Search for Exotic Hadrons at GlueX

Malte Albrecht for the GlueX Collaboration

Jefferson Lab

Office of Science

Exotic Heavy Meson Spectroscopy with EIC: Detector/Physics Simulations and Feasibility

04 / 16 / 2025

The Search for Hybrid Mesons

 $\rho\pi, \eta'\pi, f_1(1285)\pi, b_1(1235)\pi$

 $\pi_1(1600)$

 $J^{PC} = 1^{-+}$

Ongoing quest:

- What are the correct degrees of freedom to describe the hadron spectrum?
- How do gluons contribute to the structure of hadrons?
- Mapping out the spectrum of light hybrids:
 - Evidence in multiple channels, consistent results
 - Search for partner states, regular J^{PC} hybrids, higher mass nonets

2

- Partial Wave Analysis (PWA) is an indispensa
- Achieving analysis goals depends on strong thec

EXOTIC HADRONS TOPICAL COLLABORATION

DPG Frühjahrstagung 202

Light Quark Mesons from Lattice QCD

[Dudek, Edwards, Guo, Thomas, PRD 88 094505(2013)]

• Lightest spin-exotic state: $J^{PC} = 1^{-+}$

The Route to Exotics with GlueX

- Photoproduction a versatile process:
 - Incoming photon may oscillate to vector meson
 - Production of mesonic resonances as well as target excitations
 - Complementary to πN reaction used by COMPASS, E852, VES
 - Allows coupling to all lightest hybrid nonet states

- Understand (polarized) production of "simple" hadrons increase complexity stepwise
- Achieve good understanding of acceptance and backgrounds
 - Single pseudoscalar production asymmetries [GlueX, PRC 95 (2017) 042201; PRC, 100 (2019) 052201; PRC 103 (2021) 022201]
 - Spin density matrix elements $(\omega, \varphi, \Lambda(1520))$ PRC 105, 035201 (2022), ρ PRC 108, 055204 (2023), Δ^{++} PLB 863 (2025) 139368)
- Investigation of $\eta^{(\prime)}\pi$ channels
 - Study production mechanism, cross section of known mesons first
 - Charged and neutral modes, different sub-decays \rightarrow acceptance, background handling
- Extend hybrid search to vector-pseudoscalar channels ($\omega \pi, \omega \eta, \phi \pi, \phi \eta, K^*K$)

The GlueX Expetities that Jefferson $Lab_{\sigma_E/E \approx 6\%/\sqrt{E}+2\%}^{r < 120}$

PWA with AmpTools

- AmpTools is a set of C++ classes that can be used for amplitude analyses
- Separate physics from computing
- The "user" provides:
 - an algorithm to unpack four-vectors from a file
 - algorithms to compute various physics amplitudes from four-vectors
 - a recipe for assembling the amplitudes into an intensity
- AmpTools provides:
 - general framework (no assumptions about experiment or physics model)
 - set of core libraries optimized for unbinned likelihood fitting and parallel processing
 - MPI parallelization
 - GPU acceleration per process (multiple GPUs supported)
 - modular code that can also be used for MC generation and displaying fit results

Number of GPUs or CPUs

github.com/mashephe/AmpTools

New Developments and Tools

- Different implementations for mass dependent fits under development:
 - K-Matrix implementation
 - Non-parametric models using NIFTy (Information Field Theory for PWA)

- Python bindings for AmpTools (see <u>https://lan13005.github.io/PyAmpTools</u>):
 - Usage of all AmpTools features
 - Access to Python ecosystem
- Capability to switch minimizer (Markov chain MC, ...)

Spin Density Matrix Elements

- Full angular distribution of vector meson production and decay is described by Spin Density Matrix Elements ρ_{ii}^k
- Linear beam polarization gives access to nine independent SDMEs

$$W(\cos\vartheta,\varphi,\Phi) = W^{0}(\cos\vartheta,\varphi) - P_{\gamma}\cos(2\Phi)W^{1}(\cos\vartheta,\varphi) - P_{\gamma}\sin(2\Phi)W^{2}(\cos\vartheta,\varphi)$$

$$W^{0}(\cos\vartheta,\varphi) = \frac{3}{4\pi} \left(\frac{1}{2}(1-\rho_{00}^{0}) + \frac{1}{2}(3\rho_{00}^{0}-1)\cos^{2}\vartheta - \sqrt{2}\operatorname{Re}\rho_{10}^{0}\sin2\vartheta\cos\varphi - \rho_{1-1}^{0}\sin^{2}\vartheta\cos2\varphi\right)$$

$$W^{1}(\cos\vartheta,\varphi) = \frac{3}{4\pi} \left(\rho_{11}^{1}\sin^{2}\vartheta + \rho_{00}^{1}\cos^{2}\vartheta - \sqrt{2}\operatorname{Re}\rho_{10}^{1}\sin2\vartheta\cos\varphi - \rho_{1-1}^{1}\sin^{2}\vartheta\cos2\varphi\right)$$

$$W^{2}(\cos\vartheta,\varphi) = \frac{3}{4\pi} \left(\sqrt{2}\operatorname{Im}\rho_{10}^{2}\sin2\vartheta\sin\varphi + \operatorname{Im}\rho_{1-1}^{2}\sin^{2}\vartheta\sin2\varphi\right)$$
Schilling *et al.* [Nucl. Phy. B, 15 (1970) 397]
Malte Albrecht (JLab)

8

$$W^{0}(\cos\vartheta,\varphi) = \frac{3}{4\pi} \left(\sqrt{2}\operatorname{Im}\rho_{10}^{2}\sin2\vartheta\sin\varphi + \operatorname{Im}\rho_{1-1}^{2}\sin^{2}\vartheta\sin2\varphi\right)$$

Δ^{++} SDMEs

PLB 863 (2025) 139368

- Many channels rely on understanding and describing Δ^{++} at the lower vertex correctly
- Structured effort underway:
 - Extract Δ^{++} SDMEs in $\gamma p \rightarrow \pi^- \Delta^{++}$ first:

- Include Δ^{++} decay angles in amplitude model, extract $a_2^-(1320)$ cross section in $\gamma p \to \eta \pi^- \Delta^{++}$
- Use findings for analysis of $\gamma p \to \eta' \pi^- \Delta^{++}$, which seems to be most promising avenue for exotics search

$\gamma p ightarrow \pi \eta N$ at GlueX

- Evidence for spin-exotic contribution from other experiments
 → Key channel for GlueX
- Clear signals at $a_0(980)$ and $a_2(1320)$ masses (not acceptance corrected)

 $0.1 < -t < 0.3 \ {
m GeV}^2$

Malte Albrecht (JLab)

Η GJ y_{GJ} ~еј 7 Rest Frame of Xwhere $X \to \eta \pi$ θ_{GJ} Angular distribution $a_2(1320)$ signal clearly different between charged and neutral channels

Rest Frame of Xwhere $X \to \eta \pi$

Different spin-projection states populated in charged vs. Neutral channel

$\gamma p ightarrow \pi \eta N$ at GlueX

- Evidence for spin-exotic contribution from other experiments
 → Key channel for GlueX
- Clear signals at $a_0(980)$ and $a_2(1320)$ masses (not acceptance corrected)

Definition of Amplitudes

- Described by three angles: $\cos \theta_{\eta}$ and ϕ_{η} in the resonance rest frame, angle Φ between polarization vector and production plane
- Amplitudes incorporate beam polarization, are eigenstates of reflectivity $\epsilon = \pm 1$

[V.Mathieu et.al. (JPAC), PRD100(2019) 5, 054017]

- Naturality: $\eta = P(-1)^J$ natural parity $\eta = +1$ for: $J^P = 0^+, 1^-, 2^+, \dots$ unnatural parity $\eta = -1$ for: $J^P = 0^-, 1^+, 2^-, \dots$
- In case of $\eta \pi$: positive (negative) reflectivity = natural (unnatural) parity exchange

Definition of Amplitudes

- Described by three angles: $\cos \theta_{\eta}$ and ϕ_{η} in the resonance rest frame, angle Φ between polarization vector and production plane
- Amplitudes incorporate beam polarization, are eigenstates of reflectivity $\epsilon = \pm 1$

[V.Mathieu et.al. (JPAC), PRD100(2019) 5, 054017]

• Basis: Z_l^m amplitudes defined as $Z_l^m(\Omega, \Phi) = Y_l^m(\Omega)e^{-i\Phi}$

$$I(\Omega, \Phi) = 2\kappa \sum_{k} \left\{ (1 - P_{\gamma}) \left| \sum_{\ell, m} [\ell]_{m;k}^{(-)} \operatorname{Re}[Z_{\ell}^{m}(\Omega, \Phi)] \right|^{2} + (1 - P_{\gamma}) \left| \sum_{\ell, m} [\ell]_{m;k}^{(+)} \operatorname{Im}[Z_{\ell}^{m}(\Omega, \Phi)] \right|^{2} + (1 + P_{\gamma}) \left| \sum_{\ell, m} [\ell]_{m;k}^{(-)} \operatorname{Im}[Z_{\ell}^{m}(\Omega, \Phi)] \right|^{2} \right\}$$

- Complexity: Reflectivity $\epsilon = \pm 1$ and spin projections m = -l, ..., +l allowed
 - 4 times more amplitudes than with pion beam (with same truncation)

Semi-Mass Independent PWA ($\gamma p \rightarrow \pi^0 \eta p$)

• Simplify problem by introducing physics constraint:

arXiv:2501.03091

- $a_2(1320)$ reasonably isolated \rightarrow Well described by Breit-Wigner function
- S-wave has complex structure \rightarrow keep "mass-independent" parameterisation
- Eliminates leakage between waves, ensures continuity of solution
- Major contributions consistent with observations from mass independent PWA

Malte Albrecht (JLab)

Differential $a_2(1320)^0$ Cross Section

arXiv:2501.03091

- Reasonable agreement with JPAC prediction
- We observe dominance of natural parity exchange (ρ, ω, \dots)
- Submitted to Phys. Rev.

Double Regge Process

- Double-Reggeon exchange process (similar to Deck-contribution at COMPASS)
 - Dominant at high invariant mass
 - Extends down into resonance region, will overlap with (broad) π_1 signal, if present
 - Can enhance odd partial waves
 → mimic exotic signal
 - Important to understand and model this process
 → Theory support indispensable

Improved Double Regge Process Modeling

- Close collaboration with Theory/JPAC:
 - Original model was too simplistic (see also [L. Bibrzycky et. al. (JPAC), EPJ C 81, 647 (2029) $\to \pi\eta N$ at GlueX
 - Improved model available that involves better description of vertex factors, five parameters to describe kinematic distribution
- Monte Carlo study with updated model underway
- First fits to data promising, reasonable agreement in high mass region \rightarrow Can we extrapolate a model for bouble Regge to the resonance region?

Towards Vector-Pseudoscalar Channels

- Study vector-pseudoscalar channels in parallel
- Investigate production of b_1 :
 - Clean samples for neutral and charged channels
 - High statistics
 - b_1 acts as reference for other resonances decaying to $\omega\pi$

PWA of $\gamma p \rightarrow \omega \pi^0 p$

- Ω : Decay of the resonance
- Ω_H : Decay of the vector meson
- Φ : Orientation of polarization plane
- Clear separation of $b_1(1235)~(1^+)$ and $\rho(1450)(1^-)$
- Production dominated by natural parity exchange

Charmonium and beyond at GlueX

- Current max CEBAF energy allows study of bound $c\bar{c}$, P_c states
- 22 GeV e- gives access to most exotic states, good phasespace, linear polarization

GlueX-I Results on J/ψ Photoproduction

Full GlueX-I data yields 2270 ± 58 J/ ψ 's

•

•

- Overall normalization uncertainty ~20%
- "Dip" above 9 GeV has 2.6σ (1.3σ) local (global) significance
- No evidence of narrow P_c production, tension with molecular interpretation?
- Differential cross sections generally consistent with expectations of gluonic exchange, except near threshold

GlueX, PRC 108, 025201 (2023)

GlueX-I Results on J/ψ Photoproduction

- $\chi_{c1}(1^{++})$ photoproduction: probe of different parity C=+
- Test of "Odderon-like" couplings and fixed-spin exchange models
- Look for $\gamma p \to \chi_{cJ} p \to (\gamma J/\psi) p \to (\gamma e^+ e^-) p$

JPAC, PRD 108,

054018 (2023)

Projections for Future JLab Upgrade

 Projections for GlueX measurements with upgraded CEBAF allow for precision study of charmonium and charmonium-like states with linearly polarized photons

Summary and Outlook

- High quality photoproduction data sets (GlueX Phase I) available, analyses underway
 - Extract a_2 cross sections in high-statistics $\eta\pi$ channels using PWA and fits with physics constraints, "2nd Kind" Exotics: Systematic Investigate production mechanism

 $\pi_1(1600)$

 $\pi_1(1600)$

- Route towards $\eta' \pi$ channels set, analyses underway \rightarrow Use a_2 signal and cross section measurements as reference \overline{pp}
- Highly productive collaboration with theory

DPG Frühjahrstagu

En route to first results ontexetic mesons with GlueX!

gluex.org/thanks

Backup

Analysis of $\eta' \pi$ Channels

- Based on upper limit for π_1 cross section from $\omega\pi\pi$:
- No large π_1 signal expected in $\eta\pi$
- Possibly dominant signal in $\eta'\pi$
- Publication on upper limit imminent

Closeup of $\eta' \pi^-$ Spectra

Projections look intrimum

Malte Albrecht (JLab)

Closeup of $\eta' \pi^-$ Spectra

 Projections look intriaving [COMPASS, PLB 740(2015) 303-311] $1\\0.8$ Interesting interfe 0.80.6 0.60.4 $^{\vartheta}\mathrm{GJ}$ \rightarrow Constructive / de $\overset{U}{\sim}$ 0.20.20 -0.2 -0.4 COS even wave contribu -0.6 -0.6-0.8-0.8 -1 -1 • Using a_2 cross se 1.5 $\mathbf{2}$ 2.51.5 $\mathbf{2}$ $\mathbf{2}$. 3.51 3 3.53 4.54.55 $m(\eta\pi^-) \, [\mathrm{GeV}/c^2]$ $m(\eta'\pi^-)$ [GeV/ c^2] channels as impo $\cos \theta_{\rm G,l}^{\eta'}$ vs. $m(\eta' \pi^-)$ $m(\eta'\pi^-)$ for $\cos\theta_{G,I}^{\eta'} > 0$ $m(\eta'\pi^{-})$ cosθ_{GJ} Events / 20 MeV/c² GlueX-I Data 500p Events/20 MeV/ c^{2} GlueX-I Data 450E $\gamma p \rightarrow \eta' \pi \Lambda^+$ GLUE 400E 0.5 350Ē Preliminary 300E Preliminary 250 0.0 200E 150E 100 100E -0.5 50È 50 1.5 2.0 2.5 1.0 $M(\eta'\pi)$ [GeV/c²] -1.0 2.0 2.5 Μ(π⁻η') [GeV/c²] 2.0 2.5 Μ(π⁻η') [GeV/c²] 1.0 1.5 1.0 1.5 2.0

Malte Albrecht (JLab)

Closeup of $\eta' \pi^-$ Spectra

 Projections look intriaving [COMPASS, PLB 740(2015) 303-311] $1\\0.8$ Interesting interfe 0.80.6 0.60.4 $^{\vartheta}\mathrm{GJ}$ 0.2 \rightarrow Constructive / de $\overset{\dot{U}}{\sim}$ 0.20 -0.2 -0.4 COS even wave contribu -0.6 -0.6-0.8-0.8 -1 -1 • Using a_2 cross se 1.5 $\mathbf{2}$ 2.51.5 $\mathbf{2}$ $\mathbf{2}$. 3.51 3 3.53 4.54.55 $m(\eta\pi^-)$ [GeV/ c^2] $m(\eta'\pi^-)$ [GeV/ c^2] channels as impo $\cos \theta_{\rm Gl}^{\eta'}$ vs. $m(\eta' \pi^-)$ $m(\eta'\pi^-)$ for $\cos\theta_{G,I}^{\eta'} < 0$ $m(\eta'\pi^{-})$ دose^و. ^{آو} Events / 20 MeV/c² GlueX-I Data 500 Events/20 MeV/c² GlueX-I Data 450E γ p→ η'π Λ⁺⁺ GLUE 400E 0.5 350E Preliminary 300 Preliminary 250 0.0 200 150E 100 100 -0.5 50È 50 1.5 2.0 2.5 1.0 $M(\eta'\pi)$ [GeV/c²] Λ 2.0 2.5 Μ(π⁻η') [GeV/c²] 2.5 3.0 Μ(π η') [GeV/c²] 1.5 1.0 1.5 1.0 2.0

Malte Albrecht (JLab)