[281/164]

HEAVY EXOTIC STATES & K-MATRIX ANALYSIS AT THE EIC

Eric Swanson

Apr, 2025

Heavy Exotic States

HOW NEW TYPES OF FRUIT ARE DEVELOPED

Exotics States Abound!

h/t Patrick Koppenburg

Exotic Production Modes

wwo e-

 $p\bar{p}/pp \to X$

excited gluon field Ν

(for reference)

Table 1:	Exotica organized by the way t	hey are produced. References are given in the decay column.	Darticlo		
Process	Production	roduction $Decay$			
		$X \to \pi \ \pi \ J/\psi \ [4, 109, 110, 111, 112, 113, 114]$			
		$X \to D^{**}D^{**}[110, 110]$	X(3872)		
		$X \to \gamma J/\psi$ [118, 119, 120, 121]			
		$X \rightarrow \gamma \psi(2S)$ [118, [120]	V(2070)		
	$B \rightarrow K + X$	$X \to \omega J/\psi$ [106, 122, 123]	X(3872)		
		V [104]	Y(3940)		
		$A \rightarrow \gamma \chi_{c1}$ [124]	X(3823)		
B and Λ_b Decays		$X \to \phi J/\psi$ [125], 126, 127, 128, 129, 130, 131, 132]	Y(4140) = V(4974)		
			Y(4274) Y(4500)		
			X(4500) X(4700)		
			$\frac{\Lambda}{2}(4050)$		
		$Z ightarrow \pi^{\pm} \chi_{c1}$ [133, 134]	$Z_1(4050)$ $Z_2(4250)$		
			$Z_2(4250)$		
	$B \to K + Z$	$Z ightarrow\pi^{\pm}J/\psi$ [46, 135]	$Z_c(4200)$		
			$Z_c(4430)$		
		$Z o \pi^{\pm} \psi(2S)$ [30, 135, 136, 137, 138, 139]	$Z_c(4240)$ Z (4430)		
	$B \rightarrow K\pi + X$	$X \rightarrow \pi^+ \pi^- I/2/2$ [140]	X(3872)		
			$P_{1}(4380)$		
	$\Lambda_b \to K + P_c$	$P_c \rightarrow p J/\psi$ [35]	$P_{c}(4450)$		
			Y(4008)		
		$Y o \pi \pi J/\psi$ [23, 29, 141, 142, 143, 144, 145]	Y(4260)		
			Y(4360)		
	$e^+e^- \rightarrow Y$	$Y o \pi \pi \psi(2S)$ [108, 146, 147, 148]	Y(4660)		
		$Y \to \omega \chi_{c0}$ [149]	Y(4230)		
		$Y \rightarrow \Lambda_c \overline{\Lambda}_c$ [150]	X(4630)		
		$Y \rightarrow \pi\pi \Upsilon(1S, 2S, 3S)$ [151] [152]	11(1000)		
		$Y \rightarrow \pi \pi h_b (1P, 2P)$ [153]	$Y_b(10888)$		
	$e^+e^- ightarrow \pi + Z$	$Z \to \pi J/\psi$ [22, 23, 31, 32]	F (22.2.2.)		
		$Z \to D^* \bar{D}$ [33] [154] [155]	$Z_c(3900)$		
e^+e^- Annihilation		$Z \rightarrow \pi h_c$ [156] [157]	T (1000)		
		$Z \rightarrow D^* \overline{D}^*$ [158, [159]	$Z_c(4020)$		
		$Z \to \pi^{\pm} \psi(2S)$ [148]	$Z_{c}(4055)$		
		$Z \to \pi \Upsilon(1S, 2S, 3S)$ [160, 161, 162]	$Z_b(10610)$		
		$Z \rightarrow \pi h_b(1P, 2P)$ [160]	$Z_{b}(10650)$		
		$Z \rightarrow B\bar{B}^*$ [163]	$Z_{1}(10610)$		
		$Z \rightarrow R^* \bar{R}^*$ [162]	$Z_{0}(10650)$		
	$e^+e^- \rightarrow \gamma + Y$	$X \rightarrow \pi^{+}\pi^{-} L/\psi $ [103]	X(3872)		
	$e^+e^- \rightarrow \pi^+\pi^- \pm X$	$X \rightarrow \pi \pi J/\psi [52]$	X(3872)		
	$e^+e^- \rightarrow \pi^+\pi^- + X$ $e^+e^- \rightarrow J/\psi + X$	$V \rightarrow D\bar{D}*$ [104]	X(2040)		
		$X \rightarrow DD^{+}$ [41, 165]	Λ (3940)		
$\gamma\gamma$ Collisions	$\gamma\gamma \to X$	$X \to D^* D^* [41]$	X(4160)		
		$X \to \omega J/\psi \ [166], \ [167]$	X (3915)		
		$X \rightarrow DD$ [168, 169]	Z(3930)		
		$X \to \phi J/\psi \text{ [170]}$	X(4350)		
		$X \to \pi^+ \pi^- J/\psi$ [27, 171, 172, 173]	X (3872)		
Hadron Collisions	$pp \text{ or } p\bar{p} \to X + \text{ anything}$	$X \to \phi J/\psi \ [174]$	Y (4140)		
		$X \to B_s \pi^{\pm}$ [175]	X(5568)		

 $\mathbf{\nabla}$

h/t Lebed, Mitchell, Swanson <u>1610.04528</u>

Table 3: Major experiments in the past, present, and future of heavy-quark exotics studies.					
Experiment	Highlights	Accelerator	Years	Institute	Production
BaBar	Y(4260) [29] Y(4360) [108]	PEP-II	1999 - 2008	SLAC (Menlo Park, California, USA)	e^+e^- annihilation ($E_{\rm CM} \approx 10 \; {\rm GeV}$):
Belle	$\begin{array}{c} X(3872) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	KEKB	1998– 2010	KEK (Tsukuba, Japan)	$\begin{array}{c} e^+e^- \rightarrow B\bar{B}; \ B \rightarrow KX \\ e^+e^- \rightarrow Y_b \\ e^+e^- \rightarrow \pi Z_b \\ e^+e^-(\gamma_{\rm ISR}) \rightarrow Y \\ e^+e^-(\gamma_{\rm ISR}) \rightarrow \pi Z_c \\ e^+e^- \rightarrow J/\psi + X \end{array}$
Belle II	Upcoming continuation of Belle	SuperKEKB	2018-		$\gamma\gamma \to X$
CLEO-c	Y(4260) [142] $\pi^{+}\pi^{-}h_{c}$ [177]	CESR-c	2003 - 2008	Cornell U. (Ithaca, New York, USA)	e^+e^- annihilation ($E_{\rm CM} \approx 4 {\rm GeV}$):
BESIII	$Z_c(3900)$ [22, 154] $Z_c(4020)$ [156, 158] Y(4230) [149] X(3872) [52]	BEPCII	2008–	IHEP (Beijing, China)	$e^+e^- \rightarrow Y$ $e^+e^- \rightarrow \pi Z$ $e^+e^- \rightarrow \gamma X$
CDF	$\begin{array}{c} Y(4140) \ \boxed{126} \\ Y(4274) \ \boxed{132} \\ X(3872) \ \boxed{178}, \ \boxed{179}, \ \boxed{172} \end{array}$	Tevatron	1985-	Fermilab (Batavia,	$p\bar{p}$ collisions ($E_{\rm CM} \approx 2$ TeV):
D0	X(3872) [171] Y(4140) [174] X(5568) [175]	101000	2011	Illinois, USA)	$p\bar{p} \rightarrow X + any$ $p\bar{p} \rightarrow B + any; B \rightarrow KX$
ATLAS	$\chi_b(3P)$ [180]				
CMS	X(3872) [28] Y(4140), Y(4274) [130]	LUC	2010		pp collisions $(E_{\rm CM} = 7, 8, 13 \text{ TeV}):$
LHCb	$\begin{array}{c} Z_c(4430) \ \boxed{138}, \boxed{139} \\ X(3872) \ \boxed{109} \\ P_c(4380), \\ P_c(4450) \ \boxed{35} \\ Y(4140), \\ Y(4274) \ \boxed{125}, \boxed{131} \end{array}$	LIIC	2010–	CERN (Geneva, Switzerland)	$pp \to X + any$ $pp \to B + any; B \to KX$ $pp \to \Lambda_b + any; \Lambda_b \to KP_c$
COMPASS	photoproduction [181] $a_1(1420)$ [182]	SPS	2002-2011		μ/π beam on N target $(p_{beam} \approx 160, 200 \text{ GeV})$ $\pi N \to XN$ $\gamma N \to XN$
PANDA	Upcoming	HESR		GSI (Darmstadt, Germany)	\bar{p} beam on p target $(p_{beam} \approx 1.5 - 15 \text{ GeV}):$ $p\bar{p} \rightarrow X$ $p\bar{p} \rightarrow X + \text{any}$
GlueX	Beginning (searches for light	CEBAE	2016-	Jefferson Lab (Newport News,	γ beam on p target ($E_{beam} \leq 11 \text{ GeV}$):
CLAS12	quark hybrid mesons)	OLDAT	2010	Virginia, USA)	$\gamma p \to X p$

(for reference)

h/t Lebed, Mitchell, Swanson <u>1610.04528</u>

Exotic Interpretations -- molecules

X(3872)

arXiv:hep-ph/0311229

h/t F-K Guo

Exotic Interpretations -- molecules

Compositeness (preliminary)

h/t Christian Hanhart

Exotic Interpretations -- threshold effects

X(4630)

Exotic Interpretations -- dynamical dyquarks

h/t R. Lebed

 J/ψ

SN

D

 Ξ_c

arXiv:2208.05106

arXiv:2008.12838

X(2900)

 B^+

Y(4230)

-KD 102, 012009 (2020)

- Iarge luminosity
- high energy
- access to quantum numbers
- polarized photons and protons
- In orthogonal to other production methods

orthogonal to other production methods

factorization

prediction reliable for $x_B \sim 1$, $t \ll W_{\gamma p}^2$

h/t Alessandro Pilloni (2020)

arXiv:1801.10211

14

- Iarge luminosity
- high energy
- access to quantum numbers
- polarized photons and protons
- In orthogonal to other production methods

is the orthogonality useful?

reactions will be complicated!

K-matrix Analysis

{a real example!}

CURVE-FITTING METHODS AND THE MESSAGES THEY SEND

h/t Randall Munroe

18

h/t chat-gpt

(sometimes) computationally simple

respects two-body unitarity (sums of Breit-Wigners are not encouraged!)

more reliable extraction of couplings (from pole residues); avoids assumptions in extracting branching fractions

employing a Chew-Mandelstam represe avoiding kinematic singularities at s = 0 ar pseudothreshold (and in formfactor model

h/t BESIII

entation permits
nd
els)
$$\mathscr{C}(s+i\epsilon) = \mathscr{C}(s_1) - \frac{s-s_1}{\pi} \int_{s_0} \frac{ds'}{s'-s_1} \frac{\rho(s')g^2(s')}{s'-s-i\epsilon}$$

- Three-body unitarity?
- Analyticity" -- model for the (meromorphic) structure; unintended structure (form factors); continuing to the complex plane
- left hand cuts? (\rightarrow N/D)
- ghost poles can befuddle
- extracted couplings tend to show model-dependence
- overfitting is all too easy

"reality" is often ascribed to the fit parameters/ overfitting is a problem

Can arise due to spurious non-invertibility of (1+CK).

Identify by anomalous residues and behaviour under rescaling the couplings $\hat{g} \rightarrow \lambda \hat{g}$.

K-matrix Applications

grey=ghost poles with sizable residues

pole positions (+ 1000 bootstrap datasets)

arXiv: 2204.11915

K-matrix Applications

couplings and branching fractions

arXiv: 2204.11915

23

Ex. Electroproduction of $K(KN, \pi\Sigma)$ @ CLAS/JLab

Model as $\gamma^*N \to K(KN, \Sigma\pi)$ scattering

$$K_{\alpha\beta} = \sum_{R=\Lambda(1405),\Lambda(1520)} \frac{g_{\alpha R}g_{\beta R}}{m_R^2 - s} + f_{\alpha\beta}$$

Ex. $e^+e^- \rightarrow \pi\pi J/\psi$

Merge K-matrix and isobar formalisms

Ex. $e^+e^- \rightarrow \pi\pi J/\psi$

$\mathscr{M} \sim D^{1}_{\Lambda,\nu-\nu'}(\hat{k}_{e}) h_{\nu,\nu'}^{V_{J}:ee} \cdot BW(s) \cdot D^{J^{*}}_{\Lambda\rho}(\alpha,\beta,\gamma) \cdot O^{\rho}_{\lambda_{1}\lambda_{2}\lambda_{3}}$

 $\mathrm{d}\sigma/\mathrm{d}\Phi_{3} = N \sum_{\Lambda,\Lambda'} \rho_{\Lambda\Lambda'} \sum_{\nu,\nu'} D^{J*}_{\Lambda,\nu}(\alpha,\beta,\gamma) D^{J}_{\Lambda',\nu'}(\alpha,\beta,\gamma) \sum_{\{\lambda\}} O^{\nu}_{\{\lambda\}} O^{\nu'*}_{\{\lambda\}},$

$$d\sigma = \frac{|h^{Y:ee}|^2 \cdot |BW(s;Y)|^2 \cdot \sum_{\nu\{\lambda\}} O^{\nu}_{\{\lambda\}} O^{\nu^*}_{\{\lambda\}}}{(2\pi)^3 \, 64p_{1CM} \, s^{3/2}} \, dm_{\{\lambda\}}^2}$$

arXiv:1910.04566

 $n_{12}^2 dm_{23}^2$

Ex. $e^+e^- \rightarrow \pi \pi J/\psi$

spectator:	k=1	$\hat{\theta}_{1(1)} = 0 \theta_{23}$
		$\zeta_{1(0)}^3 = \zeta_{1(3)}^3$

k=2
$$\hat{\theta}_{2(1)} \quad \theta_{13}$$

 $\zeta_{2(0)}^3 = \zeta_{2(3)}^3$

$$\begin{split} \delta_{\nu,\tau} \\ O_{\lambda}^{\nu} &= \sum_{\tau\lambda'} BW(s;Y) \, d_{\nu,\tau}^{1}(\theta_{1(1)}) \, h_{\tau}^{Y:\pi Z} \, BW(\sigma_{1};Z) \, d_{\tau,-\lambda'}^{1}(\theta_{23}) \, h_{\lambda'}^{Z:\pi\psi} \, d_{\lambda',\lambda}^{1}(\zeta_{1(0)}^{3}) \\ k=1 \\ O_{\lambda}^{\nu} &= \sum_{\tau\lambda'} BW(s;Y) \, d_{\nu,\tau}^{1}(\hat{\theta}_{2(1)}) \, h_{\tau}^{Y:\pi Z} \, BW(\sigma_{2};Z) \, d_{\tau,-\lambda'}^{1}(\theta_{13}) \, h_{\lambda'}^{Z:\pi\psi} \, d_{\lambda',\lambda}^{1}(\zeta_{2(0)}^{3}) \\ k=2 \\ O_{\lambda}^{\nu} &= \sum_{\lambda'} BW(s;Y) \, d_{\nu,-\lambda'}^{1}(\hat{\theta}_{3(1)}) \, h_{\lambda'}^{Y:f\psi} \, BW(\sigma_{3};f) \, d_{\theta,0}^{0}(\theta_{12}) \, h^{f:\pi\pi} \, d_{\lambda',\lambda}^{1}(\zeta_{3(0)}^{3}) \\ k=3 \\ \lambda' \end{split}$$

$$\cos(\hat{\theta}_{3(1)}) = \frac{(m_0^2 + m_3^2 - \sigma_3)(m_0^2 + m_1^2 - \sigma_1) - 2m_0^2(\sigma_2 - m_3^2)}{\lambda^{1/2}(m_0^2, m_1^2, \sigma_1)\lambda^{1/2}(m_0^2, \sigma_3, m_3^2)}$$
$$\cos(\hat{\theta}_{1(2)}) = \frac{(m_0^2 + m_1^2 - \sigma_1)(m_0^2 + m_2^2 - \sigma_2) - 2m_0^2(\sigma_3 - m_1^2)}{\lambda^{1/2}(m_0^2, m_2^2, \sigma_2)\lambda^{1/2}(m_0^2, \sigma_1, m_1^2)}$$

$$d_{\lambda\lambda'}^j(\hat{\theta}_{2(1)}) = (-1)^{\lambda - \lambda'} d_{\lambda\lambda'}^j(\hat{\theta}_{1(2)}),$$

$$\cos(\zeta_{1(3)}^3) = \frac{2m_3^2(\sigma_2 - m_0^2 - m_2^2) + (m_0^2 + m_3^2 - \sigma_3)(\sigma_1 - m_2^2)}{\lambda^{1/2}(m_0^2, m_3^2, \sigma_3)\lambda^{1/2}(\sigma_1, m_3^2, m_2^2)}$$

$$\cos(\zeta_{3(2)}^3) = \frac{2m_3^2(\sigma_1 - m_0^2 - m_1^2) + (m_0^2 + m_3^2 - \sigma_3)(\sigma_2 - m_1^2)}{\lambda^{1/2}(m_0^2, m_3^2, \sigma_3)\lambda^{1/2}(\sigma_2, m_3^2, m_1^2)}$$

$$\begin{aligned} \cos(\theta_{12}) &= \frac{2\sigma_3(\sigma_2 - m_3^2 - m_1^2) - (\sigma_3 + m_1^2 - m_2^2)(m_0^2 - \sigma_3 - m_3^2)}{\lambda^{1/2}(m_0^2, m_3^2, \sigma_3)\lambda^{1/2}(\sigma_3, m_1^2, m_2^2)}, & \swarrow \\ \cos(\theta_{23}) &= \frac{2\sigma_1(\sigma_3 - m_1^2 - m_2^2) - (\sigma_1 + m_2^2 - m_3^2)(m_0^2 - \sigma_1 - m_1^2)}{\lambda^{1/2}(m_0^2, m_1^2, \sigma_1)\lambda^{1/2}(\sigma_1, m_2^2, m_3^2)}, & \swarrow \\ \cos(\theta_{31}) &= \frac{2\sigma_2(\sigma_1 - m_2^2 - m_3^2) - (\sigma_2 + m_3^2 - m_1^2)(m_0^2 - \sigma_2 - m_2^2)}{\lambda^{1/2}(m_0^2, m_2^2, \sigma_2)\lambda^{1/2}(\sigma_2, m_3^2, m_1^2)}. & \longleftarrow \end{aligned}$$

$$\begin{array}{l} \mathbf{x} = \mathbf{3} \quad \hat{\theta}_{3(1)} \quad \theta_{12} \\ \zeta_{3(0)}^3 = \zeta_{3(3)}^3 = \mathbf{0} \end{array}$$

Ex.
$$e^+e^- \rightarrow \pi\pi J/\psi$$

 $\pi^+ 2$
 $f_2(\mu)f_0$ DS spectator: k=1 $\hat{\theta}_{1(1)} = 0$ θ_{23}
 $\chi^+ \chi^- 3$ $\zeta^+_{1(0)} = 0$
 $\psi \chi_1$ $\delta_{\nu,-\lambda'}$ 1
 $(^1O_{\lambda}^{\nu} = \sum_{R,'} BW(s; Y) d^{1}_{\nu O-\lambda}(\hat{\theta}_{1(1)}) h^{Y'_{\beta}\psi}_{0\lambda'} BW(\sigma_1; f_R) d^{0}_{\theta O}(\theta_{23}) h^{f_0;\pi\pi}_{00} d^{1}_{\lambda,2}(f_{1(0)})$
 $\rightarrow \delta_{\nu,-\lambda} BW(s; Y) \sum_{\alpha\beta} h^{Y'_{\alpha}(\alpha\beta)_{\beta\psi}}_{0\lambda'} T_{\alpha\beta;\pi\pi}(\sigma_1)$
 $\approx \delta_{\nu,-\lambda} BW(s; Y) h^{Y'_{\alpha\beta}}_{0\lambda'} BW(\sigma_1; f_R) d^{0}_{\theta O}(\theta_{23}) h^{f_0;\pi\pi}_{00} d^{1}_{\lambda,2}(f_{1(0)})$
 $\rightarrow \delta_{\nu,-\lambda} BW(s; Y) \sum_{\alpha\beta} h^{Y'_{\alpha\beta}}_{0\lambda'} \sigma_{\beta\pi,\pi\pi}(\sigma_1)$ with $T = (1 + KC)^{-1}K = K(1 + CK)^{-1}, C = R - i\rho$
So we have $\delta_{\nu,-\lambda} BW(s; Y) \sum_{\gamma} (1 + KC)^{-1}_{\pi\pi;\gamma} \left(\frac{g_{R;\gamma}g_{R;\pi\pi}}{m_R^2 - s} + f_{\gamma;\pi\pi} \right) h^{Y:(\pi\pi)\psi}$
Alternatively, we can bend the ψ line back and think of this as production from a $J\psi$ P-vector

$$\delta_{\nu,-\lambda} BW(s;Y) \sum_{\gamma} (1+KC)_{\pi\pi;\gamma}^{-1} \left(\frac{g_{R:Y\psi}g_{R:\gamma}}{m_R^2 - s} + f_{Y\psi;\gamma} \right)$$

Notice that this gives predictions for $K\bar{K}J/\psi$ and $\eta\eta J/\psi$

The formulations are equivalent under $f_{\gamma:Y\psi} = f_{\gamma:\pi\pi} h^{Y:(\pi\pi)\psi}$ and $g_{R:Y\psi} = g_{R:\pi\pi} h^{Y:(\pi\pi)\psi}.$

Notice that this gives predictions for $K\bar{K}J/\psi$ and $\eta\eta J/\psi$

Ex. incorporate three-body unitarity

Sebastian Dawid, Nils Hüsken

Conclusions

• EIC will be a complementary & powerful probe of exotic hadrons

• these will almost certainly appear in complicated reactions

• which will require sophisticated modelling

way in helping!

SVNT MONSTRA

• expertise developed at COMPASS, JLab/JPAC (LHCb, BEPC) will go a long

~thank you~

The X(3872) in 1992

Figure 6.12 $\psi \pi \pi$ mass spectrum, standard cuts, negative beam.

A single peak above background does not fit the observed signal well. A second peak above the ψ was added to the fit to improve this. The fit parameters are shown on the following page:

6-705

\$2

190

Tom LeCompte, Northwestern thesis E705 at FNAL

https://arxiv.org/pdf/2504.04096

vector bottomonium

masses [BW params, poles, quark model eigenvalues, LGT plate

teaus]	
--------	--

Discussion

$\Gamma(a)$

state	RPP	our estimate	LS	GM	SOEF
$\Upsilon(4S)$	0.272	(0.003 - 0.62)	0.31	0.39	0.21
$\Upsilon(5S)$	0.31	(0.037 - 0.068)	0.28	0.33	0.18
$\Upsilon(6S)$	0.13	(0.043 - 0.074)	0.26	0.27	0.15
$\Upsilon(10750)$	$(0.01 - 0.40)^{a}$	(0.004 - 0.10)		2.38 eV $^{\rm b}$	

^a from ambiguous solutions in Ref. [5] ^b assuming a 3D state

JPAC Helicity Formalism Summary

$$M^{\Lambda}_{\{\lambda\}} = \sum_{\nu} D^{J*}_{\Lambda,\nu}(\alpha,\beta,\gamma) O^{\nu}_{\{\lambda\}}, \qquad d\sigma/d\Phi_3 = N \sum_{\Lambda,\Lambda'} \rho_{\Lambda\Lambda'} \sum_{\nu,\nu'} D^{J*}_{\Lambda,\nu}(\alpha,\beta,\gamma) D^{J}_{\Lambda',\nu'}(\alpha,\beta,\gamma) \sum_{\{\lambda\}} O^{\nu}_{\{\lambda\}} O^{\nu'*}_{\{\lambda\}}, \qquad (3)$$

where N is an overall normalization factor, and ρ is the spin-density matrix of the decaying particle. It is clear that in the unpolarized case, when $\rho_{\Lambda\Lambda'} \sim \delta_{\Lambda\Lambda'}$, the dependence on α, β , and γ drops out. Conversely, when one integrates over the Euler angles, the remaining distribution is not sensitive to the polarization. The amplitude $M^{\Lambda}_{\{\lambda\}}$ can be written as a sum of three terms, each one defining its own aligned configuration,

 $\{\lambda_i\}$ are the final state polarisations

 $\hat{\theta}_{k(1)}, \theta_{ij}, \zeta_{k(0)}^{\ell}$ are fixed angular functions of invariants w/ $\hat{\theta}_{1(1)} = 0$ (thus the reference frame topology simplifies)

k(ij) refers to the (ij)-isobar /or/ the k spectator

 $\sigma_k = m_{ij}^2$ is the (ij) isobar invariant mass

What is the interaction?

N. Cardoso and P. Bicudo,

Color fields of the static pentaquark system computed in SU(3) lattice QCD," Phys. Rev. D {87}, no. 3, 034504 (2013)

S. Furui, A.M. Green and B. Masud,

``An analysis of four quark energies in SU(2) lattice Monte Carlo using the flux tube symmetry," Nucl. Phys. A {582}, 682 (1995)

x

