Spectroscopy with Jefferson Lab at 22 GeV

Justin Stevens

Probing exotic charmonium at JLab

Pentaquark photoproduction limits

Pentaquark photoproduction limits

Hall C: J/ψ -007 experiment

Even stricter limits on P_c production taking into account differential cross section $d\sigma/dt$

J/ψ photoproduction at GLUE

- * Experimentally clean and rare probe with ~2.2k J/ψ observed in GlueX-I
- Broad physics program
 driven by different
 production mechanisms

s-channel: pentaquarks

open charm

* Differential cross section $d\phi_{\gamma}dt$ consistent between $J/\psi - 007$ (Hall C) and GlueX — sensitive to gluon GPD_{56} mass radius, etc. under certain assumptions

Single channel

+ Open charm = Two channel

- * Differential cross section $d \phi_{L_{\gamma}} dt \cos \theta_{\gamma}$ istent between $J/\psi 007$ (Hall C) and GlueX sensitive to gluon $\beta_{\gamma} PD_{56}$ mass radius, etc. under certain assumptions
- Total cross section sensitive to "cusps" near open charm thresholds models with both resonant pentaquark and purely non-resonant effects can adequately describe the data

Interpretation of J/ψ results

* Differential cross section $d\sigma/dt$ consistent between $J/\psi - 007$ (Hall C) and GlueX — sensitive to gluon GPDs, mass radius, etc. under certain assumptions

- Total cross section sensitive to "cusps" near open charm thresholds models with both resonant pentaquark and purely non-resonant effects can adequately describe the data
- Improved precision required to differentiate production mechanisms and spectroscopy interpretation: GlueX-III, SOLID, etc.

- # JLab 12 GeV running since 2017: programs in hadron spectroscopy, nucleon and nuclear structure, etc.
- * Photoproduction process provides access to many proposed exotic decay channels
- * Orders of magnitude higher statistics than previous photoproduction experiments

RICH

Beamlin

Solenoid

СТОР

Jefferson Lab at 22 GeV

- * Add 6 additional "passes" with Fixed Field alternating gradient Accelerator (FFA) magnets
- Steady progress on physics program through series of workshops: recent <u>white paper</u> and <u>December 2024 workshop in Frascati</u>

White Paper: EPJA 60 (2024) 9, 173

Photoproduction of XYZ states

Complementary access to charmonium photoproduction with higher energy facilities

CFNS Spectroscopy 2025

Electron Ion Collider (EIC)

Justin Stevens, WILLIAM & MARY 11

- * Thresholds for XYZ states open just above 12 GeV
- * For example, Z_c enhanced in 22 GeV region, consistent with COMPASS upper limit

CFNS Spectroscopy 2025

- Thresholds for XYZ states open just above 12 GeV
- For example, Z_c enhanced in 22 GeV region, consistent with **COMPASS** upper limit

J/ψ

CFNS Spectroscopy 2025

8

10

12

14

16

18

10⁻¹

/p Cross Section [nb]

- * Thresholds for XYZ states open just above 12 GeV
- * For example, Z_c enhanced in 22 GeV region, consistent with COMPASS upper limit
- * Keep in mind, field is still moving forward at BESIII, LHCb, etc.

- * Thresholds for XYZ states open just above 12 GeV
- * For example, Z_c enhanced in 22 GeV region, consistent with COMPASS upper limit
- * Keep in mind, field is still moving forward at BESIII, LHCb, etc.

CFNS Spectroscopy 2025

 $e^+e^- \to J/\psi \pi^+\pi^-$

 $Z_{c}^{\pm}(3900)$

3.8

3.9

 $M_{max}(\pi^{\pm}J/\psi)$ (GeV/c²)

100

80

60

40

20

3.7

Events / 0.01 GeV/c²

🔶 Data

Total fit

---- PHSP MC

Sideband

4.0

Nils Hüsken (Frascati

More data

Background fit

Photoproduction of $Z_c^+(3900)$

- Alternative production mechanism: free of rescattering effects and sensitive to photo couplings
- * Same production mechanism near threshold (π exchange) studied with light quarks in GlueX and CLAS12

J^{PAC}: PRD 102, 114010 (2020)

Photoproduction of $Z_c^+(3900)$ EIC: $\gamma p \rightarrow n J/\psi \pi^+$ **EIC** broad energy coverage Events / 50 WeV 1200 1000 800 600 **EIC Simulation** • $Z_c(3900)^+ \rightarrow J/\psi \pi^+$ 10^{2} **TPAC** PYTHIA Bkgd. $Z_{c}(3900)^{+}$ 10 $Z_{b}(10610)^{4}$ 600 $(\operatorname{u} Z u)$ [up] $-Z_{h}'(10650)^{+}$ 400 200 1 $\sigma(\gamma p$ 0 3.6 3.8 4.2 4.4 4 $M_{J/\psi\pi^{*}} \text{ (GeV)}$ 10^{-1} JLab 22 GeV: $\gamma p \rightarrow n J/\psi \pi^+$ 2000 E(e⁻) = 22 GeV 10 15 1800 5 20 ZC 1600 $\sqrt{s_{\gamma p}}$ [GeV] 1400 1200 Jefferson Lab 22 GeV 1000 800 600 High luminosity near-threshold 400 **Signal Simulation** 200 0 3.5

3.6

3.7

3.8

3.9

4

4.1

4.2

4.3

4.4 Mass $(J/\Psi \pi +)$ (GeV²)

Challenges and Next Steps

- * JLab at 22 GeV and EIC are complementary
- * Common challenges
 - * Non-resonant production
 - * Interpretation...
 - * Final states with open charm

- * Exclusive reconstruction of signal MC show clear structure with limited particle mis-ID backgrounds
- * However, need estimates for non-resonant background: can learn from ULs at COMPASS UL and/or existing data from GlueX

Next steps: quantifying interpretation

- * Any observation would be a critical confirmation of the resonance picture, but what about non-observation?
- * Current 12 GeV data on J/ψ is consistent with weak resonant (P_c) and non-resonant interpretation, limiting models for nature of P_c
- * For EIC and 22 GeV we need quantitative interpretation of photocouplings for models of Z_c microscopic structure?
 - * How to connect this with Lattice QCD or QCD-inspired models?

- Open charm continues to play important role interpretation of existing observations and can produce non-trivial structure
- * What can we learn from 12 GeV? Studies with existing GlueX data to at least set an upper limit on ground state $\gamma p \rightarrow \Lambda_c D$
- * Are detectors capable of a robust open charm program?

Summary

- * Spectroscopy of exotic states is a clear argument for a JLab energy upgrade to cross the $c\bar{c}$ production thresholds
- * The EIC and JLab 22 GeV are capable of complementary measurements to cover the relevant energies and luminosities for this exotic spectroscopy program
- * There are challenges: non-resonant background, quantifying interpretation, open charm channels, etc.
- * The next steps to address these challenges are clear, but will take some time and should proceed in collaboration between the EIC, 22 GeV and theory communities

Backup

CFNS Spectroscopy 2025

Justin Stevens, WILLIAM & MARY 26

Photoproduction of XYZ states

Photoproduction of $\psi(2S)$

