

Regge Models of meson photoproduction

JPAC

Adam Szczepaniak Indiana University / Jefferson Lab

Alessandro Pilloni Università di Messina

Alex Akridge Indiana University

Arkaitz Rodas Bilbao Old Dominion University / Jefferson Lab

Gloria Montaña Jefferson Lab

César Fernández Ramírez

Universidad Nacional de Educación a Distancia (UNED)

Łukasz Bibrzycki AGH University of Krakow

Daniel Winney Universität Bonn

Miguel Albaladejo

IFIC-CSIC Valencia

Emilie Passemar

Mikhail Mikhasenko Ruhr-Universität Bochum

Giorgio Foti

Università di Messina

Nadine Hammoud

University of Barcelona

Robert Perry

Massachusets Institute of Technology

Wyatt Smith

Sergi Gonzàlez-Solís

Vanamali Shastry Indiana University

Viktor Mokeev Jefferson Lab

Vincent Mathieu

University of Barcelona

Università di Messina

University of Barcelona

Motivation

Motivation

Beyond the Standard Model

4

Motivation

Beyond the Standard Model

Beyond the Standard (Quark) Model

Evidence for BS(Q)M

Evidence for BS(Q)M in the light and heavy sectors

Photoproduction

• Use peripheral photoproduction to produce:

Reality is not so simple...

• QCD: All things not prohibited must happen:

- Understand relevant physics to isolate exotic meson signal
- What is effect of **background** on measurements?
- Theoretical input critical...

Reality is not so simple...

• QCD: All things not prohibited must happen:

- Understand relevant physics to isolate exotic meson signal
- What is effect of **background** on measurements?
- Theoretical input **critical...**

These requirements are mass-independent

Outline

- Motivation
- Regge theory
- Applications of Regge theory
 - Two-pion photoproduction
 - XYZ photoproduction
- Conclusions

- Consider scattering amplitude in limit s large, t small
- Re-summation infinite tower of states

$$A(s,t) = 16\pi \sum_{l=0}^{\infty} (2l+1)A_l(s)P_l(z_s) = 16\pi \sum_{l=0}^{\infty} (2l+1)A_l(t)P_l(z_t)$$

 Maximal Analyticity of the second kind $A(s,t) = 16\pi \sum_{l=0}^{\infty} (2l+1)A_l(t)P_l(z_t) = -\frac{16\pi}{2i} \oint_C dl(2l+1)A_l(t)\frac{P_l(z_t)}{\sin \pi l}$ l=0Sommerfield-Watson Transform 2 3 5 6 7 8 9 10 -2 4 C_1 C_1 C_2 L_2

 Maximal Analyticity of the second kind $A(s,t) = 16\pi \sum_{l=0}^{\infty} (2l+1)A_l(t)P_l(z_t) = -\frac{16\pi}{2i} \oint_C dl(2l+1)A_l(t)\frac{P_l(z_t)}{\sin \pi l}$ l=0Sommerfield-Watson Transform (Unconstrained) t-dep residue 2 3 6 7 8 9 10 -2 4 5 $A_l(t) \sim \frac{\beta(t)}{l - \alpha(t)}$ C_1 C_1 C_2 **Regge trajectory** L_2

Regge trajectory

 Maximal Analyticity of the second kind $A(s,t) = 16\pi \sum_{l=1}^{\infty} (2l+1)A_l(t)P_l(z_t) = -\frac{16\pi}{2i} \oint_{C} dl(2l+1)A_l(t)\frac{P_l(z_t)}{\sin \pi l}$ l=0Sommerfield-Watson Transform (Unconstrained) t-dep residue -3 -2 -1 $A_l(t) \sim \frac{\beta(t)}{l - \alpha(t)}$ **Regge trajectory** $A(s,t) = \frac{1}{2} (1 + \tau e^{-i\pi\alpha(t)}) \frac{\beta(t)}{\sin(\pi\alpha(t))} \left(\frac{s}{s_0}\right)^{\alpha}$ IR

Pomeron

▼ BNL Galbraith 65 * BNL Citron'66 BNL Foley'67 Alloby 69, Denisov 71, Gorin 72, Denisov 73 IHEP Nurushev 74 ➡ Fermilab Bubble Chamber Amoldi '73 ISR Amendolia'73 ISR Fermilab Exp.# 4 Fermilab Exp.# 104 Total Cross Section (mb) 80 82 00 75 20 100 Laboratory Momentum (GeV/c) 500 4000 1000 iD 100 S(GeV)2

A.C. Irving and R.P. Worden, Regge phenomenology

Minimal assumptions

$$\alpha(t) = \alpha_0 + \alpha_1 t + \dots$$

Linear Regge trajectory

$$\alpha(t) = \alpha_0 + \alpha_1 t$$

Optical Theorem

$$\sigma(s) \sim \frac{1}{s} \text{Im}A(s,0) \sim \frac{1}{s} \left(\frac{s}{s_0}\right)^{\alpha(0)}$$

Pomeron has

 $\alpha(0) \approx 1$

Povides explanation within Regge theory of logarithmic rise of total cross section

Benchmark Study

- How will we know predictions are reasonable?
- Benchmark modeling tools by developing framework first for "standard candle" process

$$\gamma + p \to \pi^+ + \pi^- + p$$

- Process is not sensitive to exotic meson, but interesting in own right.
- Two-pion spectrum dominated by the $\,
 ho(770)$

CLAS Data

$$\langle Y_M^L \rangle = \sqrt{4\pi} \int d\Omega^{\rm H} \frac{d\sigma}{dt \, d\sqrt{s_{12}} \, d\Omega^{\rm H}} {\rm Re} Y_M^L(\Omega^{\rm H})$$

CLAS Data

$$\langle Y_M^L \rangle = \sqrt{4\pi} \int d\Omega^{\rm H} \frac{d\sigma}{dt \, d\sqrt{s_{12}} \, d\Omega^{\rm H}} {\rm Re} Y_M^L(\Omega^{\rm H})$$

$E_{\sim} \in [3.0, 3.8] \text{ GeV}, t \in [-0.4, 1.0] \text{ GeV}^2$

Phys.Rev.D 80 (2009) 072005

The two-pion final state is interesting in its own right...

t-dependence of cross-section

21

The Model

• 2 to 3 dynamics built from known dynamics in 2 to 2 subchannels.

The Model

• 2 to 3 dynamics built from known dynamics in 2 to 2 subchannels.

Resonant Component

• Process can be understood as product of probability amplitudes

- Resonances are produced from sum of Regge exchanges
- Incorporate known two-pion resonances

	\mathcal{R}	J	$m_{\mathcal{R}}$ [Ge	$[V] \qquad \Gamma_{\mathcal{R}} \ [GeV]$
	$f_0(500)$	0	0.500	0.450
	$\rho(770)$	1	0.775	0.149
γ γ γ	$f_0(980)$	0	0.990	0.055
The second second	$f_2(1270)$	2	1.2755	0.1867
π	$f_0(1370)$	0	1.370	0.350
	E	$ au^{ ext{E}}$	$lpha_0^{ m E}$	$\alpha_1^{\rm E} \; [{\rm GeV}^{-2}]$
<i>Р</i> ` р	\mathbb{P}	+1	1.08	0.2
	a_2/f_2	+1	0.5	0.9
	$ ho/\omega$	-1	0.55	0.8

The Model

• 2 to 3 dynamics built from known dynamics in 2 to 2 subchannels.

The Model

• 2 to 3 dynamics built from known dynamics in 2 to 2 subchannels.

Leading Background: Deck Process

- Photon dissociates into two pions
- One recoils against nucleon target

$$\frac{\epsilon_{\lambda_{\gamma}}(q) \cdot (2k_{1}-q)}{u_{1}-m_{\pi}^{2}} \beta(u_{1}) M_{\lambda_{1}\lambda_{2}}^{-}(s_{2},t;u_{1}) - \frac{\epsilon_{\lambda_{\gamma}}(q) \cdot (2k_{2}-q)}{u_{2}-m_{\pi}^{2}} \beta(u_{2}) M_{\lambda_{1}\lambda_{2}}^{+}(s_{1},t;u_{2}) + \mathcal{M}_{\lambda_{\gamma}\lambda_{1}\lambda_{2}}^{\text{cont.}}(s,t,s_{12},\Omega^{\text{H}})$$

Results

 $E_{\gamma} = 3.7 \text{ GeV}, t = -0.45 \text{ GeV}^2$

Decomposition

- Define 'decompositions':
 - "minimal": Pomeron + Deck
 - P + Deck: Pomeron + a2/f2 + Deck
 - S + P + Deck: Pomeron + a2/f2 + rho/omega + Deck
 - Complete: Full model
- Clearly require more than "minimal" \rightarrow evidence for other exchanges

Generate realistic MC for inputoutput studies Compute derived quantities: Rho, Delta SDMEs etc.

32

XYZ spectroscopy with photoproduction

Pro: New production process

Con: New production process:

Don't know photocouplings

What can we do?

Vector Meson Dominance

XYZ spectroscopy with photoproduction

JPAC, Phys.Rev.D 102 (2020) 114010

JPAC, Phys.Rev.D 106 (2022) 9, 09

JPAC, Phys.Rev.D 109 (2024) 11, 114035

Formalism

Minimal model assumptions about XYZ states Relates hadro- and photo-couplings

$$\begin{split} g_{Q\gamma\gamma} &= \sum_{i} \frac{g_{Qi\gamma}}{\gamma_{i}} ,\\ g_{Q\gamma\mathcal{E}} &= \sum_{V} \frac{g_{QV\mathcal{E}}}{\gamma_{V}} , \qquad \qquad \frac{1}{\gamma_{i}} = \frac{e f_{i}}{m_{i}} ,\\ g_{\gamma NN} &= \sum_{\mathcal{E}} \frac{g_{\mathcal{E}NN}}{\gamma_{\mathcal{E}}} , \end{split}$$

Weakest aspect of model. Can we test the validity here?

Confirm validity of VMD for photoproduction of regular charmonia Dashed and solid should agree if VMD holds

Lower Vertex

Numerical Results

Before we can study states, we need to measure them Need reliable estimates of cross sections Regge theory and amplitude analysis techniques provide estimates of cross sections with minimal model assumptions