Spectroscopy and exotic hadrons in Belle/Bellell

Exotic heavy meson spectroscopy and structure at the EIC,

CFNS, Stony Brook,

April 14-17, 2025

Ralf Seidl (RIKEN), for the Bellell collaboration

Outline

- Introduction to XYZ states in e⁺e⁻ annihilation
- KEKB and the Belle/Bellell experiments
- Existing and future measurements on XYZ states
- Heavy baryon spectroscopy
- Light and other spectroscopy opportunities

X(3872)→J/ψππ

- First observed by Belle in B⁺→X(3872)K⁺ decays
- Since then, confirmed by many other experiments, various decay channels
- The start of discovering many XYZ states at various facilities

PRL 91 (2003) 262001

Introduction: quarkonia-like measurements at Belle

- Various charm and b pair states have been identified at Belle experiment
- Wealth of data (~1 ab⁻¹) still provides new results
- Bellell starting to confirm states with increasing luminosity

Date of arXiv submission

Main questions: observed spectra vs. theory; quarkonium vs. molecule vs. tetraquark vs. hybrids

Status of onium-like states

Belle/Belle II physics goals

Main goal of Belle/Bellell:

- CP violation in the quark sector via $B^0 \overline{B}^0$ mixing
- CKM matrix
- Rare B decays
- Center of mass energy typically at Y(4S) resonance (10.58 GeV) → creates BB pairs to study mixing
- Asymmetric beam energies
 → boosted cms for longer-lived B
 mesons in the lab frame
- Additional runs below Y(4S) resonance $(e^+e^- \rightarrow q\bar{q})$ and scans above for Y(5S), Y(10753), etc

R.Seidl: Belle/II exotics

SuperKEKB accelerator

- Asymmetric 4 GeV e⁺ on 7 GeV e⁻ (was 3.5 GeV on 8 GeV in KEKB)
- Nano-beams + higher beam currents to reach 30 x KEKB instantaneous luminosity
- World highest instantaneous luminosity 5.1 * 10³⁴ cm⁻² s⁻¹ reached (12/2024)
- aiming to collect 50 x Belle luminosity
- Eventually add polarization

Belle and Bellell detector comparison

Accumulated luminosity

- Already recorded a reasonable fraction of the Belle luminosity:
 Belle 1.04 ab⁻¹; Belle II 575 fb⁻¹
- Pixel detector is still not operated while accelerator improves stability
- Other detectors taking data as planned
- About half of Belle luminosity reached at various energies

Updated on 2025/01/06 16:16 JST

Types of processes at B factories to create exotics

Drawings taken from V.

Bhardwaj

04/15/2025

Initial state radiation e^{-} γ $J^{PC} = 1^{-}$ qq

Also, particle production in fragmentation $q \rightarrow hX$

 Different sub processes access different J^{PC} states and mass ranges

R.Seidl: Belle/II exotics

B decays

- Look for X(3872) decays into D meson pairs to understand type of lineshape, BR:
- $D^0 \overline{D^{*0}}$ coupling lower limit g = 0.075 (at 95% Credibility)
- $BF(B^0 \rightarrow X(3872)K^0 / BF(B^+ \rightarrow X(3872)K^+ = 1.34^{+0.47}_{-0.40}(stat)^{+0.10}_{-0.12}(syst)$

ġ,

Bo

Charged resonances in B decays

- Z⁺(4430): Smoking gun for exotic resonances as charged particles with c and cbar content
- Studied in $B \rightarrow K\pi^{\pm}\psi'$ decays
- Amplitude analysis prefers J^P = 1⁺
- Situation more complicated for charged resonances, as substantial non-resonant background interference needs to be considered

RIKEN

ISR

04/15/2025

PRD 91 (2015) 112007 Y (4360) and Y (4660) Entries/20 MeV/c² 0 00 00 05 MeV/c² 12 Entries/20 MeV/c² (c) (b) (a) Entries/20 | 4.5 5.5 4.5 5.5 4.5 5.5 $M[\pi^{\dagger}\pi^{\dagger}\psi(2S)]$ (GeV/c²) $M[\pi^+\pi^-\psi(2S)]$ (GeV/c²) $M[\pi^{\dagger}\pi^{\dagger}\psi(2S)]$ (GeV/c²) 120 F (a) Entries/20 MeV/c² 00 00 00 00 01 PRL 110 (2013) 252002 4.4 4.6 4.8 5.2 5.4 PRL 99 (2007) 182004 $M(\pi^+\pi^-J/\psi)$ (GeV/c²) R.Seidl: Belle/II exotics

Initial state

13

RIKEN

radiation

e

- ISR allows to scan the mass of the final state in a very clean environment
- Photon quantum numbers must be conserved in final states to be created
- Y(4260),Y(4360) and Y(4660) found

Z_c(3900) and Y(4260)

- Y(4260) barely seen in B decays (unlike in ISR events)
- In ISR data, also Z_c(3900) found

Two-photon processes

- X states accessible in twophoton processes:
- $\gamma\gamma \rightarrow \omega J/\psi$ process X(3915)
- γγ→φJ/ψ process X(4350)
- Q² distribution of X(3915) (relates to FormFactor and possibly type of particle if larger size than cc̄)
- Also, X(3872) seen in J/ψππ <u>PRL 126 (2021) 122001</u>

04/15/2025

PRD 108 (2023) 012004

Double-charm

- Very rare process of creating double charmonium pairs, but dominant prompt J/ψ production process
- Use recoiling mass of J/ψ to search for states
- Discovery of the X(3940)(J=0?)

RIKEN

PRL 98 (2007) 082001

04/15/2025

Heavy Baryon production

- Not just mesons, plenty of light and heavy baryons are being produced in B factories
- Various states found, e.g excited $\Lambda_c(2910)^+$, $\Xi(1620)^0$ and $\Xi(1690)^0$
- Mass, width and BF for Λ_c(2625)⁺ (<u>PRD 107</u> (2023) 032008)

PRL 130 (2023) 031901

PRL 122 (2019) 072501

 $M_{\Xi^{+}\pi^{+}}$ [GeV/c²]

Baryon production in two-photon processes

R.Seidl: Belle/II exotics

- LEPS initially reported a pentaquark candidate in the nK final state at around 1540 MeV
- Two-photon production of pK *pK* final state can look for neutral and doubly charged versions of it
- $\Lambda(1520)$ clearly visible, but $\theta(1540)$ not

18

RIKEN

04/15/2025

Heavy pentaquark searches

- Use Y(1S) and Y(2S) decays and continuum production to look in pJ/ ψ decays – upper limits
- Use B decays for Λ_c decay searches of pentaguarks upper limit:
 - $B(\Lambda_{c}^{+} \rightarrow P_{s}^{+} \pi^{0}) \times B(P_{s}^{+} \rightarrow \varphi p)$ $< 8.3 \times 10^{-5}$ (90%CL)
- Indication of a $P_{\bar{c}cs}(4459)^0$ pentaquark in $\Lambda J/\psi$ decays (preliminary)

RIKEN

Peaks in Λ_c decays

• Peak seen in $\Lambda\pi$ mass distribution of Λ_c decays:

M=1434.3 \pm 0.6(stat) \pm 0.9(syst) MeV

- Closeness to $\overline{K}N$ threshold cannot rule out cusp
- Also, cusp seen in Λ_c decays around $\Lambda\eta$ threshold w/o need for new resonance

20

RIKEN

Bottomium-like states

- Various Bottomium-like states found
- Most recently Y(10753) in e⁺e⁻→Y(nS)ππ scans, observed by Belle, confirmed by BelleII
 - hybrid- or S-D-mixingstructure?
 - Compatible with tetraquark? - disfavored by $\omega \eta_b(1S)$ measurement (<u>PRD 109 (2024) 072013</u>)
 - Similarity between Y(4260) and Y(10753) in decays
- Also Z_b states 10610 and 10650 found

R.Seidl: Belle/II exotics

JHEP 10 (2019) 220

JHEP 07 (2024) 116

PRL116 (2016) 212001

04/15/2025

Outlook

- BelleII is running with improved capabilities and higher instantaneous luminosity compared to Belle
- Many XYZ states discovered with Belle, many starting to become available with Belle II
- Concentrate on widths of narrow resonances and BFs to better understand nature of exotic states

- Use ISR to study mass range above BESIII coverage
- Not just XYZ states, also light and heavy baryon measurements and pentaquark searches ongoing

Observation of Y(10753) $\rightarrow \omega \chi_{bJ}$

• Cross section ratio: 1.3 ± 0.6

- Prediction for pure D-wave state: 15
- Prediction for 4S-3D mixed state: 0.2
- Comparison of cross sections toY(nS) suggests different structure than Y(5S)

