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Presentation Overview
1. AI-assisted calorimeter clustering at CLAS12 (Gregory Matousek)

a. Google Colab Notebooks available at this GitHub repo

b. Recent preprint available at https://arxiv.org/abs/2503.11277 

2. Automated detector optimization for a KLM at the EIC (Rowan Kelleher)

MOBO

Normalizing 
Flow

GNNs
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https://github.com/Gregtom3/vossen_ecal_ai/tree/main/notebooks
https://arxiv.org/abs/2503.11277
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The CLAS12 Detector System
➢ Up to 10.6 GeV, longitudinally polarized 

e- beams (~85%), fixed target 

experiment, six azimuthal sectors
○ 2o < 𝜃 < 5o forward tagger

○ 5o < 𝜃 < 35o forward detector system

○ 35o < 𝜃 < 125o central detector system

➢ Comprehensive (e, 𝜋, K, p, n, 𝛾) id
○ Several AI methods developed to improve!

➢ Majority of CLAS12 kinematic coverage is 

focused on valence quark (med-high x
B
)

6.6 GeV
8.8 GeV
11 GeV

[1]

3

In this study, we consider the forward ECal that can…
- Measure photons (π0, DVCS)
- Measure neutrons (exclusive, deuterium targ.)

https://www.jlab.org/exp_prog/proposals/16/PR12-16-010B.pdf
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Neutral Clustering at CLAS12
➢ Shown is the (𝜃,𝜙) distribution 

of Monte Carlo particles from 
a sample SIDIS event (upwards 
facing triangles)

➢ In an ideal world, the 
Reconstructed particles 
(downwards facing triangles) 
would be exactly on top of the 
thrown MC particles
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Neutral Clustering at CLAS12
➢ Shown is the (𝜃,𝜙) distribution 

of Monte Carlo particles from 

a sample SIDIS event (upwards 

facing triangles)

➢ However, issues in neutral 

particle clustering lead to 

many false neutrals being 

reconstructed
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Non-combinatorial backgrounds emerge for 𝜋0 studies for 
instance, where one of the photons in the pair is fake
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What causes False Neutrals?
➢ Sampling calorimeter with lead sheets + 

scintillators triangular layout

➢ Clusters identified by looking 

for 3-way intersections

○ Hadronic secondaries can cause disjointed, sizeable

clusters to form in later layers, tricking pipeline

into thinking they are their own particle

π+

calorimeters

PCAL
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Strips hit by 𝜋 +
Event

Reconstruction Reconstructed 𝜋 +

Reconstructed 𝛾
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Sample Monte Carlo Event

● (Left) CLAS12 ECal hits and their Monte Carlo 

particles
○ Colors → Different particles

○ Shapes → Different MC PIDs

● PCAL, ECin, and ECout are overlaid

Features per strip

● (x
1
,y

1
,z

1
) and (x

2
,y

2
,z

2
)

● Energy deposited

● Time

● Layer Number
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Sample Monte Carlo Event

8

COATJAVA
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Defining the Problem
➢ Input: Point Cloud of ECAL strips with several features (layer, E, t, x, y, z)

○ From Geant4 we are aware of the Monte Carlo particle responsible for the strip hit

➢ Output: Distinct groups/clusters of strips that belong to the same particle

Similar to Image-within-Image classification

9

Computer Vision: MaskFormer, Mask R-CNN, 
YOLACT, etc.

https://arxiv.org/abs/2107.06278
https://arxiv.org/pdf/1703.06870
https://arxiv.org/abs/1904.02689
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What is ★Object Condensation★?
➢ Object Condensation defines a loss function that a neural network will try to minimize

➢ If this loss function is minimized, the point cloud is mapped to a clustered latent space

➢ Each ECAL strip learns its own point in the latent space (x
C
 , y

C
) as well as a brightness (0<ꞵ<1)

➢ Utilized in several other nuclear physics clustering tasks ([1], [2], [3])

10

Neural 
Network

https://arxiv.org/abs/2002.03605
https://arxiv.org/abs/2312.03823
https://arxiv.org/abs/2407.13925
https://iopscience.iop.org/article/10.1088/1748-0221/19/05/C05052
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Object Condensation Loss

11

Attractive Loss

Each individual strip calculates one piece of 
the attractive loss

Very similar to E&M  U = qV

For each strip ( j ), punish the loss function 
the further it is from the brightest beta for its 
particle ( k )

The brightest strip for particle ( k ) is αk

Hey! You’re too far from 
our bright representative!

Do not fret!  During training I will get 
closer as that will minimize the 

attractive loss! 
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Object Condensation Loss

12

Repulsive Loss

Each individual strip calculates K-1 pieces of 
the repulsive loss

For each strip ( j ), punish the loss function 
the closer it is to the brightest beta of any 
other particle ( k )

The brightest strip for particle ( k ) is αk

Hey this is the electron 
party, you need to leave!

Sorry! I’ll be heading out soon 
since during training I’ll join back 

with the pion party!
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Object Condensation Attractive & Repulsive

X

Y

(Right) The total potential V 
experienced by the blue square as 
it navigates past 3 unaffiliated 
objects (peaked condensation 
points) towards its clustering home 
(the bottom of the well, another 
condensation point)

Here I come 

friends!

Woohoo!

Cya Soon!
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Watch out for 

the others!
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Object Condensation Loss
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For each particle ( k )  , punish the coward loss if 
the object’s brightest beta is dim (near 0)

Coward Loss

Noise Loss

For each strip ( i ) punish the noise loss if the 
strip is noise (ex: 0-padded) and has a high 
brightness beta

Here n
i 
 is a bit that is 1 if strip ( i ) is noise

We are bright noise, we 
shouldn’t be considered as 

particles!

Uhhh, can someone please stop 
being a coward and be our 
bright beta representative 

already?
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Minimizing the Object Condensation Loss

Sample event with 2 photons, 1 proton

15
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Minimizing the Object Condensation Loss

Using the pre-built CLAS12 reconstruction 
software, we see a near 1-to-1 reconstruction

Coatjava

16
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Minimizing the Object Condensation Loss

Neural Network

Each hit is mapped to 
a point in the latent 
space.

In latent space, these 
hits currently have 
low 𝛽 … the model 
thinks they are 
background

Train more!
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Minimizing the Object Condensation Loss

Neural Network

Inference

18
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Minimizing the Object Condensation Loss

19
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Minimizing the Object Condensation Loss

★ Model learns that these hits are not noise, but considers them one big cluster

20
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Minimizing the Object Condensation Loss

★ Later, the model is able to figure out different sectors likely contain different particles

21
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Minimizing the Object Condensation Loss

★ After some additional training, the model learns to find multiple clusters per sector

22
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Minimizing the Object Condensation Loss

★ After some additional training, the model learns to find multiple clusters per sector

23

Try out an Object Condensation 

example in Google Colab!
(Link)

https://colab.research.google.com/github/Gregtom3/vossen_ecal_ai/blob/main/notebooks/nb03_shape_condensation.ipynb
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Event-by-Event Input:

V = 150 (strips per event)

F = 17 (features per strip)

➔ Two (x,y,z) for strip endpoints

➔ Energy and time

➔ 9 one-hot encodings for layer

Event-by-Event Output:

➔ (x
c
,y

c
,𝛽) for object condensation

Network Architecture

24
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Network Architecture

Embedding Module learns hidden 
representation for each strip in an 
event. Sorts hits into a sequence.

25
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Network Architecture

Embedding Module learns hidden 
representation for each strip in an 
event. Sorts hits into a sequence.

Positional Encoding Module trains 
GravNet [1] layers on full ECal geom.
→ GravNet: Dynamically built k-NNs.
→ Short range context.
→ Added to hit tokens in sequence.

26

https://arxiv.org/abs/1902.07987


Probing the frontiers of nuclear physics with AI at the Electron-Ion Collider (EIC) 2025

Network Architecture

Embedding Module learns hidden 
representation for each strip in an 
event. Sorts hits into a sequence.

Positional Encoding Module trains 
GravNet [1] layers on full ECal geom.
→ GravNet: Dynamically built k-NNs.
→ Short range context.
→ Added to hit tokens in sequence.

Feature Extraction Module uses 
encoder [2] layers and DNNs to map 
each hit to a location in latent space
→ Long range context

27

https://arxiv.org/abs/1902.07987
https://arxiv.org/abs/1706.03762
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Sample Event Result

28
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Evaluation of AI-clustering
● Trained on 1M simualted DIS events [1]
● Model state @ 10 early stopping rounds
● Some hyperparameter optimization

○ Number of GravNet layers
○ Hidden dimension of encoder

● Integrated into analysis pipeline [2] 

To compare coatjava and object condensation we define a metric: trustworthiness

A reconstructed neutron is trustworthy if:

● There is a generated neutron within 𝛥𝜃<4, 𝛥𝜙<4 
● There is no other reconstructed neutron within 𝛥𝜃<4, 𝛥𝜙<4 

29

https://github.com/JeffersonLab/clasdis
https://code.jlab.org/gmat/comet
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Model Evaluation on Neutrons
● (Left) Trustworthy-% for Coatjava and Object Condensation neutrons

○ 300% increase in reconstruction efficiency with 16% increase in yields

○ Object Condensation model outperforms existing CLAS12 reconstruction for neutrons

● (Right) Sample exclusive incoherent J/𝜓  for Coatjava and Object Condensation
○ 40% increase in yields when using 4-fold coincidence

○ Expected to increase with more analysis cuts

30
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EIC 2nd Detector KLM

MOBO

Normalizing 
Flow

GNNs

● A barrel KLM (K-long muon) detector has been proposed for the EIC 2nd detector
○ Measuring particle energy, momentum, and PID

○ Sampling calorimeter — layers built with steel and scintillator

● Project Goal is to optimize the detector design using Geant4 + ParticleGun

● Several AI models were developed for pipeline
○ NF → Reduce sim. time

○ GNN → Predict KLM energy

○ MOBO → Find best config.

31
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KLM Detector Geometry
● Barrel detector formed by 8 identical staves — surrounding the inner detectors

● Each superlayer built of scintillator strips and steel sheets

● SiPMs at both ends — timing and energy

○ Many optical photons → costly simulation

● Fixed outer radius constraint

○ Optimal # of superlayers? Steel/scintillator ratio?

KLM stave

scintillator 

32
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Parameterizing Optical Photons (NF)
● We want to optimize the KLM → test different scintillator thicknesses…

○ Problem: We need a lot of statistics to quantify KLM performance. These simulations are costly

○ Solution: Parameterize the photon yield and arrival time using Normalizing Flow (NF) [1]

● For a large set of different scintillator thickness (ex: 1cm, 3cm, 5cm) ParticleGun 

events are used to model N𝜸 and t
arrival 

as a function of PID, momentum, position

33

https://arxiv.org/abs/1908.09257
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Parameterizing Optical Photons (NF)

MOBO

Normalizing 
Flow

GNNs

● Normalizing Flows are able to reduce simulation time by x100
● Currently simulated a set of NFs for different thicknesses, pick closest from set
● KLM resolution on the order of 100 picoseconds
● With the KLM response parameterized → obtain PID efficiency, resolution

34
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Graph Neural Networks for the KLM
● K0

L
 particle gun at different (E, 𝜃, 𝜙)

● SiPM readouts treated as point cloud with 6-NN’s

Preliminary GNN built to measure energy resolution

MOBO

Normalizing 
Flow

GNNs

Early work shows a 
promising 30%/√E 

resolution

LEP → 100%/√E

35
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Ongoing Work
● Soon to be implemented classifier-GNN for an 

additional objective to be maximized

● Construct Ax & Botorch pipeline for searching 

the detector design space

○ Number of superlayers

○ Steel/scintillator thickness ratio per superlayer

● Consider the need for KLM clustering 

(overlapping neutrals?)

MOBO

Normalizing 
Flow

GNNs

36
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Conclusion/Future Outlook
An Object Condensation-based pipeline was developed to perform clustering of 
calorimeter hits at CLAS12 – first usage of clustering AI on hodoscopic detectors.

● Increases neutron reconstruction efficiency by +300%.
● Plans to incorporate computer vision models like Mask RCNN and MaskFormer to 

improve results → one hit can belong to multiple objects
● New collaboration with Argonne National Lab to apply AI to ePIC barrel ECAL

A Multi-objective optimization framework using Normalizing Flows and GNNs is in 
development for a future EIC KLM detector

● Current work (ex: by Connor Pecar) is being performed to optimize the ePIC dRICH 
geometry

37
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Extra Slides

38
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★Object Condensation★ Recap
➢ Input → v

in
(N, F)

○ N: Number of nodes (in our case number of strips)

○ F:  Number of features per node (in our case 22)

➢ Output → v
out

(N, 3) → i.e. each strip learns 3 variables
○ v

out
[: , 0] is the x-coordinate in a latent space (called x

C
)

○ v
out

[: , 1] is the y-coordinate in a latent space (called y
C
)

○ v
out

[: , 2] is the brightness of the node (strip) in the latent space [0,1] (called ꞵ)

39

Object Condensation (OC) defines a loss function L(xc,yc,ꞵ) that is minimum if…

1. The (x
C
 , y

C
) of nodes that belong to the same cluster are close (attractive loss)

2. The (x
C
 , y

C
) of nodes that belong to different clusters are far (repulsive loss)

3. Only one node per cluster has a large brightness ꞵ~1 (coward loss)

22 feats. x
C
 , y

C
 , 𝛽
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Object Condensation Loss

40

Attractive Loss

Each individual strip calculates one piece of 
the attractive loss

Very similar to E&M  U = qV

For each strip ( j ), punish the loss function 
the further it is from the brightest beta for its 
particle ( k )

The brightest strip for particle ( k ) is αk

Hey! You’re too far from 
our bright representative!

Do not fret!  During training I will get 
closer as that will minimize the 

attractive loss! 
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Object Condensation Loss

41

Repulsive Loss

Each individual strip calculates K-1 pieces of 
the repulsive loss

For each strip ( j ), punish the loss function 
the closer it is to the brightest beta of any 
other particle ( k )

The brightest strip for particle ( k ) is αk

Hey this is the electron 
party, you need to leave!

Sorry! I’ll be heading out soon 
since during training I’ll join back 

with the pion party!
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Object Condensation Attractive & Repulsive

X

Y

(Right) The total potential V 
experienced by the blue square as 
it navigates past 3 unaffiliated 
objects (peaked condensation 
points) towards its clustering home 
(the bottom of the well, another 
condensation point)

Here I come 

friends!

Woohoo!

Cya Soon!
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Watch out for 

the others!
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Object Condensation Loss

43

For each particle ( k )  , punish the coward loss if 
the object’s brightest beta is dim (near 0)

Coward Loss

Noise Loss

For each strip ( i ) punish the noise loss if the 
strip is noise (ex: 0-padded) and has a high 
brightness beta

Here n
i 
 is a bit that is 1 if strip ( i ) is noise

We are bright noise, we 
shouldn’t be considered as 

particles!

Uhhh, can someone please stop 
being a coward and be our 
bright beta representative 

already?
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What is ★Object Condensation★?
By viewing this clustered latent space (x

C
 , y

C
) we can get…

➢ The number of particles – threshold away the dim ꞵ’s and count them!

➢ The strips for each particle – for a bright ꞵ, collect all dim ꞵ’s within some radius

44

6 particles Strips per particle
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GravNet Layer

Procedure (for each strip)
1. A DNN produces a set of coordinates in 

S-space and hidden features vLR 

Hyperparameters
# S-dims, # Learned Featuresv

i
in → Strip i’s Input 

vector to GravNet 
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GravNet Layer

Procedure (for each strip)
1. A DNN produces a set of coordinates in 

S-space and hidden features vLR 

2. Calculate the distance d
i,k 

for K neighbors

Hyperparameters
# S-dims, # Learned Features, # S-Neighbors
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GravNet Layer

Procedure (for each strip)
1. A DNN produces a set of coordinates in 

S-space and hidden features vLR 

2. Calculate the distance d
i,k 

for K neighbors

3. Calculate distance-weighted j-th learned 
(LR) feature of the K neighbors of strip i

Hyperparameters
# S-dims, # Learned Features, # S-Neighbors
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GravNet Layer

Procedure (for each strip)
1. A DNN produces a set of coordinates in 

S-space and hidden features vLR 

2. Calculate the distance d
i,k 

for K neighbors

3. Sum the distance-weighted j-th learned 
(LR) feature of the K neighbors of strip i

4. Calculate the mean & max of each 
learned features nearest neighbors.  
Concatenate vin , vLR and the mean(+)max 
of v\tilde{LR} 

Hyperparameters
# S-dims, # Learned Features, # S-Neighbors
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GravNet Layer

Procedure (for each strip)
1. A DNN produces a set of coordinates in 

S-space and hidden features vLR 

2. Calculate the distance d
i,k 

for K neighbors

3. Sum the distance-weighted j-th learned 
(LR) feature of the K neighbors of strip i

4. Calculate the mean & max of each 
learned features nearest neighbors.  
Concatenate vin , vLR and the mean(+)max 
of v\tilde{LR} 

5. DNN the final result to a new output 
vector vout

Hyperparameters
# S-dims, # Learned Features, # S-Neighbors, 
# output features
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GravNet Layer

The 1st  vin to the GravNet blocks have 
no neighbor info

Each output of the block provides 
higher level nearest neighbor features

50
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Trustworthiness of Photons

51
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Network Architecture (Embedding Module)
Input:                           where V=150, F=17

Output:                                where F’=64

- Strip features fed through fully-connected dense layers

- Dropout applied during training

At CLAS12, there are 2448 unique ECal strips

- We sort along the V dimension based on the strip ID 

- This is important for the setting up the encoder later

Main Idea
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Network Architecture (Positional Encoding Module)

Input:                                 where H=2448 and the “6” features are 

the (x,y,z) of the strip’s 2 endpoints

Output:                                where F’=64

- Full, fixed ECal detector topology passed through 

GravNet layers (dynamically built k-NNs)

- Each strip at CLAS12 learns a unique representation 

based on its geometry

Using the Embedding Module sorting, we gather the 

relevant strips from the Positional Encoding Module 

Main Idea
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Network Architecture (Feature Extraction Module)

Input:                                      where z and g’ were outputs of

embedding module and positional encoding (PE) module

Output: 

➢ Main structure follows a transformer encoder with

self-attention + feed forward layers

➢ Individual ECal hits are treated like “tokens” in a

sentence, positions learned by PE module

➢ Encoder allows long-range contextual information to

build up during training

Sorting along V dimension is undone and sent through final network

➢ Each hit learns a location (x
c
 , y

c
) and brightness (𝞫) 

54

https://arxiv.org/abs/1706.03762
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Multi-sector hits
➢ Coatjava and Object Condensation will be prone to scenarios where accidental 

neutral clustering is unavoidable
○ Ex: Below, a Pi+ left hits in S2 and S3 (𝜑 ~ 60 - 100 [deg])

○ Both Coatjava and Object Condensation find a stray neutral

55
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Intersector Tracks

56

➢ In this other example, a Pi- Generated in Sector 5 crosses into sector 2. This pion 

leaves hits in Sector 2 which is registered as a Neutron
○ It makes sense that Object Condensation would see the Sector 2 3-way intersection as a viable cluster

S5 S6

S1S4
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Intersector Tracks

57

Sector 2

Sector 5

π-

Track might actually leave hits in 
all 3 DC’s (albeit different sectors)
Does the track algorithm account 
for this in anyway?
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Relevant COATJAVA EventBuilder Pipeline

ECAL::hits ECAL::peaks ECAL::clusters REC::Calorimeter REC::Particle

Strip-by-strip info Collects adjacent 
strips into “peak” 

objects

Finds 3-way crossings 
to form clusters

Matches clusters in 
PCAL, ECIN, ECOUT to 

individual 
tracks/neutrals

List of particles

★ Issues in this step lead to faulty clustering of excess neutral particles 

58

PCAL ECIN ECOUT

Thrown pion →
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Relevant COATJAVA EventBuilder Pipeline

ECAL::hits ECAL::peaks ECAL::clusters REC::Calorimeter REC::Particle

Strip-by-strip info Collects adjacent 
strips into “peak” 

objects

Finds 3-way crossings 
to form clusters

Matches clusters in 
PCAL, ECIN, ECOUT to 

individual 
tracks/neutrals

List of particles

★ Issues in this step lead to faulty clustering of excess neutral particles 

59

… Coatjava may find 3 
clusters in and correctly 
associate them with one 
another…

PCAL ECIN ECOUT

REC Pion



Probing the frontiers of nuclear physics with AI at the Electron-Ion Collider (EIC) 2025

Relevant COATJAVA EventBuilder Pipeline

ECAL::hits ECAL::peaks ECAL::clusters REC::Calorimeter REC::Particle

Strip-by-strip info Collects adjacent 
strips into “peak” 

objects

Finds 3-way crossings 
to form clusters

Matches clusters in 
PCAL, ECIN, ECOUT to 

individual 
tracks/neutrals

List of particles

★ Issues in this step lead to faulty clustering of excess neutral particles 
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… Coatjava may find 3 
clusters in and correctly 
associate them with one 
another… but it may 
accidentally find more! PCAL ECIN ECOUT

REC Pion
REC Photon
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Relevant COATJAVA EventBuilder Pipeline

ECAL::hits ECAL::peaks ECAL::clusters REC::Calorimeter REC::Particle

Strip-by-strip info Collects adjacent 
strips into “peak” 

objects

Finds 3-way crossings 
to form clusters

Matches clusters in 
PCAL, ECIN, ECOUT to 

individual 
tracks/neutrals

List of particles

★ Issues in this step lead to faulty clustering of excess neutral particles 
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… Coatjava may find 3 
clusters in and correctly 
associate them with one 
another… but it may 
accidentally find more!

… The clusters may also 
fail to be associated!

PCAL ECIN ECOUT

REC Pion
REC Photon
REC Neutron


