

Exotic heavy meson spectroscopy and structure with EIC: Next-level physics and detector simulations 14-18 April 2025, CFNS, Stony Brook University

Exotic heavy quarkonium structure and production from a hadronic perspective

Feng-Kun Guo

Institute of Theoretical Physics, Chinese Academy of Sciences

Zhen-Hua Zhang et al., Predicting isovector charmonium-like states from X(3872) properties, arXiv:2404.11215; Teng Ji et al., Precise determination of the properties of X(3872) and of its isovector partner W_{c1} , arXiv:2502.04458;

Xiong-Hui Cao, M.-L. Du, FKG, Photoproduction of the X(3872) beyond vector meson dominance: the open-charm coupled-channel mechanism, arXiv:2401.16112; Zhi Yang, FKG, Semi-inclusive lepto-production of hidden-charm exotic hadrons, arXiv:2107.12247; Pan-Pan Shi, FKG, Z. Yang, Semi-inclusive electroproduction of hidden-charm and double-charm hadronic molecules,

arXiv:2208.02639

Charmonia and charmonium-like (*XYZ***) states**

X(3872) and possible isospin-1 partners

- X(3872) has been discovered by Belle for more than 20 years, debates are still ongoing!
- Excellent observable for distinguishing models: Isospin-1 partners!
 - No, in charmonium model L. Maiani, F. Piccinini, A.D. Polosa, V. Riquer, PRD 71 (2005) 014028
 - Quark bound states, in compact tetraquark model
 - With isospin-independent quark interactions, isoscalar and isovector tetraquarks must coexist
 - $I = 1 \text{ multiplet: } [cu][\bar{c}\bar{d}], \ \frac{1}{\sqrt{2}}([cu][\bar{c}\bar{u}] [cu][\bar{c}\bar{d}]), \ [cd][\bar{c}\bar{u}]$

How about hadronic molecular picture?

- > Thought to be non-existing, but never model-independent investigated
- > Will be shown to exist as virtual states in this talk

So far negative signal

$J^{PC} = 1^{++}$ sector

- Hadronic molecules: consider S-wave interactions between charm and anti-charm mesons
- For each isospin, only two low-energy constants (LECs) at LO in nonrelativistic expansion for S-wave interactions of 6 meson pairs
- For the $J^{PC} = 1^{++}$ sector, also two LECs at LO:

 $\Box I = 0: C_{0X}; I = 1: C_{1X}$

• Two inputs from X(3872) properties :

```
> Mass
   M_X = 3871.69^{+0.00+0.05}_{-0.04-0.13} MeV
                                               LHCb, PRD 102 (2020) 092005
   M_{D^0} + M_{D^{*0}} = 3871.69(7) \text{ MeV} PDG 2024
Isospin breaking in decays
                                                  LHCb, PRD 108 (2023) L011103
  R_X = \left| \frac{\mathcal{M}_{X(3872) \to J/\psi\rho^0}}{\mathcal{M}_{X(3872) \to J/\psi\omega}} \right| = 0.29 \pm 0.04
              Extracted using BW for resonances;
              updated using Omnes dispersion representation for \pi\pi P-wave in
              J. Dias et al., PRD 111 (2025) 014031
```

- Neutral systems X and W⁰_{c1}: coupled channels
 - $\checkmark \ (D\overline{D}^*)_0 \equiv (D^0\overline{D}^{*0} \overline{D}^0D^{*0})/\sqrt{2}$
 - ✓ $(D\overline{D}^*)_{\pm} \equiv (D^+D^{*-} D^-D^{*+})/\sqrt{2}$
- > Charged systems W_{c1}^{\pm} : single channel

Lippmann-Schwinger equation (LSE)

• Coupled channels: $D^0 \overline{D}^{*0}$, $D^+ D^{*-}$ with C = +

• *T* matrix is given by the LSE:

$$T(E;p',p) = V(E;p',p) + \int \frac{l^2 dl}{2\pi^2} V(E;p',l)G(E;l)T(E;l;p)$$

Potential: contact term (C_{0X} , C_{1X}) + one-pion exchange (OPE)

 $V_{\rm ct} = \frac{1}{2} \begin{pmatrix} C_{0X} + C_{1X} & C_{0X} - C_{1X} \\ C_{0X} - C_{1X} & C_{0X} + C_{1X} \end{pmatrix}$

 \succ 3-body effects: one-pion exchange, D^* selfenergy

• Two poles of the *T*-matrix for the $(D\overline{D}^*)_0 - (D\overline{D}^*)_{\pm}$ scattering amplitudes (4 Riemann sheets)

> X(3872) pole on the 1st RS (RS₊₊)

Z.-H. Zhang et al., JHEP 08 (2024) 130

Prediction of an isospin vector partner of X(3872)

- There must be near-threshold isovector W_{c1} states • Virtual state pole in the stable D^* limit
 - ➤ W⁺_{c1} in D⁺D̄^{*0} single-channel scattering amplitude: pole on the 2nd Riemann sheet (RS), 8⁺⁸₋₅ MeV below D⁰D^{*-} threshold

 W_{c1}^{\pm} : 3866.9^{+4.6}_{-7.7} - *i*(0.07 ± 0.01) MeV

➤ W⁰_{c1} in($D\overline{D}^*$)₀ - ($D\overline{D}^*$)_±scattering amplitudes:
pole on the 4th RS (RS₊₋),
1.3^{+0.8}_{-0.0} MeV above D^+D^{*-} threshold

 W_{c1}^{0} : 3881.2^{+0.8}_{-0.0} + *i*1.6^{+0.7}_{-0.9} MeV

Must appear as threshold cusps!!!

Compact tetraquarks (Maiani et al. (2005)) cannot be virtual states

as they do not feel the thresholds

• Virtual state W_{c1} was confirmed in lattice QCD calculation with $M_{\pi} = 280 \text{ MeV}$

M. Sadl et al., PRD 111 (2025) 054513

J^{PC}	Interpolators	$1/a_0$ [fm ⁻¹]	r_0 [fm]	$\chi^2/N_{\rm dof}$	$\Delta m_{\rm V}$ [MeV]		
1+-	All $\eta_c \rho$ excl	$\begin{array}{c} 0.46\substack{+1.16\\-0.45}\\ 0.54\substack{+1.07\\-0.44}\end{array}$	$\begin{array}{c} 0.96\substack{+0.43\\-0.73}\\ 2.23\substack{+0.95\\-1.08}\end{array}$	0.13 0.24	$\begin{array}{c} -3.0^{+3.0}_{-31.1} \\ -2.8^{+2.6}_{-17.1} \end{array}$		
1++	All $J/\psi\rho, \eta_c a_0 \exp \left(-\frac{1}{2} -\frac{1}{2} +\frac{1}{2} +\frac{1}$	$\begin{array}{r} 0.62^{+1.30}_{-0.51} \\ 0.96^{+1.42}_{-0.91} \end{array}$	$\frac{1.78^{+0.25}_{-2.44}}{2.19^{+0.36}_{-1.00}}$	0.18 0.15	$-3.8^{+3.6a} \\ -6.7^{+6.7}_{-19.5}$		
^a Uncertainty is so large that it is unbounded from below.							

sign convention different from ours

Cutoff insensitivity checked: poles relative to thresholds varied within 5% for $\Lambda \in [0.5, 1.0]$ GeV

Why have they not been observed?

- W_{c1}^0 lives in the same amplitudes as the X(3872), effects shielded by X
 - $\gg W_{c1}^0$ in $D^0 \overline{D}^{*0} D^+ D^{*-}$ scattering amplitudes $\gg W_{c1}^+$ in $D^+ \overline{D}^{*0}$ scattering amplitude: height much

 $\succ W_{c1}^+$ in $D^+\overline{D}^{*0}$ scattering amplitude: height much lower than the X peak

> should be searched for in high-statistic $J/\psi \pi^{\pm}\pi^{0}$ data

• The observed X(3872) signals should contain the W_{c1}^0 contribution as well \Rightarrow combined analysis !!

Combined analysis of BESIII and LHCb data for *X*(3872)

Teng Ji et al., arXiv:2502.04458

- X(3872) line shapes $\Rightarrow X(3872)$ + possible $W_{c1}(3880)^0$
- $\pi^+\pi^-$ invariant mass distribution \Rightarrow isospin breaking, information on I = 1

Combined analysis of BESIII and LHCb data for X(3872)

• Coupled channels

 $\Box (D\overline{D}^*)_0$, $(D\overline{D}^*)_{\pm}$: contact terms + OPE, $D\overline{D}\pi$ three-body effects considered

- □ Inelastic channels:
 - > $J/\psi\rho$, $J/\psi\omega$: ρ included using the Omnes dispersive approach, ρ - ω mixing considered > $J/\psi\gamma$, $\psi'\gamma$, $\chi_{cJ}(1P)\pi^0$: neglected in the baseline fit, included in uncertainty analysis

Combined analysis of BESIII and LHCb data for X(3872)

Best fit: $\chi^2/dof = 67.5/(88 - 9) = 0.78$

Signal of $W_{c1}(3880)$?

- Signal of $W_{c1}(3880)^0$ almost invisible in the current data, reasons:
 - □ Virtual state, threshold cusp

 $\square (D\overline{D}^*)_0 \text{ easier produced than } (D\overline{D}^*)_{\pm} \text{ for both } e^+e^- \to \gamma D\overline{D}^* @ \sqrt{s} \approx 4.23 \text{ GeV and } B^+ \to K^+ D\overline{D}^*$

FKG et al., PLB 725 (2013) 127

 $\Gamma(D_1^0\to\gamma D^{*0})\gg\Gamma(D_1^+\to\gamma D^{*+})$

J.G. Korner et al., PRD 47 (1993) 3955; Fayyazuddin et al., PRD 50 (1994) 2329

- For B⁺ decays, fit parameters (ratio of production vertices): P_±/P₀ = 0.45 ± 0.05
 Data:
 PDG 2024 $\frac{\text{Br} [B^+ \to K^+ (D^+ D^{*-} + D^- D^{*+})]}{\text{Br} [B^+ \to K^+ (D^0 \overline{D}^{*0} + \overline{D}^0 D^{*0})]} = 0.14 \pm 0.02$
- Switching u ↔ d, situation should be different for B⁰ decays
 Data:
 PDG 2024 $\frac{\text{Br} \left[B^0 \to K^0 \left(D^+ D^{*-} + D^- D^{*+}\right)\right]}{\text{Br} \left[B^0 \to K^0 \left(D^0 \overline{D}^{*0} + \overline{D}^0 D^{*0}\right)\right]} = 5.8 \pm 2.7$

Implications of the existence of $W_{c1}(3880)$

• $W_{c1}(3880)^0$ signal should be stronger in $B^0 \to K^0[D^0\overline{D}{}^0\pi^0, J/\psi\pi^+\pi^-]$ decays, to be checked @ LHCb, Belle II

- Cusp at $D^+\overline{D}^{*0}$ threshold in $J/\psi\pi^\pm\pi^0$
- Might the reason why different experiments reported seemingly contradicting results for $Br(X \to \psi' \gamma) / Br(X \to J/\psi \gamma)$
- Signal of X(3872) and $W_{c1}(3880)$ in lepto-/photo-production?

□ Should depend on the dominant production mechanism!

X(3872) line shapes

- Line shapes of a near-threshold resonance depend on reaction mechanism! X.-K. Dong, FKG, B.-S. Zou, PRL 126 (2021) 152001
 - > Peak for $|T_{21}|$ (1: lower inelastic channel; 2: elastic channel)

 $T_{21}(E) = \frac{-8\pi\Sigma_2}{a_{12}(1/a_{11} - ik_1)} \left[\frac{1}{a_{22,\text{eff}}} - i\sqrt{2\mu_2 E} + \mathcal{O}(E)\right]^{-1}.$

> Dip for $|T_{11}|$ if scattering length for channel-2 is large

background pole term The interfering phase is fixed by unitarity!

• X(3872) shows up as a dip in $e^+e^- \rightarrow X \rightarrow J/\psi\pi\pi$ direct production

V. Baru, FKG, C. Hanhart, A. Nefediev, PRD 109 (2024) L111501

X(3872) line shapes in photoproduction

• Two mechanisms for X(3872) lepto/photo-production $\gamma p \rightarrow J/\psi \pi^+ \pi^- p$

X(3872) in exclusive photoproduction

X.-H. Cao, M.-L. Du, FKG, JPG 51 (2024) 105002

• Cross sections for inclusive $\gamma p \rightarrow c\bar{c} + anything$, $\gamma p \rightarrow J/\psi p$

- Leptoproduction: cross sections are roughly two orders of magnitude
 (α) smaller
- > Many more open-charm hadrons \overline{D} and Λ_c than $J/\psi p$

Plot from D. P. Anderle et al., Front. Phys. 16 (2021) 64701

Cross section estimates for inclusive productions

- Order-of-magnitude estimates of inclusive lepto-production of near-threshold hadronic molecules
- The cross section can be estimated as

Artoisenet, Braaten (2011); FKG, Meißner, W. Wang, Z. Yang (2014); ...

Event generators

• Consider machine configurations

	EicC	EIC	
e ⁻ energy (GeV)	3.5	20	
proton energy (GeV)	20	250	
luminosity $(cm^{-2} s^{-1})$	2×10 ³³	10 ³⁴	

Cross section estimates for inclusive productions

Order-of-magnitude estimates of the semi-inclusive electro-production of hidden/double-charm hadronic molecules (in units of pb)
 Z. Yang, FKG, CPC 45 (2021) 123101; P.-P. Shi, FKG, Z. Yang, PRD 106 (2022) 114026

	Constituents	$I, J^{P(C)}$	EicC	EIC
X(3872)	$Dar{D}^*$	0,1++	21(89)	216(904)
$Z_c(3900)^0$	$Dar{D}^*$	1, 1+-	$0.4 \times 10^3 (1.3 \times 10^3)$	$3.8 \times 10^3 (14 \times 10^3)$
Z_{cs}^{-}	$D^{*0}D_{s}^{-}$	1/2,1+	19(69)	250(900)
<i>P_c</i> (4312)	$\Sigma_c \bar{D}$	1/2,1/2-	0.8(4.1)	15(73)
<i>P_{cs}</i> (4338)	$\Xi_c\overline{D}$	0,1/2-	0.1(1.6)	1.8 (30)
Predicted	$\Lambda_c\overline{\Lambda}_c$	0,0^+	0.3 (3.0)	10 (110)
T_{cc}^+	DD^*	0, 1+	$0.3 \times 10^{-3} (1.2 \times 10^{-3})$	0.1 (0.5)

> Daily production rate: $\mathcal{O}(10^3) X(3872)$ events @EIC reconstructed from $J/\psi[\rightarrow \ell^+ \ell^-]\pi^+\pi^-$

Results for more systems can be found in the above refs.

Summary and outlook

- Pole position of the X(3872) precisely determined to be -53^{+10}_{-24} keV below the $D^0\overline{D}^{*0}$ threshold
- Existence of an isovector $W_{c1}(3880)$ \square Signal of $W_{c1}(3880)^0$ predicted to be more visible in $B^0 \to K^0[D^0\overline{D}{}^0\pi^0, J/\psi\pi^+\pi^-]$ \square Signal of $W_{c1}(3880)^{\pm}$: threshold cusp at $D^+\overline{D}{}^{*0}$ threshold in $J/\psi\pi^{\pm}\pi^0$
- Photoproduction of X(3872), $W_{c1}(3880)$. Line shapes depend on reaction mechanism Coupled-channel mechanism \Rightarrow peak in $J/\psi\pi^+\pi^-$ VMD mechanism \Rightarrow dip in $J/\psi\pi^+\pi^-$
- Cross section estimates of semi-inclusive productions of X and Z states

Thank you for your attention!

Results in the pionless theory

• All the qualitative features in the pion-full theory persist in the much simpler pionless theory

