AI-assisted detector clustering, design, and simulation

Presentation Overview

Al-assisted calorimeter clustering at CLAS12 (Gregory Matousek) 1.

- Google Colab Notebooks available at this GitHub repo a.
- Recent preprint available at https://arxiv.org/abs/2503.11277 b.

Automated detector optimization for a KLM at the EIC (Rowan Kelleher) 2.

Probing the frontiers of nuclear physics with AI at the Electron-Ion Collider (EIC) 2025

Cluster Highlight in Original Strips

0.0 0.2 0.4 0.6 0.8

Latent Space (Epoch 25)

-1

The CLAS12 Detector System

- Up to 10.6 GeV, longitudinally polarized e⁻ beams (~85%), fixed target experiment, six azimuthal sectors
 - $\circ 2^{\circ} < \theta < 5^{\circ}$ forward tagger
 - $\circ 5^{o} < \theta < 35^{o}$ forward detector system
 - \circ 35° < θ < 125° central detector system

> Comprehensive (e, π , K, p, n, γ) id

- Several AI methods developed to improve!
- > Majority of CLAS12 kinematic coverage is focused on valence quark (med-high x_{R})

In this study, we consider the **forward ECal** that can...

- Measure photons (π⁰, DVCS)
- Measure neutrons (exclusive, deuterium targ.)

Neutral Clustering at CLAS12

Shown is the (θ, ϕ) distribution of **Monte Carlo** particles from a sample SIDIS event (upwards facing triangles)

In an ideal world, the
 Reconstructed particles

 (downwards facing triangles)
 would be exactly on top of the
 thrown MC particles

Neutral Clustering at CLAS12

Shown is the (θ, ϕ) distribution of **Monte Carlo** particles from a sample SIDIS event (upwards facing triangles)

However, issues in neutral particle clustering lead to many false neutrals being reconstructed

Non-combinatorial backgrounds emerge for π^0 studies for instance, where one of the photons in the pair is <u>fake</u>

What causes False Neutrals?

- Sampling calorimeter with lead sheets + scintillators triangular layout
- Clusters identified by looking for 3-way intersections
 - Hadronic secondaries can cause disjointed, sizeable clusters to form in later layers, tricking pipeline into thinking they are their own particle

Sample Monte Carlo Event

- (Left) CLAS12 ECal hits and their Monte Carlo particles
 - $\circ \quad \text{Colors} \rightarrow \text{Different particles}$
 - $\circ \quad \text{ Shapes} \to \text{Different MC PIDs}$
- PCAL, ECin, and ECout are overlaid

Features per strip

- (x_1, y_1, z_1) and (x_2, y_2, z_2)
- Energy deposited
- Time
- Layer Number

Sample Monte Carlo Event

8

Defining the Problem

- Input: <u>Point Cloud</u> of ECAL strips with several features (layer, E, t, x, y, z)
 - From Geant4 we are aware of the Monte Carlo particle responsible for the strip hit
- Output: Distinct groups/clusters of strips that belong to the same particle

Similar to Image-within-Image classification

Semantic Segmentation

Object Detection

Instance Segmentation

Computer Vision: <u>MaskFormer</u>, <u>Mask R-CNN</u>, <u>YOLACT</u>, etc.

What is **★Object Condensation★**?

- Object Condensation defines a loss function that a neural network will try to minimize
- If this loss function is minimized, the point cloud is mapped to a clustered latent space
- > Each ECAL strip learns its own point in the latent space (x_c, y_c) as well as a brightness (0< \Box <1)
- Utilized in several other nuclear physics clustering tasks ([1], [2], [3])

Object Condensation Loss

$$L_{V} = \frac{1}{N} \sum_{j=1}^{N} q_{j} \sum_{k=1}^{K} \left(M_{jk} \breve{V}_{k}(x_{j}) + (1 - M_{jk}) \hat{V}_{k}(x_{j}) \right).$$

$$q_{i} = \operatorname{arctanh}^{2} \beta_{i} + q_{\min}$$

Attractive Loss

Each individual strip calculates one piece of the attractive loss

Very similar to E&M U = qV

For each strip (j), punish the loss function the further it is from the *brightest beta* for its particle (k)

The *brightest* strip for particle (k) is $\mathbf{\Omega}\mathbf{k}$

Object Condensation Loss

$$L_V = \frac{1}{N} \sum_{j=1}^N q_j \sum_{k=1}^K \left(M_{jk} \breve{V}_k(x_j) + (1 - M_{jk}) \hat{V}_k(x_j) \right).$$

Cluster 2

Sorry! I'll be heading out soon

since during training I'll join back with the **pion** party!

2

Cluster 1

0

 X_C

Hey this is the electron

party, you need to leave!

1.0 F

0.5

0.0

-0.5

-1.0

-1.5

-2.0 -2

-1

So

Each individual strip calculates **K-1** pieces of the **repulsive loss**

$$\hat{V}_k(x) = \max(0, 1 - ||x - x_\alpha||)q_{\alpha k}.$$

For each strip (j), punish the loss function the closer it is to the *brightest beta* of <u>any</u> <u>other particle</u> (k)

The *brightest* strip for particle (k) is $\mathbf{\alpha}\mathbf{k}$

____r physics with AI at the Electron-Ion Collider (EIC) 2025

Object Condensation Attractive & Repulsive

X

(*Right*) The total potential V experienced by the blue square as it navigates past 3 unaffiliated objects (peaked condensation points) towards its clustering home (the bottom of the well, another condensation point ing the frontiers of nuc

Object Condensation Loss

$$L_{\beta} = \frac{1}{K} \sum_{k} (1 - \beta_{\alpha k}) + \frac{s_B \frac{1}{N_B} \sum_{i}^{N} n_i \beta_i}{\sum_{i} n_i \beta_i},$$

Coward Loss

For each particle (k), punish the **coward loss** if the object's *brightest beta* is dim (near 0)

Noise Loss

For each strip (i) punish the **noise loss** if the strip is noise (ex: 0-padded) and has a high *brightness beta*

Here n_i is a bit that is 1 if strip (i) is noise

Epoch: 00000, Batch: 00010

Sample event with 2 photons, 1 proton

Epoch: 00000, Batch: 00010

Using the pre-built CLAS12 reconstruction software, we see a near 1-to-1 reconstruction

Epoch: 00000, Batch: 00010

Epoch: 00000, Batch: 00010

Epoch: 00000, Batch: 00010

Epoch: 00000, Batch: 00110

★ Model **learns** that these hits are **not noise**, but considers them one big cluster

Epoch: 00000, Batch: 02020

★ Later, the model is able to figure out **different sectors** likely contain **different particles**

Epoch: 00087

After some additional training, the model learns to find multiple clusters per sector

×

Embedding Module learns hidden representation for each strip in an event. Sorts hits into a sequence.

Embedding Module learns hidden representation for each strip in an event. Sorts hits into a sequence.

Positional Encoding Module trains

GravNet [1] layers on full ECal geom.

- \rightarrow GravNet: Dynamically built k-NNs.
- \rightarrow Short range context.
- \rightarrow Added to hit tokens in sequence.

Embedding Module learns hidden representation for each strip in an event. Sorts hits into a sequence.

Positional Encoding Module trains

GravNet 1 layers on full ECal geom.

- \rightarrow GravNet: Dynamically built k-NNs.
- \rightarrow Short range context.
- \rightarrow Added to hit tokens in sequence.

Feature Extraction Module uses

encoder [2] layers and DNNs to map each hit to a location in latent space \rightarrow Long range context

Sample Event Result

Evaluation of AI-clustering

To compare coatjava and object condensation we define a metric: trustworthiness

A reconstructed neutron is *trustworthy* if:

- There is a generated neutron within $\Delta\theta$ <4, $\Delta\phi$ <4
- There is no other reconstructed neutron within $\Delta\theta$ <4, $\Delta\phi$ <4

Model Evaluation on Neutrons

- (Left) Trustworthy-% for Coatjava and Object Condensation neutrons
 - 300% increase in reconstruction efficiency with 16% increase in yields
 - Object Condensation model *outperforms* existing CLAS12 reconstruction for neutrons
- (Right) Sample exclusive incoherent J/ ψ for Coatjava and Object Condensation
 - 40% increase in yields when using 4-fold coincidence
 - Expected to increase with more analysis cuts

EIC 2nd Detector KLM

- A barrel KLM (K-long muon) detector has been proposed for the EIC 2nd detector
 - Measuring particle energy, momentum, and PID
 - Sampling calorimeter layers built with steel and scintillator
- Project Goal is to optimize the detector design using Geant4 + ParticleGun
- Several AI models were developed for pipeline
 - $\circ \quad \mathsf{NF} \to \mathsf{Reduce} \mathsf{ sim. time}$

KLM Detector Geometry

- Barrel detector formed by 8 identical **staves** surrounding the inner detectors
- Each **superlayer** built of **scintillator strips** and **steel sheets**
- SiPMs at both ends timing and energy
 - \circ Many optical photons \rightarrow costly simulation
- Fixed outer radius constraint
 - Optimal # of superlayers? Steel/scintillator ratio?

(c) With Optical Photons

(d) No Optical Photons

Parameterizing Optical Photons (NF)

- We want to optimize the KLM \rightarrow **test** different scintillator thicknesses...
 - **Problem:** We need a lot of statistics to quantify KLM performance. These simulations are costly
 - Solution: Parameterize the photon yield and arrival time using Normalizing Flow (NF) [1]
- For a large set of different scintillator thickness (ex: 1cm, 3cm, 5cm) **ParticleGun** events are used to model N_{γ} and $t_{arrival}$ as a function of PID, momentum, position

Parameterizing Optical Photons (NF)

- Normalizing Flows are able to reduce simulation time by **x100**
- Currently simulated a set of NFs for different thicknesses, pick closest from set
- KLM resolution on the order of 100 picoseconds
- With the KLM response parameterized \rightarrow obtain PID efficiency, resolution

Graph Neural Networks for the KLM

Probing the frontiers of nuclear physics with AI at the Electron-Ion Collider (EIC) 2025

Ongoing Work

- Soon to be implemented classifier-GNN for an additional objective to be maximized
- Construct **Ax** & **Botorch** pipeline for searching the detector design space
 - Number of superlayers

- Steel/scintillator thickness ratio per superlayer
- Consider the need for **KLM** clustering (overlapping neutrals?)

Conclusion/Future Outlook

An **Object Condensation-based** pipeline was developed to perform clustering of calorimeter hits at CLAS12 – <u>first usage of clustering AI on hodoscopic detectors</u>.

- Increases neutron reconstruction efficiency by +300%.
- Plans to incorporate computer vision models like Mask RCNN and MaskFormer to improve results → one hit can belong to multiple objects
- New collaboration with Argonne National Lab to apply AI to ePIC barrel ECAL

A **Multi-objective optimization** framework using Normalizing Flows and GNNs is in development for a future EIC KLM detector

• Current work (ex: by Connor Pecar) is being performed to optimize the ePIC dRICH geometry

Extra Slides

★ Object Condensation★ Recap

- > Input $\rightarrow v_{in}(N, F)$
 - **N:** Number of nodes (in our case number of strips)
 - F: Number of features per node (in our case 22)
- > Output → $v_{out}(N, 3)$ → *i.e. each strip learns 3 variables*
 - v_{out} [:, 0] is the x-coordinate in a latent space (called x_c)
 - v_{out} [:, 1] is the y-coordinate in a latent space (called y_c)
 - v_{out} [:, 2] is the *brightness* of the node (strip) in the latent space [0,1] (called \Box)

22 feats. x_c, y_c, β

Object Condensation (OC) defines a loss function $L(x_c, y_c, \Box)$ that is <u>minimum</u> if...

- 1. The (x_c, y_c) of nodes that belong to the same cluster are close (**attractive loss**)
- 2. The (x_c, y_c) of nodes that belong to different clusters are far (**repulsive loss**)
- 3. Only one node per cluster has a large brightness $\Box \sim 1$ (coward loss)

Object Condensation Loss

$$L_{V} = \frac{1}{N} \sum_{j=1}^{N} q_{j} \sum_{k=1}^{K} \left(M_{jk} \breve{V}_{k}(x_{j}) + (1 - M_{jk}) \hat{V}_{k}(x_{j}) \right).$$

$$q_{i} = \operatorname{arctanh}^{2} \beta_{i} + q_{\min}$$

Attractive Loss

Each individual strip calculates one piece of the attractive loss

Very similar to E&M U = qV

For each strip (j), punish the loss function the further it is from the *brightest beta* for its particle (k)

The *brightest* strip for particle (k) is $\mathbf{\Omega}\mathbf{k}$

Object Condensation Loss

$$L_V = \frac{1}{N} \sum_{j=1}^N q_j \sum_{k=1}^K \left(M_{jk} \breve{V}_k(x_j) + (1 - M_{jk}) \hat{V}_k(x_j) \right).$$

Repulsive Loss

Each individual strip calculates **K-1** pieces of the **repulsive loss**

$$\hat{V}_k(x) = \max(0, 1 - ||x - x_\alpha||)q_{\alpha k}.$$

For each strip (j), punish the loss function the closer it is to the *brightest beta* of <u>any</u> <u>other particle</u> (k)

The brightest strip for particle (k) is αk

Object Condensation Attractive & Repulsive

X

(*Right*) The total potential V experienced by the blue square as it navigates past 3 unaffiliated objects (peaked condensation points) towards its clustering home (the bottom of the well, another condensation point ing the frontiers of nuc

Object Condensation Loss

$$L_{\beta} = \frac{1}{K} \sum_{k} (1 - \beta_{\alpha k}) + \frac{s_B \frac{1}{N_B} \sum_{i}^{N} n_i \beta_i}{\sum_{i} n_i \beta_i},$$

Coward Loss

For each particle (k), punish the **coward loss** if the object's *brightest beta* is dim (near 0)

Noise Loss

For each strip (i) punish the **noise loss** if the strip is noise (ex: 0-padded) and has a high *brightness beta*

Here n_i is a bit that is 1 if strip (i) is noise

What is **★Object Condensation★**?

By viewing this clustered latent space $(\mathbf{x}_{c}, \mathbf{y}_{c})$ we can get...

- > The number of particles threshold away the dim \Box 's and count them!
- > The strips for each particle for a bright \Box , collect all dim \Box 's within some radius

 $v_i^{in} \rightarrow \text{Strip i's Input}$ vector to GravNet *Hyperparameters* **# S-dims, # Learned Features**

Procedure (for each strip)

 A DNN produces a set of coordinates in S-space and hidden features v^{LR}

Hyperparameters # S-dims, # Learned Features, # S-Neighbors

- A DNN produces a set of coordinates in S-space and hidden features v^{LR}
- 2. Calculate the distance **d**_{i,k} for **K** neighbors

Hyperparameters # S-dims, # Learned Features, # S-Neighbors

- A DNN produces a set of coordinates in S-space and hidden features v^{LR}
- 2. Calculate the distance **d**_{i,k} for **K** neighbors
- Calculate distance-weighted *j-th* learned
 (LR) feature of the K neighbors of strip *i*

Hyperparameters # S-dims, # Learned Features, # S-Neighbors

- A DNN produces a set of coordinates in S-space and hidden features v^{LR}
- 2. Calculate the distance **d**_{i,k} for **K** neighbors
- Sum the distance-weighted *j-th* learned
 (LR) feature of the K neighbors of strip *i*
- 4. Calculate the mean & max of each learned features nearest neighbors. Concatenate v^{in} , v^{LR} and the mean(+)max of $v^{\text{tilde}\{LR\}}$

Hyperparameters # S-dims, # Learned Features, # S-Neighbors, # output features

- A DNN produces a set of coordinates in S-space and hidden features v^{LR}
- 2. Calculate the distance **d**_{i,k} for **K** neighbors
- Sum the distance-weighted *j-th* learned (LR) feature of the K neighbors of strip *i*
- 4. Calculate the mean & max of each learned features nearest neighbors. Concatenate v^{in} , v^{LR} and the mean(+)max of $v^{\text{tilde}\{LR\}}$
- DNN the final result to a new output vector v^{out}

Trustworthiness of Photons

Network Architecture (Embedding Module)

Probing the frontiers of nuclear physics with AI at the Electron-Ion Collider (EIC) 2025

Embedding Module

Network Architecture (**Positional Encoding Module**)

Input: $g \in \mathbb{R}^{H \times 6}$ where H=2448 and the "6" features are the (x,y,z) of the strip's 2 endpoints

Output: $g' \in \mathbb{R}^{V \times F'}$ where F'=64

Main Idea

- Full, fixed ECal detector topology passed through GravNet layers (dynamically built k-NNs)
- Each strip at CLAS12 *learns* a unique representation based on its geometry

Using the **Embedding Module** sorting, we gather the relevant strips from the **Positional Encoding Module**

Network Architecture (Feature Extraction Module)

Input: $z + g' \in \mathbb{R}^{V \times F'}$ where **z** and **g'** were outputs of embedding module and positional encoding (PE) module

Output: $y \in \mathbb{R}^{V \times 3}$

- Main structure follows a <u>transformer encoder</u> with self-attention + feed forward layers
- Individual ECal hits are treated like "tokens" in a sentence, positions learned by PE module
- Encoder allows long-range contextual information to build up during training

Sorting along V dimension is undone and sent through final network

 \succ Each hit learns a location (\mathbf{x}_{c} , \mathbf{y}_{c}) and brightness ($\boldsymbol{\beta}$)

Multi-sector hits

- Coatjava and Object Condensation will be prone to scenarios where accidental neutral clustering is *unavoidable*
 - Ex: Below, a Pi+ left hits in S2 and S3 ($\varphi \sim 60 100$ [deg])
 - Both Coatjava and Object Condensation find a stray neutral

Intersector Tracks

- In this other example, a Pi- Generated in Sector 5 crosses into sector 2. This pion leaves hits in Sector 2 which is registered as a Neutron
 - It *makes sense* that Object Condensation would see the **Sector 2** 3-way intersection as a viable cluster

Intersector Tracks

Track might actually leave hits in all 3 DC's (albeit different sectors) Does the track algorithm account for this in anyway?

Issues in this step lead to faulty clustering of excess neutral particles \star REC Pion ... Coatiava may find 3 clusters in and correctly **REC** Photon associate them with one REC Neutron another... but it may ECOUT ECIN accidentally find more! PCAL ... The clusters may also fail to be associated! ECAL::clusters **REC::**Calorimeter ECAL::hits ECAL::peaks **REC::**Particle Finds 3-way crossings Matches clusters in Strip-by-strip info **Collects** adjacent List of particles strips into "peak" to form clusters PCAL, ECIN, ECOUT to individual objects tracks/neutrals