Transition form factors of C-even quarkonia in photon-photon processes

Wolfgang Schäfer¹

¹ Institute of Nuclear Physics Polish Academy of Sciences, ul. Radzikowskiego 152, PL-31-342 Kraków, Poland

Exotic heavy meson spectroscopy and structure with EIC: Next–level physics and detector simulations CFNS, Stony Brook University, USA April 14 – 17, 2025

NARODOWE CENTRUM NAUKI

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

- I. Babiarz, V. P. Goncalves, R. Pasechnik, W. Schäfer and A. Szczurek, Phys. Rev. D 100 (2019) no.5, 054018 doi:10.1103/PhysRevD.100.054018 [arXiv:1908.07802 [hep-ph]].
- I. Babiarz, R. Pasechnik, W. Schäfer and A. Szczurek, JHEP 09 (2022), 170 doi:10.1007/JHEP09(2022)170 [arXiv:2208.05377 [hep-ph]].
- I. Babiarz, V. P. Goncalves, W. Schäfer and A. Szczurek, Phys. Lett. B 843 (2023), 138046 doi:10.1016/j.physletb.2023.138046 [arXiv:2306.00754 [hep-ph]].

A D F A 同 F A E F A E F A Q A

- I. Babiarz, R. Pasechnik, W. Schäfer and A. Szczurek, Phys. Rev. D **107** (2023) no.7, L071503 doi:10.1103/PhysRevD.107.L071503 [arXiv:2303.09175 [hep-ph]].
 - I. Babiarz, R. Pasechnik, W. Schäfer and A. Szczurek, JHEP 06 (2024), 159 doi:10.1007/JHEP06(2024)159 [arXiv:2402.13910 [hep-ph]].

Electron-ion collisions

$$\sigma(eA \to e\eta_c A) = \int d\omega_e dQ^2 \frac{d^2 N_e}{d\omega_e dQ^2} \\ \times \sigma(\gamma^* A \to \eta_c A)$$
$$\sigma(\gamma^* A \to \eta_c A) = \int d\omega_A \frac{dN_A}{d\omega_A} \\ \times \sigma_{\rm TT}(\gamma^* \gamma \to \eta_c; W_{\gamma\gamma}, Q^2, 0)$$

$$W_{\gamma\gamma}=\sqrt{4\omega_{e}\omega_{A}-p_{\perp}^{2}}$$

the nuclear radius:
$$R_A = r_0 A^{1/3}$$
, with $r_0 = 1.1$ fm

ξ

$$\omega_e = rac{\sqrt{M^2 + p_\perp^2}}{2} e^{+y}$$
 $\omega_A = rac{\sqrt{M^2 + p_\perp^2}}{2} e^{-y}$

 $p_{\perp}^2 = \left(1 - rac{\omega_e}{E_e}
ight)Q^2$

$$\frac{dN_A}{d\omega_A} = \frac{2Z^2 \alpha_{em}}{\pi \omega_A} \left[\xi K_0(\xi) K_1(\xi) - \frac{\xi^2}{2} (K_1^2(\xi) - K_0^2(\xi)) \right]$$
$$= R_A \omega_A / \gamma_L, K_0 \text{ and } K_1 \text{ -modified Bessel functions}$$

i.e.: Ann. Rev. Nucl. Part. Sci. 55, 271(2005)

$$\frac{d^2 N_e}{d\omega_e dQ^2} = \frac{\alpha_{em}}{\pi \omega_e Q^2} \left[\left(1 - \frac{\omega_e}{E_e} \right) \left(1 - \frac{Q_{min}^2}{Q^2} \right) + \frac{\omega_e^2}{2E_e^2} \right]$$
$$Q_{min}^2 = m_e^2 \omega_e^2 / [E_e(E_e - \omega_e)] \text{ and } Q_{max}^2 = 4E_e(E_e - \omega_e)$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

• We are interested in the coupling of η_Q to two (off-shell) photons

$$\mathcal{M}(\gamma^*(q_1)\gamma^*(q_2) \to \eta_Q) = i 4\pi \alpha_{\rm em} \, \varepsilon_{\mu\nu\alpha\beta} \epsilon_1^{\mu} \epsilon_2^{\nu} q_1^{\alpha} q_2^{\beta} \underbrace{\mathcal{F}_{\eta_Q}(t_1, t_2)}_{\text{transition FF}} \qquad t_1 = \frac{q_1^2}{m_Q^2}, \quad t_2 = \frac{q_2^2}{m_Q^2}$$

- the $\gamma^* \gamma^*$ transition form factor describes the following observables:
- **0** on-shell: $t_1 = t_2 = 0$: the decay width $\eta_Q \rightarrow \gamma \gamma$.
- Space-like region: t₁ < 0, t₂ = 0: exclusive production of η_Q in single-tagged e⁺e[−] collisions. t₁ < 0, t₂ < 0 → double tagged e⁺e[−] collisions.
- O time–like region: t₁ > 0, t₂ = 0: exclusive production of η_Qγ in e⁺e⁻ annihilation; Dalitz decay η_Q → γℓ⁺ℓ⁻ or η_Q → 4ℓ.

$\gamma^*\gamma^* \rightarrow \eta_c(1S)$ Transition Form Factor

• In a Drell-Yan like frame, where $q_1 = q_1^+ n^+ + q_{1\perp}, q_2 = q_2^- n^- + q_{2\perp}$, and $q_i^2 = -\boldsymbol{q}_i^2$, the transition factor has a light-front wave function representation. Brodsky & Huang '99.

$$egin{aligned} n^{+\mu} n^{-
u} M_{\mu,
u}(\gamma^*(q_1)\gamma^*(q_2) o \eta_c) \ &= -i4\pi lpha_{ heta m}(q_1^x q_2^y - q_1^y q_2^x) F(Q_1^2,Q_2^2) \end{aligned}$$

$$F(Q_1^2, Q_2^2) = e_c^2 \sqrt{N_c} 4m_c \cdot \int \frac{dz d^2 \mathbf{k} \psi_S(z, \mathbf{k})}{z(1-z) 16\pi^3} \Big\{ \frac{(1-z)}{(\mathbf{k} - (1-z)\mathbf{q}_2)^2 + \varepsilon^2} + \frac{z}{(\mathbf{k} + z\mathbf{q}_2)^2 + \varepsilon^2} \Big\},$$
$$Q_i^2 = \vec{q}_{i\perp}, \varepsilon^2 = z(1-z)\mathbf{q}_1^2 + m_c^2$$

z, 1 − *z* are LF-"+" momentum fractions of quark/antiquark, *k* is relative transverse momentum. NR-limit: *k* → 0, *z* → 1/2.

Two approaches to quarkonium light front wave functions

Terentev substitution - LFWF from potential model

• Quark three-momentum in bound state rest frame

$$\vec{k} = (k, k_z), \qquad k_z = \left(z - \frac{1}{2}\right) M_{c\bar{c}} \qquad M_{c\bar{c}}^2 = \frac{k^2 + m_c^2}{z(1-z)}$$

- radial WF $u_{nP}(k)$ becomes (with appropriate Jacobian) radial LFWF $\psi(z, \mathbf{k})$
- canonical spin is substituted by LF helicity via Melosh transform

$$\xi_{Q} = R(z, \mathbf{k})\chi_{Q}, \qquad \xi_{\bar{Q}}^{*} = R^{*}(1 - z, -\mathbf{k})\chi_{\bar{Q}}^{*} \qquad R(z, \mathbf{k}) = \frac{m_{c} + zM_{c\bar{c}} - i\vec{\sigma} \cdot (\vec{n} \times \mathbf{k})}{\sqrt{(m_{c} + zM_{c\bar{c}})^{2} + \mathbf{k}^{2}}}$$

• We use a variety of interquark potentials summarized in Eur. Phys. J. C 79 (2019) no.6, 495

Basis light front quantization (BLFQ)

bound state WFs from effective LF-Hamiltonian

$$H_{\mathrm{eff}}|\chi_{c};\lambda_{A},P_{+},\boldsymbol{P}
angle=M_{\chi}^{2}|\chi_{c};\lambda_{A},P_{+},\boldsymbol{P}
angle\,,$$

- we use LFWFs from Y. Li, P. Maris and J. P. Vary, Phys. Rev. D 96 (2017), 016022
- effective Hamiltonian which contains a term motivated by a "soft-wall" confinement from LF-holography, as well as a longitudinal confinement potential supplemented by one gluon exchange including the full spin-structure.

Light-Front Wave Functions from rest-frame: J = 0

$$\begin{split} \psi_{\mathsf{NR}}(\vec{p},\lambda_1,\lambda_2) &= \sum_{m_l,\ m_s} \underbrace{Y_{l\ m_l}(\hat{p}) \langle \frac{1}{2} \frac{1}{2},\lambda_1\lambda_2 | S, m_s \rangle \langle L, S, m_l m_s | JJ_z \rangle}_{\text{spin-orbit}} \underbrace{\varphi(|\vec{p}|)}_{\text{radial}} \\ &= \underbrace{\frac{1}{\sqrt{2}} \xi_Q^{\tau\dagger} \hat{O} i \sigma_2 \xi_{\bar{Q}}^{\bar{\tau}*}}_{\text{spin-orbit}} \underbrace{\frac{u_{nl}(p)}{p}}_{\text{radial}} \frac{1}{\sqrt{4\pi}}; \end{split}$$

$$ec{p} = (ec{p}_{\perp}, p_z) = \left(oldsymbol{k}, rac{1}{2} (2z - 1) M_{Q ar{Q}}
ight).$$
 Spherical harmonic for S-wave (I =0):

 $Y_{00} = \sqrt{\frac{1}{4\pi}}$

$$\hat{\mathcal{O}} = \begin{cases} \mathbb{I} & S = 0, L = 0.\\ \frac{\vec{\sigma} \cdot \vec{p}}{p}, & S = 1, L = 1. \end{cases}$$

1

Clebsch-Gordan coefficients

$$(L = 1, S = 1; m_I, m_S | J = 0, J_Z = 0)$$

$$\begin{array}{rcl} \langle 1,1;+1,-1|00\rangle & = & \sqrt{\frac{1}{3}} \; , \\ \\ \langle 1,1;-1,+1|00\rangle & = & \sqrt{\frac{1}{3}} \; , \\ \\ \\ \langle 1,1;0,0|00\rangle & = & -\sqrt{\frac{1}{3}} \; , \end{array}$$

Spherical harmonic for P-wave (I =1):

$$\begin{split} Y_{10} &= \sqrt{\frac{3}{4\pi}}\cos(\theta) \,, \\ Y_{11} &= -\sqrt{\frac{3}{8\pi}}\sin(\theta)e^{i\phi} \,, \\ Y_{1-1} &= \sqrt{\frac{3}{8\pi}}\sin(\theta)e^{-i\phi} \,. \end{split}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Light-Front Wave Functions from rest-frame:J = 0 - Melosh-transf.

Melosh-transformation of spin-orbit part: $\xi_Q = R(z, \mathbf{k})\chi_Q$, $\xi_{\bar{Q}}^* = R^*(1 - z, -\mathbf{k})\chi_{\bar{Q}}^*$,

$$\mathsf{R}(z, \mathbf{k}) = \frac{m_Q + zM - i\vec{\sigma} \cdot (\vec{n} \times \mathbf{k})}{\sqrt{(m_Q + zM)^2 + \mathbf{k}^2}}$$

 $\hat{\mathcal{O}}' = R^{\dagger}(z, \mathbf{k}) \mathcal{O} i\sigma_2 R^* (1 - z, -\mathbf{k}) (i\sigma_2)^{-1} \text{ from Pauli matrices properties: } i\sigma_2 \vec{\sigma}^* (i\sigma_2)^{-1} = -\vec{\sigma}$

$$\hat{\mathcal{O}}' = R^{\dagger}(z, \mathbf{k})\hat{\mathcal{O}}R(1-z, -\mathbf{k}).$$

Normalisation

$$1 \qquad = \qquad \int_{0}^{1} \frac{\mathrm{d}z}{z(1-z)} \int \frac{\mathrm{d}^{2}\vec{k}_{\perp}}{16\pi^{3}} \sum_{\lambda\bar{\lambda}} |\Psi_{\lambda\bar{\lambda}}(z, \mathbf{k})|^{2} \qquad = \qquad \int_{0}^{1} \frac{\mathrm{d}z}{z(1-z)} \int \frac{\mathrm{d}^{2}\vec{k}_{\perp}}{16\pi^{3}} 2M_{c\bar{c}}\psi(z, \mathbf{k})$$

In the Melosh spin-rotation formulation $\tilde{\psi}_{\uparrow\downarrow}(z,k_{\perp}), \tilde{\psi}_{\uparrow\uparrow}(z,k_{\perp})$, are related to the same radial wave function $\psi(z,k_{\perp})$ as:

$$\begin{split} \tilde{\psi}_{\uparrow\downarrow}(z,k_{\perp}) &\to \frac{m_c}{\sqrt{z(1-z)}}\,\psi(z,k_{\perp})\,,\\ \tilde{\psi}_{\uparrow\uparrow}(z,k_{\perp}) &\to \frac{-|\vec{k}_{\perp}|}{\sqrt{z(1-z)}}\,\psi(z,k_{\perp})\,, \end{split}$$

$$\begin{split} F(Q^2,0) &= \theta_c^2 \sqrt{N_c} \, 4 \int \frac{dz d^2 \vec{k}_\perp}{\sqrt{z(1-z)} 16\pi^3} \Biggl\{ \frac{1}{\vec{k}_\perp^2 + \varepsilon^2} \tilde{\psi}_{\uparrow\downarrow}(z,k_\perp) \\ &+ \frac{\vec{k}_\perp^2}{[\vec{k}_\perp^2 + \varepsilon^2]^2} \Bigl(\tilde{\psi}_{\uparrow\downarrow}(z,k_\perp) + \frac{m_c}{k_\perp} \tilde{\psi}_{\uparrow\uparrow}(z,k_\perp) \Bigr) \Biggr\} \,, \end{split}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Differential distribution in photon virtuality

Differential distribution in rapidity of η_c

$\gamma^*\gamma$ cross-section and off-shell width

Off-shell decay width $\Gamma^*(Q^2)$ for χ_{c0} (on the l.h.s.) and χ_{c2} (on the r.h.s.) compared to the Belle data Phys.Rev.D 97 (2018) 5, 052003.

$$\Gamma_{\gamma^*\gamma}(Q^2) = \Gamma^*_{\mathrm{TT}}(Q^2) + \epsilon_0 2 \Gamma^*_{\mathrm{LT}}(Q^2)$$

$$\Gamma^{*}(Q^{2}) = \frac{(4\pi\alpha_{\rm em})^{2}}{16\pi M} F_{\rm TT}^{2}(Q^{2}) \,. \qquad \Gamma_{\rm TT}^{*}(Q^{2}) = (4\pi\alpha_{\rm em})^{2} \left\{ \frac{F_{\rm TT2}^{2}(Q^{2})}{80\pi M} + \frac{M^{3}F_{\rm TT0}^{2}(Q^{2})}{120\pi} \left(1 + \frac{Q^{2}}{M^{2}}\right)^{4} \right\} \,.$$

$$\Gamma_{\rm LT}^{*}(Q^{2}) = (4\pi\alpha_{\rm em})^{2} \frac{1}{160\pi} \left(1 + \frac{Q^{2}}{M^{2}}\right)^{2} MQ^{2} F_{\rm LT}^{2}(Q^{2}) \,.$$

 $\gamma^*\gamma^*$ -transition form factors for $J^{PC} = 1^{++}$ axial mesons

$$\begin{split} \frac{1}{4\pi\alpha_{\rm em}}\mathcal{M}_{\mu\nu\rho} &= i\Big(q_1 - q_2 + \frac{Q_1^2 - Q_2^2}{(q_1 + q_2)^2}(q_1 + q_2)\Big)_{\rho}\,\tilde{G}_{\mu\nu}\,\frac{M}{2\chi}F_{\rm TT}(Q_1^2,Q_2^2) \\ &+ ie_{\mu}^L(q_1)\tilde{G}_{\nu\rho}\,\frac{1}{\sqrt{\chi}}F_{\rm LT}(Q_1^2,Q_2^2) + ie_{\nu}^L(q_2)\tilde{G}_{\mu\rho}\,\frac{1}{\sqrt{\chi}}F_{\rm TL}(Q_1^2,Q_2^2)\,. \end{split}$$

Above we introduced

$$ilde{G}_{\mu
u}=arepsilon_{\mu
ulphaeta}q_1^lpha q_2^eta\,,\,X=(q_1\cdot q_2)^2-q_1^2q_2^2$$

and the polarization vectors of longitudinal photons

$$e^L_\mu(q_1) = \sqrt{rac{-q_1^2}{X}} \Big(q_{2\mu} - rac{q_1 \cdot q_2}{q_1^2} q_{1\mu} \Big) \,, \qquad e^L_
u(q_2) = \sqrt{rac{-q_2^2}{X}} \Big(q_{1
u} - rac{q_1 \cdot q_2}{q_2^2} q_{2
u} \Big) \,.$$

- $F_{TT}(0,0) = 0$, there is **no decay to two photons** (Landau-Yang).
- $F_{\rm LT}(Q^2,0) \propto Q$ (absence of kinematical singularities).

$$f_{\rm LT}(Q^2) = \frac{F_{\rm LT}(Q^2,0)}{Q}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

f_{LT}(0) gives rise to so-called "reduced width" Γ.

Accessing transition form factors

- We want to have at least **one virtual photon** to study the *Q*²-dependence of transition FFs. For 1⁺⁺ states it is stricly necessary to obtain finite cross section. This excludes ultraperipheral heavy ion collisions, where photons are quasi-real.
- Electron scattering gives us access to finite Q² and a whole polarization density matrix of virtual photons.
- Feasible options are:
 - single tag e⁺e⁻ collisions. Here the tagged lepton couples to the virtual photon, while photons from the lepton "lost in the beampipe" are quasireal.
 - electron-proton or electron-ion scattering. Here especially heavy ions which have large charge give rise to a large quasireal photon flux enhanced by Z².

lon	Cu	Ru	Au	Pb
Ζ	29	44	79	82

・ コット (雪) (小田) (コット 日)

 Ion is scattered at very small angle, not measured.
 Photon exchange is associated with rapidity between produced system and ion.

Transition amplitude in the Drell-Yan frame

We evaluate the γ*γ* → χ_{c1} amplitude in the Drell-Yan frame where q_{1μ} = q₁₊n⁺_μ + q₁₋n⁻_μ and q_{2μ} = q₂₋n⁻_μ + q[⊥]_{2μ}, using the light front plus-component of the current:

$$\begin{split} \langle \chi_{c1}(\lambda) | J_{+}(0) | \gamma_{L}^{*}(Q^{2}) \rangle &= 2q_{1+} \sqrt{N_{c}} e^{2} e_{f}^{2} \int \frac{dz d^{2} \mathbf{k}}{z(1-z) 16\pi^{3}} \\ &\times \sum_{\sigma,\bar{\sigma}} \Psi_{\sigma\bar{\sigma}}^{\lambda_{*}}(z,\mathbf{k}) \left(\mathbf{q}_{2} \cdot \nabla_{\mathbf{k}} \right) \Psi_{\sigma\bar{\sigma}}^{\gamma_{L}}(z,\mathbf{k},Q^{2}) \propto i \mathbf{q}_{2} \langle \chi_{c1}(\lambda) | \mathbf{r} | \gamma_{L}^{*}(Q^{2}) \rangle. \end{split}$$

• for *spacelike* photons, the plus component of the current is free from parton number changing or instantaneous fermion exchange contributions.

(日) (日) (日) (日) (日) (日) (日)

• "Transition dipole moment" with dipole sizes controlled by photon WF $r\sim 1/\sqrt{m_c^2+Q^2/4}<0.15\,{\rm fm}.$

$\gamma^*\gamma^*$ cross sections and the reduced width

photon-photon cross sections:

$$\sigma_{ij} = \frac{32\pi(2J+1)}{N_i N_j} \frac{\hat{s}}{2M\sqrt{X}} \frac{M\Gamma}{(\hat{s} - M^2)^2 + M^2\Gamma^2} \Gamma^{ij}_{\gamma^*\gamma^*}(Q_1^2, Q_2^2, \hat{s}),$$

where $\{i, j\} \in \{T, L\}$, and $N_T = 2$, $N_L = 1$ are the numbers of polarization states of photons. In terms of our helicity form factor, we obtain for the LT configuration, putting at the resonance pole $\hat{s} \rightarrow M^2$, and J = 1 for the axial-vector meson:

reduced width

$$\tilde{\Gamma}(A) = \lim_{Q^2 \to 0} \frac{M^2}{Q^2} \Gamma^{\text{LT}}_{\gamma^* \gamma^*}(Q^2, 0, M^2) = \frac{\pi \alpha_{\text{em}}^2 M}{3} f_{\text{LT}}^2(0) \,,$$

• provides a useful measure of size of the relevant e^+e^- cross section in the $\gamma\gamma$ mode. For a $c\bar{c}$ state:

$$f_{\rm LT} = -e_f^2 M^2 \frac{\sqrt{3N_c}}{8\pi} \int_0^\infty \frac{dk \, k^2 u(k)}{(k^2 + m_c^2)^2} \frac{1}{\sqrt{M_{c\bar{c}}}} \left\{ \frac{2}{\beta^2} - \frac{1 - \beta^2}{\beta^3} \log\left(\frac{1 + \beta}{1 - \beta}\right) \right\}, \ \beta = \frac{k}{\sqrt{k^2 + m_c^2}}$$

onnrelativistic limit:

$$\tilde{\Gamma}(A) = \frac{2^5 \alpha_{\rm em}^2 e_c^2 N_c}{M_\chi^4} |R'(0)|^2$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Table: Reduced width of $\chi_{c1}(1P)$

potential model	m _c (GeV)	<i>R</i> ′(0) (GeV ^{5/2})	$ ilde{\Gamma}(\chi_{ extsf{c1}})_{ extsf{NR}}$ (keV)	$\tilde{\Gamma}(\chi_{c1})$ (keV)
power-law	1.33	0.22	0.97	0.50
Buchmüller-Tye	1.48	0.25	0.82	0.30
Cornell	1.84	0.32	0.56	0.09
harmonic oscillator	1.4	0.27	1.20	0.53
logarithmic	1.5	0.24	0.72	0.27

• Considerably larger values of $\tilde{\Gamma}(\chi_{c1})$ are quoted in the literature. For example Danilkin & Vanderhaeghen (2017) report a value of $\tilde{\Gamma}(\chi_{c1}) \approx 1.6 \text{ keV}$ from a sum rule analysis. Li et al. (2022) obtain $\tilde{\Gamma}(\chi_{c1}) \approx 3 \text{ keV}$ from a LFWF approach.

• A measurement of the reduced width would therefore be very valuable.

$\chi_{c1}(3872)$ – the [$c\bar{c}$] $2^{3}P_{1}$ component

Figure: The dimensionless $\gamma_L^* \gamma \rightarrow \chi_{c1}(2P)$ transition form factor $f_{LT}(Q^2)$.

- We use LFWFs for *n* = 1 radial excitation of the *p*-wave charmonium.
- We trace the different Q²-dependences to differences of the *z*-dependence and constituent *c*-quark mass used in different models.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

• error band for BLFQ reflects dependence on basis-size as proposed by its authors.

Table: The reduced width of the $\chi_{c1}(2P)$ state for several models of the charmonium wave functions with specific c-quark mass.

<i>c</i> c̄ potential	m _c (GeV)	$f_{\rm LT}(0)$	$ ilde{\Gamma}_{\gamma\gamma}$ (keV)
harmonic oscillator	1.4	0.041	0.36
power-law	1.334	0.033	0.24
Buchmüller-Tye	1.48	0.029	0.18
logarithmic	1.5	0.025	0.14
Cornell	1.84	0.018	0.07
BLFQ	1.6	0.044	0.42

• First evidence for the production of $\chi_{c1}(3872)$ in single-tag e^+e^- collisions was reported by Belle Phys. Rev. Lett. 126 (2021) no.12, 122001 From three measured events, they provided a range for its reduced width, 0.02 keV $< \tilde{\Gamma}_{\gamma\gamma} < 0.5$ keV. Recent update by Achasov et al. Phys. Rev. D 106 (2022) no.9, 093012

using a corrected value for the branching ratio $Br(\chi_{c1}(3872) \rightarrow \pi^+\pi^- J/\psi)$ and reads

 $0.024 \,\mathrm{keV} < \tilde{\Gamma}_{\gamma\gamma}(\chi_{c1}(3872)) < 0.615 \,\mathrm{keV}$

 all our results, including the BLFQ approach, lie well within the experimentally allowed **range.** Therefore, $\gamma\gamma$ data do not exclude the $c\bar{c}$ option, although there is certainly some room for a contribution from an additional meson-meson component.

Possible molecule contribution to $\tilde{\Gamma}$?

- apparently nothing (?) is known about "hadronic molecule" contribution to the reduced width.
- Spins of heavy quarks in χ_{c1}(3872) are entangled to be in the spin-triplet state (M. Voloshin, 2004). But near threshold the cc̄ state produced via γγ-fusion is in the ¹S₀ state. (It's different for gluons, where color octet populates ³S₁!)

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

- $\bullet \rightarrow$ "handbag mechanism" suppressed in heavy quark limit.
- What about purely hadronic models?

Summary

- The LFWF representation of γ*γ* transition form factors includes relativistic corrections.
- Ver sparse experimental information even for ground–state charmonia. Babar have measured γ^{*} γ → η_c. For χ_{c2} and χ_{c0} off-shell widths from single tag cross-section we compared to Belle data (2017).
- We propose to investigate photon-photon fusion mechanisms also in future electron-lon colliders. Differential distributions for photon virtuality for η_c production have been shown for LE-EIC, HE-EIC, EicC and LHeC. The estimated cross-section is in the range: (0.1 – 60) nb.
- More detailed simulation of distributions and hadronic background necessary. There also is background from diffractive J/ψ production via $J/\psi \rightarrow \eta_c \gamma$.
- The reduced width of the ground state χ_{c1}(1P), for one longitudinal and one real photon Γ is obtained in the ballpark of ~ 0.5 keV.
- In the case of χ_{c1}(3872), the values obtained for a 2³P₁ charmonium are well within the range of the first Belle data. This suggests an important role of the cc̄ Fock state for production in the γ*γ mode. (Of course there is still room for additional contributions.)
- Electroproduction of $\chi_{c1}(1P)$, $\chi_{c1}(3872)$ in the Coulomb field of a heavy nucleus may give access to form factor $f_{LT}(Q^2)$. This is additional information on the structure. We know how to estimate it for $c\bar{c}$ states.