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Basics - what are Jets?
3

Collimated collection of hadrons resulting 
from the ‘metamorphosis’ of partons due to 

fragmentation and hadronization  

High energy  
quark/gluon  

Final state particles 

Gaillard et. al, Nucl. Phys. B111 (1976) 253-271

How we observe quarks/gluons in nature
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Jet correspondence 
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Reconstructed jet
Experiment 
Clustering

Theory  
Parton showerSjöstrand, Skands,  

Eur. Phys. J. C39 (2005) 129-154

Cacciari, et. al,  
Eur. Phys. J. C 72 (2012) 1896
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Fundamental question - why AI/ML?

• Jets are user defined objects - *varied* representation phase-space 


• Multi-scale objects, in both its energy and angle 


• Every single jet goes through a perturbative parton shower followed by a 
non-perturbative process of hadronization which results in fragmentation 


• Basic assertion - the information content within jets is multi-dimensional 


• We have specific questions - lets use specific models to answer those  

5
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Youqi Song (Yale) @ DIS 2023

Andreassen et.al  
Phys. Rev. Lett. 124, 182001 (2020) 

6D unfolded simultaneously 
via MultiFold machine learning 

technique   

pT vs Q vs M vs zg vs Rg vs Mg

Multifold allowed 
us to measure this!

• Experimentally, we have shown virtuality loss along the 
direction of the jet - AI/ML unfolding made possible
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Fundamental question - why AI/ML?
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Can we tag the flavor of the jets?

• What do we learn from this - flavor dependent fragmentation 


• Proton’s PDF and possibly extending all the way to GPDs 


• Can we find the mother q/g? 

9

Figure courtesy - Ralf Rapp

Vertexing

DCAXY, DCAZ

Tracking

pT, η, ϕ

Fragmentation 

z, ΔR, zΔR2
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Arandjelović et. al 1511.07247 
NetVLAD

• CNN architecture for weakly 
supervised place recognition

https://arxiv.org/abs/1511.07247
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Residual 
Blocks

soft-max

Total of 111608 trainable parameters 

WxHxD feature map
of last conv. layer
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Vector of Locally Aggregated Descriptors 

Tagging Heavy-Flavor 
JetVLAD

D - Depth 
K - # Clusters

Ponimatkin, et. al JINST 2005.01842

Georgy Ponimatkin  
PhD. In ML @  

Ecole des Ponts 
ParisTech

• impact of varying the random 
weights for each trainable 
parameters - probes the inbuilt 
uncertainty for your optimized model

Jitka Mrazkova 
PhD student @ NPI
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Performance benchmarks 
12

• Recurrent neural network 
along with IP3  

CMS-DP-2018-058

• DeepJet includes all secondary vertex info and 
particles along with global event features 


• Improvement (factor of 2) attributed to 
algorithmic differences primarily in comparison 
to RNN (which are quite hard to train) 
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Performance benchmarks 
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• Recurrent neural network 
along with IP3  

ATL-PHYS-PUB-2017-003

• Improvement of a factor 2-3 in 
background rejection compared 
to current leading models!  

Comparison w/ ATLAS and CMS CMS-DP-2018-058

• DeepJet includes all secondary vertex info and 
particles along with global event features 


• Improvement (factor of 2) attributed to 
algorithmic differences primarily in comparison 
to RNN (which are quite hard to train) 
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Preliminary

T-SNE projection 
• Arbitrary projection from 

multi-dimensional phase-
space to a 2D 


• Isolated regions of 
overlap 


• Further exploration in 
progress!  

ATL-PHYS-PUB-2017-003

• Improvement of a factor 2-3 in 
background rejection compared 
to current leading models!  

Comparison w/ ATLAS and CMS

Performance benchmarks 

• Recurrent neural network 
along with IP3  
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Can we pick out fragmentation patterns?
16
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Multi dimensional pattern recognition

• if there are changes to a jet’s fragmentation, is that represented in the 
information space of a jet? 


• Can we identify what those changes or ‘effects’ are specifically compared 
to a well understood baseline (read pp or ideally ep)?


• Can we translate those effects to a ‘cause’? 


• Once we build up a library of possible causes, can we isolate specific 
sub-population of jets for future differential studies?

17
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Michael Taleb,  
Vandy Class of 2026

Umar Soheil Qureshi, 
Vandy Class of 2025

Jets as connected graphs 
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Michael Taleb,  
Vandy Class of 2026

Umar Soheil Qureshi, 
Vandy Class of 2025

Jets as connected graphs 
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Mapping one graph to another graph via 

latent space representation
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Predicted Parton 
level Jet

21

• We can more/less get the 
scalar jet momenta, but… 
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How similar are these?
22

• EMD essentially estimates how 
much ‘work’ you need to move one 
to another 

Taleb, Qureshi, RKE, arXiv:2504.####
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24UglyGood

Taleb, Qureshi, RKE, arXiv:2504.####
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Detour - Can we identify jets that have 
modified fragmentation 

25

Umar Soheil Qureshi, 
Vandy Class of 2025

Yasuda, T et. al 2209.14881

• greedy forward selection algorithm, which repeatedly 
selects the feature with the largest marginal improvement 


• introducing a new set of trainable variables w ∈ R𝑑 that 
represent feature importance

Qureshi and RKE, 2411.19389

https://arxiv.org/abs/2209.14881
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Detour - Can we identify jets that have 
modified fragmentation 
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Umar Soheil Qureshi, 
Vandy Class of 2025

Qureshi and RKE, 2411.19389

• Not all inputs 
are made the 
same 


• Motivate 
selective 
observables to 
go and measure!
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Signal vs background 
28
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Events as noisy images

Umar Soheil Qureshi, 
Vandy Class of 2025
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Hierarchical Vision Transformer using 
Shifted Windows 

30

Liu, Ze et.al 2103.14030

• This hierarchical architecture has 
the flexibility to model at various 
scales and has linear computational 
complexity with respect to image 
size.

• The shifted windowing scheme brings 
greater efficiency by limiting self-
attention computation to non-
overlapping local windows while also 
allowing for cross-window connection. 

https://arxiv.org/abs/2103.14030
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Comparing to 
existing methods

31

• Jets almost always have 
steeply falling distributions 
which make it hard for 
model predictions to get 
right 


• Scalar quantities as always 
are *very* good, BUT 4-
momentum distributions 
are difficult since they are 
sensitive to low pT objects
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Whats wrong here?
32

Input Prediction
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Need physics-motivated loss functions 
33

Input Prediction

Δr Δr



Rithya KE (Vanderbilt), CFNS March 20, 2025

Conclusion
• We are on the roadmap towards discovery with the EIC 


• We are building systems now that will enable fast physics 
extraction with specific models that answer specific questions 


• Very few questions are solved out of the box  

• Jets are multi-scale, multi-dimensional, information (n) sparse 
but dimensionally dense and are a good laboratory for study 
these questions 


• Different jets are different - we need physics motivated 
models  

• EIC will teach us a lot of physics - but it will also be a very 
pure baseline for comparison with current pp or pA or AA jets!

34


