** in the nucleus
- important for better understanding the formation of QGP


Effects of cold nuclear matter:

- ► Nuclear PDF (nPDF)
- ► Radiative energy loss
- ▶ Broadening of p_{\perp}
- ► Nuclear absorption etc

Nuclear parton distribution functions I (initial state)

- 1. EMC effect discovered in 1983 in DIS on nuclear targets
- 2. **PDF** is modified in nuclei : $f_j^{p/A} \neq f_j^p$

- ▶ The nuclear modification factor depends on x_2
- At $x_2 \leq 10^{-3}$: shadowing

Nuclear parton distribution functions II (initial state)

- $ightharpoonup R_j^A = f_j^{p/A}/f_j^p$ via a **global fit** assumed to be **universal**
- ▶ Factorization leads to x_2 scaling: $R_{\rm pA} = R_{\rm pA} (x_2, \sqrt{s}) = R_{\rm pA} (x_2)$

	EPS09	DSSZ	nCTEQ	EPPS16	EPPS21
e-DIS	✓	✓	✓	✓	√
$\nu ext{-DIS}$		✓		✓	√
Drell-Yan pA	✓	√	✓	✓	✓
RHIC hadrons	✓	✓	✓	✓	✓
LHC data pA (QED)				✓	√
Drell-Yan πA				✓	√
LHC data pA (D mesons)					√

Data from proton-nuclei collisions are used for the global fit

Can there be other nuclear effects in these collisions?

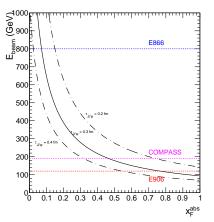
Nuclear absorption I (final state)

- ightharpoonup Multiple scattering of $Q\bar{Q}$ bound state within the nucleons
- ▶ Characterised by the nuclear absorption cross section σ_{abs}^{QN}

Condition for quarkonium formation time inside nuclei

$$t_{had} = \gamma au_{had} = rac{E}{M_Q} au_{had} \lesssim L$$

The absorption survival probability by the medium computed as

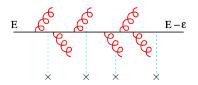

$$S(\sigma_{\rm abs}, L_{\rm A}) = e^{-\rho \sigma_{\rm abs} L_{\rm A}}$$

The pA cross section can be written like

$$d\sigma^{hA} = S(\sigma_{abs}, L_A) \times d\sigma^{hp} \times A$$

Nuclear absorption II (final state)

Data explained by nuclear absorption?

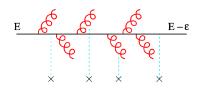


- $ightharpoonup x_{\rm F}^{\rm abs}$: threshold below which J/ψ is produced in the nucleus
- Possible absorption effect only at low beam energy

No nuclear absorption at LHC

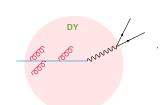
Energy loss effects

High-energy partons lose energy via soft gluon radiation due to re-scattering in the nuclear medium


Energy loss effects

$$\frac{dN^{out}(E)}{dE} = \int_{\epsilon} \mathcal{P}(\epsilon, E) \frac{dN^{in}(E + \epsilon)}{dE}$$

 $\mathcal{P}(E, \epsilon)$: probability distribution in the energy loss **given by QCD**


Energy loss effects

High-energy partons lose energy via soft gluon radiation due to re-scattering in the nuclear medium

Can affect differently hard processes:

- 1. Drell-Yan process: $hA \rightarrow \ell^+\ell^- + X$
 - Initial state radiation
- 2. Charmonium production:
 - $hA \rightarrow c\bar{c} (\rightarrow J/\psi) + X$
 - Initial state radiation
 - ► Final state radiation
 - ► Interferences initial/final state radiation

Parton energy loss regimes

Initial or final state for $t_f \lesssim L$

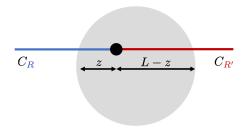
$$\langle \epsilon \rangle_{\mathsf{LPM}} \propto \alpha_{\mathsf{s}} \hat{\mathsf{q}} \, \mathsf{L}^2$$

- ► $hA \rightarrow \ell^+\ell^- + X$ (DY): Arleo, Naïm, Platchkov, JHEP01(2019)129
- ightharpoonup eA ightharpoonup e + h + X (SIDIS)

Interference initial and final state for $t_f \gg L$

$$\langle \epsilon
angle_{\mathsf{FCEL}} \propto \sqrt{\hat{q}L}/M \cdot E \gg \langle \epsilon
angle_{\mathit{LPM}}$$

▶ $hA \rightarrow [Q\bar{Q}]_8 + X$ (Quarkonium): Arleo, Peigne, PRL.109.122301

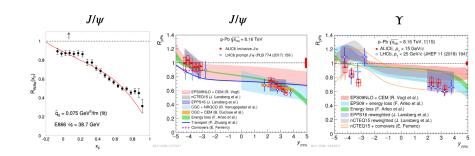

Transport coefficient : scattering property of the medium

$$\hat{q}(x) = \frac{4\pi^2 \alpha_s N_c}{N_c^2 - 1} \rho x G(x) = \hat{q}_0 \left[\frac{10^{-2}}{x} \right]^{0.5}$$

Broadening effect

 p_{\perp} spectra: an other observable to probe transport properties

$$\Delta p_{\perp}^2 = \left\langle p_{\perp}^2 \right\rangle_{\mathrm{hA}} - \left\langle p_{\perp}^2 \right\rangle_{\mathrm{hp}} = \frac{C_R + C_{R'}}{2N_c} \left(\hat{q}_{\mathrm{A}} L_{\mathrm{A}} - \hat{q}_{\mathrm{p}} L_{\mathrm{p}} \right)$$

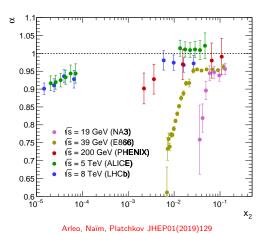


- ▶ The p_{\perp} spectra is modified in pA compared to pp collisions;
- ▶ This quantity is also related to \hat{q}

The complete picture is: energy loss and broadening

Proton-nucleus collisions: a puzzle!

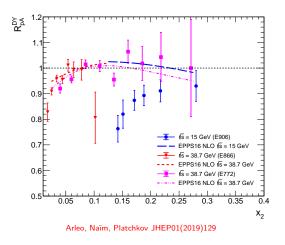
Empirical observations:


Interpretation:

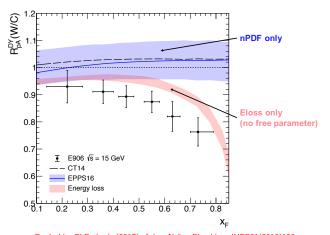
- The gluon's nPDF shows significant error bands
- lacktriangle Energy loss model describes the suppression of J/ψ

Difficult interpretation due to the models' error bands

Proton-nucleus collisions: quarkonium suppression


J/ψ suppression in world data:

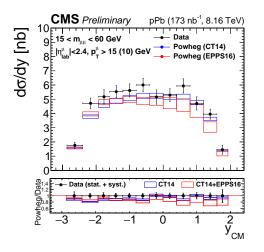
- J/ψ suppression depends on the collision energy
- ▶ No scaling as a function of x_2 : $R_{\rm pA} = R_{\rm pA} (x_2, \sqrt{s}) \neq R_{\rm pA} (x_2)$


Proton-nucleus collisions: DY at fixed-target energies I

Drell-Yan suppression at fixed-target energies:

No scaling as a function of x_2 as for J/ψ production

Proton-nucleus collisions: DY at fixed-target energies II



Po-Ju Lin, PhD thesis (2017), Arleo, Naïm, Platchkov JHEP01(2019)129

- Clear disagreement between data and nPDF calculation
- \blacktriangleright Energy loss model exhibits a strong suppression at large x_{F}

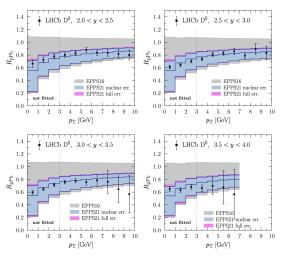
Proton-nucleus collisions: DY at LHC energy

Drell-Yan in pPb at $\sqrt{s}=8.16$ TeV

CMS-PAS-HIN-18-003

- No suppression observed
- Initial-state energy loss is suppresed at high beam energy

Proton-nucleus collisions: a common effect? Global broadening analysis:

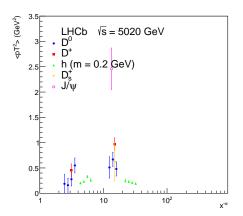


Remarkable scaling from low to high energies \rightarrow common effect

What puzzle!

Proton-nucleus collisions: pA data for nPDF global fit?

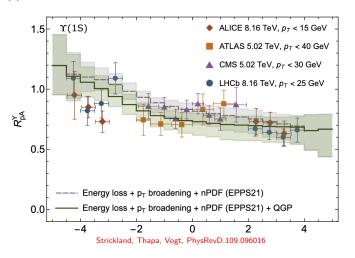
LHCb data: $pA \rightarrow D^0 + X$, $10^{-5} \lesssim x \lesssim 10^{-2}$



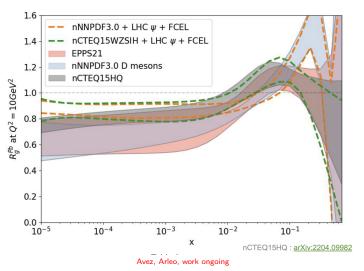
- ► Large nPDF uncertainties: can one effect hide others?
- ▶ Broadening effect on D mesons: 2 → 2 kinematic Laine, Arleo, Naim, work ongoing

Focus on the broadening effect on D and h data

LHCb data: D^0 , D^+ , D_s^+ , h and J/ψ


 $\alpha = 0.25$

- ► Common effect observed in *D* mesons: same color factor?
- Unusual trends in charged hadron data (forward)


Include nPDF and energy loss

↑ suppression: ATLAS, CMS, ALICE and LHCb

- ightharpoonup Calculations using **all nuclear effects** reproduce $\Upsilon(1S)$ data
- ▶ Weak hot QCD effect on $\Upsilon(1S)$

nPDF including the FCEL effect

- ► Energy loss and nPDF fit
- ► Significative impact on the shadowing amplitude

A simple summary?

- ▶ Drell-Yan
 - ► nPDF: √;
 - ▶ Initial-State Energy Loss: X (only FT energy);
 - ► Final-State Energy Loss: ×;
 - ▶ p_{\perp} -broadening: \checkmark ;
 - Nuclear Absorption: X.

Quarkonium

- ► nPDF: √;
- ► FCEL: √ (all energies);
- ▶ p_{\perp} -broadening: \checkmark ;
- Nuclear Absorption: \times (only FT energy, at small x_F).

► SIDIS

- ▶ nPDF: (√) X;
- ► Initial State Energy Loss: ×;
- ► Final-State Energy Loss: × (only FT energy);
- ▶ p_{\perp} -broadening: $\sqrt{\ }$;
- Nuclear Absorption: \times (only FT energy, at large z).

What can we do with EIC?

Processes

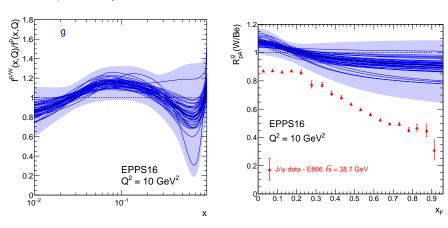
$$eA \rightarrow e + h + X (SIDIS)$$

 $eA \rightarrow e + X (DIS)$

CNM effects:

- ▶ nPDF: up to $x \sim 10^{-4}$
- \triangleright p_{\perp} -broadening:

Interests:


- ▶ Precise ($\sim 10\%$?) and reliable extraction of nPDF at small x;
- Evidence for physics beyond nPDF from the direct comparison of forward hadron production in pA collisions and SIDIS
- Probing saturation physics at small x

Conclusion

- 1. Energy loss effects can explain data
- Ignoring FCEL in nPDF global fits leads to wrong nPDF extractions
- 3. nPDF global fit strategy should either:
 - exclude measurements of hadron production in pA collisions
 - ▶ include FCEL in the theoretical framework
- 4. EIC data will be crucial to compare to LHC pA data:
 - test the universality of the cold QCD!

J/ψ suppression from E866/NuSea

Data explained by nPDF?

nPDF alone cannot explain E866 J/ψ at $\sqrt{s}=38.7$ GeV

Method to extract the broadening

Definition

$$\langle p_{T}^{2} \rangle \equiv \frac{\int_{0}^{\infty} p_{T}^{2} \frac{d\sigma}{dp_{T}} dp_{T}}{\int_{0}^{\infty} \frac{d\sigma}{dp_{T}} dp_{T}} \text{ and } \Delta p_{T}^{2} \equiv \langle p_{T}^{2}(A) \rangle - \langle p_{T}^{2}(B) \rangle \text{ (GeV}^{2})$$

▶ 1st method : Kaplan fit

$$\frac{\mathsf{d}\sigma}{\mathsf{d}\mathsf{p}_\mathsf{T}} = \mathcal{N}\left(\frac{\mathsf{p}_\mathsf{0}^2}{\mathsf{p}_\mathsf{0}^2 + \mathsf{p}_\mathsf{T}^2}\right)^\mathsf{m}$$

▶ 2nd method : Bin summation

$$\langle p_T^2 \rangle \approx \frac{\sum_{i=1}^n p_T(i)^2 \frac{d\sigma}{dp_T}(i) dp_T(i)}{\sum_{i=1}^n \frac{d\sigma}{dp_T}(i) dp_T(i)}$$

where "n" is the bin number

ightarrow Observable independent of normalisation

Other nuclear effects in the broadening calculation

For this study, we considered only the broadening effect but ...

1. Energy loss effect

- ▶ Affects only the normalisation of $R_{\rm pA}$ (p_T)
- ► Cancellation in Δp_{\perp}^2

2. nPDF effect

- $0 < p_{\perp} \lesssim M$: fixed target experiment, cancellation in Δp_{\perp}^2
- ▶ $p_{\perp} \gtrsim M$: LHC case, very large error bar in gluon sector but

$$\frac{\mathrm{d}\sigma_{\mathrm{hA}}^{\mathrm{nPDF}}}{\mathrm{d}\rho_{\perp}} = \underbrace{R_{i}^{\mathrm{A}}\left(\mathsf{x}_{2}\left(\rho_{\perp}\right),Q^{2}\right)}_{\text{if only normalisation: cancellation in }\Delta\rho_{\perp}^{2}} \times \frac{\mathrm{d}\sigma_{\mathrm{hp}}}{\mathrm{d}\rho_{\perp}}$$

- lacktriangledown at $x\lesssim 10^{-4}$: shadowing region $R_i^{
 m A}\left(x,Q^2
 ight)$ j 1
- lacktriangle at $0.05 \lesssim x_2 \lesssim 0.2$: antisadowing region $R_i^{
 m A}\left(x,Q^2
 ight)$ ¿ 1

Quarkonium production model

CEM model formalism

$$\sigma(pp \to Q + X) = \sum_{i,j,n} \int \int dx_1 dx_2 f_{i/p} f_{j/p} \times \hat{\sigma}[ij \to c\bar{c}X]$$
$$\approx \int dx_1 dx_2 g_p g_p \times \hat{\sigma}[gg \to c\bar{c}X]$$

NRQCD model formalism

$$\sigma(pp \to Q + X) = \sum_{i,j,n} \int dx_1 dx_2 f_{i/p} f_{j/p} \times \hat{\sigma} \left[ij \to (Q\bar{Q})_n + x \right] \left\langle 0 \left| \mathcal{O}_n^{Q} \right| 0 \right\rangle$$
$$\approx \int dx_1 dx_2 g_p g_p \times \hat{\sigma} \left[gg \to (Q\bar{Q})_n + x \right] \left\langle 0 \left| \mathcal{O}_n^{Q} \right| 0 \right\rangle$$

$$R_{\mathrm{pA}} \equiv \frac{1}{A} \frac{\mathsf{d}\sigma_{\mathrm{pA}}}{\mathsf{d}\sigma_{\mathrm{pp}}} pprox \frac{G^A}{g^p}$$