Hadron spectroscopy at BESII **Recent results and future perspectives**

Nils Hüsken **JGU Mainz**

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

April 15th, 2025

- located at IHEP, Beijing
- operating in τ -charm region: 2 GeV – 5 GeV
- luminosity of 10^{33} cm⁻²s⁻¹
- over 600 members from 85 institutes in 17 countries

BESII

broad physics program:

- light hadron spectroscopy including searches for glueballs and hybrid mesons
- η and η' decays
- charmonium transitions
- hyperon physics
- excited ho, ω, ϕ
- D, D_s decays
- $D^0 \overline{D}^0$ pairs
- initial-state-radiation physics
- two-photon fusion
- spectroscopy of charmonium(-like) states
- decays of $X(3872), Z_c(3900), \dots$
- open-charm production
- charmed baryons

plus 740 pb^{-1} for $1.84 \text{ GeV} \le \sqrt{s} \le 3.08 \text{ GeV}$

Light hadron spectroscopy

Radiative J/ψ decays

a unique laboratory for light hadron spectroscopy:

- clean, high statistics sample of J/ψ decays
- well-defined initial state with $J^{PC} = 1^{--}$
- radiative decays provide gluon-rich environment

eConf C020620 (2002) THAT07

7

Radiative J/ψ decays

a unique laboratory for light hadron spectroscopy:

- clean, high statistics sample of J/ψ decays
- well-defined initial state with $J^{PC} = 1^{--}$
- radiative decays provide gluon-rich environment

Radiative J/ψ decays

eConf C020620 (2002) THAT07

 $J/\psi \to \gamma \eta' \pi^+ \pi^-$

or why you can never have too many J/ψ

Chinesischer Beschleuniger findet Hinweise auf Gluonenball

Das Standardmodell sagt Teilchen voraus, die nur aus Gluonen bestehen – allerdings wurden sie noch nie beobachtet. Nun scheint ein chinesischer Beschleuniger solche Gluonenbälle erstmals nachgewiesen zu haben.

von Manon Bischoff

Glueballs are an unusual, unconfirmed Standard Model prediction, suggesting bound states of gluons alone exist. We just found our first one.

- \rightarrow we need to know much more!

PRL 132, 181901 (2024)

 $J/\psi \rightarrow \gamma \eta \eta'$

• a new spin-exotic: the $\eta_1(1855)$ with $J^{PC} = 1^{-+}$

PRL 129 (2022) 19, 192002, PRL 130 (2023) 15, 159901 (erratum) PRD 106 (2022) 7, 072012, PRD 107 (2023) 7, 079901 (erratum)

 $J/\psi \rightarrow \gamma \eta \eta'$

• a new spin-exotic: the $\eta_1(1855)$ with $J^{PC} = 1^{-+}$

 \rightarrow need independent confirmation

 \rightarrow need more info on production & decay for interpretation

PRL 129 (2022) 19, 192002, PRL 130 (2023) 15, 159901 (erratum) PRD 106 (2022) 7, 072012, PRD 107 (2023) 7, 079901 (erratum)

 $\chi_{c1} \rightarrow \eta' \pi \pi$

and the case for a large $\psi(2S)$ sample

PRD 84, 112009 (2011)

CLEO see a $\pi_1(1600)$, but lack evidence for phase-motion

 $\chi_{c1} \rightarrow \eta' \pi \pi$

PRD 84, 112009 (2011)

and the case for a large $\psi(2S)$ sample

Charmonium(-like) states

Charmonium(-like) states

- large number of potentially exotic hadrons ulletdiscovered above open-charm threshold
- many of them in *b*-decays at LHCb
- BESIII: directly produce the vector states \bullet in e^+e^- annihilation
- transitions to X(3872), Z_c , Z_{cs}

The vector states

The vector states

Updated $e^+e^- \rightarrow h_c \pi^+\pi^-$

The vector states - an overview

• we know a lot: many, many possible $e^+e^- \rightarrow (c\bar{c})(q\bar{q}), (c\bar{q})(\bar{c}q)$ processes have been studied

• it still seems we understand too little... no coherent picture of the vector states

PRL 111 (2013) 13 132003 PLB 747 (2015) 410 PLB 755 (2016) 337 PLB 772 (2017) 200 EPJ C 80 (2020) 12 1179 PRD 109 (2024) 11, 116002

PRD 90 (2014) 11, 112009

- \rightarrow study how/if the Z_c lineshape varies with c.m. energy
- \rightarrow we can do this for many energies in small steps
- \rightarrow more to come in the future

Summary & Outlook

Summary

in the context of photo-/electro-production

 e^+e^- machines are very powerful at specific tasks in hadron spectroscopy \rightarrow light-quark & gluonic exotics in charmonium decays \rightarrow vector mesons directly in the annihilation

but: above 4 GeV, (exotic) charmonia with other J^{PC} are a challenge

open questions between e^+e^- and b-decays

Future perspective

- up to 3x higher luminosities in the XYZ region: \rightarrow enable precision studies of $Z_{c(s)}$ -states & X(3872)
 - \rightarrow large dataset at single \sqrt{s} versus finer scans?
- energies of up to 5.6 GeV:
 - \rightarrow new, largely unexplored energy region
 - \rightarrow crossing several charmed baryon thresholds
 - \rightarrow cross $J/\psi p \bar{p}$ threshold

More distant future perspective

Hefei, China

- energy range: 2 7 GeV
- luminosity: $> 0.5 \times 10^{35}$ cm⁻² s⁻¹
- timeline:

More distant future perspective

CME (GeV)	Lumi (ab^{-1})	Samples	σ (nb)	No. of events	Remarks
3.097	1	J/ψ	3400	3.4×10^{12}	3 trillion <i>I/w</i>
3.670	1	$\tau^+\tau^-$	2.4	$2.4 imes 10^9$	0 thinon <i>37</i> q
3.686	1	$\psi(3686)$	640	6.4×10^{11}	600 billion $\psi(2S)$
		$ au^+ au^-$	2.5	$2.5 imes 10^9$	
		$\psi(3686) \rightarrow \tau^+ \tau^-$		$2.0 imes 10^9$	
3.770	1	$D^0 ar{D}^0$	3.6	$3.6 imes10^9$	a few billion D ^{Single tag} Single tag
		$D^+ \bar{D}^-$	2.8	$2.8 imes10^9$	
		$D^0 \bar{D}^0$		$7.9 imes10^8$	
		$D^+ \bar{D}^-$		$5.5 imes 10^8$	
		$\tau^+\tau^-$	2.9	$2.9 imes 10^9$	
4.009	1	$D^{*0}\overline{D}^0 + \mathrm{c.c.}$	4.0	$1.4 imes 10^9$	$CP_{D^0\bar{D}^0} = +$
		$D^{*0}\overline{D}^0 + \mathrm{c.c.}$	4.0	$2.6 imes10^9$	$CP_{D^0\bar{D}^0} = -$
		$D_s^+ D_s^-$	0.20	$2.0 imes 10^8$	
		$\tau^+\tau^-$	3.5	3.5×10^9	
4.180	1	$D_s^{+*}D_s^{-}$ +c.c.	0.90	$9.0 imes10^8$	Single tag
		$D_s^{+*}D_s^-$ +c.c.		$1.3 imes 10^8$	
		$\tau^+ \tau^-$	3.6	$3.6 imes 10^9$	
4.230	1	$J/\psi \pi^+\pi^-$	0.085	$8.5 imes 10^7$	85 million $\pi\pi J/r$
		$ au^+ au^-$	3.6	$3.6 imes10^9$	
		$\gamma X(3872)$			
4.360	1	$\psi(3686)\pi^+\pi^-$	0.058	$5.8 imes 10^7$	
		$ au^+ au^-$	3.5	$3.5 imes10^9$	
4.420	1	$\psi(3686)\pi^{+}\pi^{-}$	0.040	$4.0 imes 10^7$	
		$ au^+ au^-$	3.5	$3.5 imes10^9$	
4.630		$\psi(3686)\pi^{+}\pi^{-}$	0.033	$3.3 imes 10^7$	
	1	$\Lambda_c \bar{\Lambda}_c$	0.56	$5.6 imes 10^8$	
		$\Lambda_c \bar{\Lambda}_c$		$6.4 imes 10^7$	Single tag
		$ au^+ au^-$	3.4	$3.4 imes 10^9$	0 0
4.0-7.0	3	300-point scan with 10 MeV steps, 1 fb^{-1} /point			
> 5	2-7	Several ab^{-1} of high-energy data, details dependent on scan results			
ble 2.2 The	expected numbers	s of produced XYZ-pa	rticle events before re	econstruction per yea	r at the STCF.
XYZ		Y(4260)	$Z_c(3900)$	$Z_{c}(4020)$	X(3872)
No. of events		10 ⁹	10 ⁸	10 ⁸	5×10^{6}

- arks on J/ψ
- ion D
- tag $_{\mathrm{tag}}$
- = += -
- $_{tag}$ $\pi\pi J/\psi$
- tag

- energy range: 2 7 GeV
- luminosity: $> 0.5 \times 10^{35}$ cm⁻² s⁻¹
- timeline:

event/1948/overview

Thank you for your attention!