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Motivation
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• Particle accelerator – kilometer-scale machine 

with thousands of coupled components to 

generate and preserve beam with very precisely 

defined qualities (e.g., energy, emittance, 

luminosity etc.)

• Traditionally maintained with many hours of 

manual tuning, taking time away from data 

collection

• Constantly varying complex system – no 

constant set of routine, needs real-time 

adjustments
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Alternating Gradient Synchrotron (AGS) 

and its Booster serve as part of the injector 

compound for RHIC and future EIC

Motivation

Max Energy

[GeV]

Pol. At Max 

Energy [%]

Source+Linac 1.1 82-84

Booster 2.5 ~80-84

AGS 23.8 67-70

RHIC 255 55-60

Loss in polarization along the chain

Difficulty in improving beam quality: 

1) polarimeter measurement is slow and has 

big error bars

2) tuning involves many control parameters 

and is mostly done by hand 

Machine Learning (ML) techniques can 

be used to optimize beam luminosity, 

quality, and polarization in RHIC and EIC 
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Improve Operations with ML

• Figure-of-merits (FOM) for ML algorithms 

(“experimental outputs”): emittance, beam 

intensity, polarization

• Possible areas where ML is useful:

• Cooling optimization

• Injection optimization

• Digital-twin & Error detection

• Electronic Logbook upgrade

• Useful ML methods:

• Bayesian Optimization (BO)

• Neural Network (NN)

• Reinforcement Learning (RL)

• Natural Language Processing (NLP)
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Cooling Optimization



Low Energy RHIC electron Cooling (LEReC)
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• LEReC is used to increase the luminosity, it was successfully improved the luminosity in 2020 

and 2021 runs

• 704 MHz e-bunches are created in the 400 keV Cornell gun, and delivered to the cooling 

sections (20 meter), where they co-travel with ion bunches

➔ The new EIC pre-cooler layout follows the same principle, profiting form the same ML techniques

Cornell DC Gun



LEReC experiment settings
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• Only the first 4 BPMs are considered due to limited machine time

• Cooling rate:𝜆 = Τ(1/തδ)(𝑑δ 𝑑𝑡)

• Ions are assumed in the center position (x=0, y=0)

• Goal: use Bayesian optimization (BO) to maximize −𝜆 by aligning 

electron orbit with ion orbit



LEReC experiment results
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• Bayesian optimization algorithm trained with 40 initial samples to optimize transverse 

cooling rate λ

• The system reaches optimal status when cooling rate balances the IBS-driven growth 

rate, so λ approaches 0 once the system reaches equilibrium

• Algorithm converged quickly (reach close neighborhood in 3 steps)

• Tune electrons from the farthest positions to the center and maintain the trajectories

Avg. Number = 15

equilibrium



Coherent electron Cooling
• Designed to cool 26.5 GeV/u ion beam circulating in RHIC’s yellow ring. 

• CeC CW SRF accelerator with unique SRF electron gun generates electron beams with quality 

sufficient for the current experiment and for the future EIC cooler

• Time-resolved diagnostics beamline is used to provide high precision measurements of electron 

beam quality
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Quadrupole scan with two quads
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• Scan two quads (Q3, Q4) with opposite polarity → keep beam 

focused vertically

• Find quad combination settings that gives best vertical 

focusing

• Find best Q3-Q4 combinations with sequential scans: 1) scan 

13 Q3 settings; 2) for each Q3 setting, scan 9 Q4 settings

•  Time taken: ~ 5 minutes for each Q3 setting, > 1 hour for an 

entire scan routine



Speed up quad scan with Neural Network
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• Time consuming sequential scans

• Train a ML model to establish 

mapping between quadrupole 

settings and beam size

• Trained ML model predicts best 

Q3-Q4 combinations without 

additional scans

• Useful for faster general beam 

tuning & as starting point of 

optimization

Artificial Neural Network

𝑄3
𝑄4
⋮

𝜎𝑥
𝜎𝑦
⋮

Desired beam 

properties

Quadrupole (or other 

tunable) settings



• Trained NN accuracy on 54 data points: 

93.65%

• Tested 7 proposed Q3-Q4 combo settings

• Obtained Y RMS values around 0.3 – 0.4 
mm range: satisfactory preliminary results 

• Successfully cut scan time by 50%

First 6 rounds: 54 saved data points

Remaining 7 rounds: 7 data 

points using Q3-Q4 settings 

predicted by NN model

12

New CeC routine test results
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Injection Optimization



Booter injection
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From Linac

126° 
bend

• Booster injection process sets maximum beam 

brightness for rest of acceleration through RHIC

• Known emittance effect on polarization loss

• Intentional horizontal and vertical scraping reduce 

emittance to RHIC requirements

• Goal: minimize emittance / maximize beam 

intensity after scraping

• Controls: Linac to Booster (LtB) transfer line optics

• Method: Bayesian optimization (BO)

scrape



LtB controls and measurement

15

• 13 quadrupoles and 16 correctors between Linac and Booster 

• Common practice to improve Booster injection efficiency: tune 

last few correctors at the end of the LtB line

• Criteria to check injection efficiency: Booster early and late 

intensity

Booster



LtB optimization: 2 correctors + 2 quadrupoles
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• Controls: Power supply currents of two correctors 
and two quadrupoles at the end of the LtB line

• Beam size decrease in both planes in the BtA 
line in correspondence with intensity increase



Electron Beam Ion Source
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• Heavy ion source to replace Tandem as pre-injector for RHIC
Injection [fc96] Extraction [xf14]

1 IonLens20-40kV  ✓ ✓

2 DeflPlatBias      ✓ ✓

3 16PoleX ✓ ✓

4 16PoleY ✓ ✓

5 Gridded_Lens ✓ ✓

6 Horiz_Bend_Defl ✓ ✓

7 Inter_Vert_Defl ✓ ✓

8 Inter_Vert_Defl_Lower ✓ ✓

9 Horiz_Sphere_Bend ✓ ×

10 RFQ_Horiz_Bend × ✓

11 LEBT_Solenoid × ✓

Total Variables 9 10

1. LION

2. EBIS Injection Line (fc96)

3. EBIS 

4. EBIS Extraction line (xf14)

5. RFQ

6. MEBT

7. Linac

8. HEBT



EBIS extraction line optimization
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1.4

~2.0

~43% improvement after optimization

• 10 control parameters measured at xf14 were used to maximize ion beam intensity

• Objective is average intensity over 4 super-cycles (6.6 sec per cycle), multiplied by a 

negative scaling factor, BO algorithm aims to minimize objective

• 43% improvement observed after 60 iteration (~57 minutes)
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AGS injection
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• Extraction septum at F6 in Booster, injection 
septum at L20 in AGS, no scraping

• Multi-wires MW006, MW060, MW125, 
MW166 

• Emittance measured by AGS Ionization 
Profile Monitor (IPM)

• Goal: maximize beam brightness in the 
AGS

• Controls: Booster to AGS (BtA) transfer line 
optics



BtA optimization: 4 correctors
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• Controls: Power supply currents of two vertical and 

two horizontal correctors.

• Target: Increase brightness. Increase intensity and 

decrease beam size.

• Method: Ruin initial settings, use Bayesian 

optimization to re-optimize settings. 

• Results: Automatically achieved previous maximum 

brightness and intensity in < 130 iterations with new 

settings
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Digital-twin and Error detection



Orbit responses measurement script
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• Script development with Collider Accelerator 

Department (CAD) Controls Group

• Can be easily adapted to other accelerators 

at BNL

• Script sets three corrector settings: positive, 

zero, negative; and save corresponding orbits

• All magnet settings (including dipoles and 

quadrupoles etc.) are saved for model 

calibration for digital-twin



Orbit response data in 
AGS Booster
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• Good agreements between AGS Booster 

data and Bmad model are reached, despite 

some faulty BPMs

• Small discrepancies (within 1 mm) beyond 

error bars is being investigated to better 

calibrate model to real machine

• Goal: produce accurate real-time predictions 

for operators and give tuning suggestions to 

improve beam quality
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Extraction bump fitting interface

• NASA Space Radiation 

Laboratory (NSRL) takes 

beam from AGS Booster 

via slow extraction

• Current extraction bump 

gives large residual orbit

• Goal: tune bump setting 

by specifying desired 

beam position and angle 

at extraction septum
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Bunch Merging
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AGS bunch merging
• Before transferring to AGS, beam bunch is split into 2 

longitudinally to reduce the space charge effect → 

reduce emittance → improve polarization

• Bunches are later merged in the AGS

• Tuning requires expert knowledge, is time consuming, 

and tend to drift over time

• Controls: RF voltages & phases

• Goal: Obtain good merged bunch profile

o Emittance preservation

▪ No particle lost, Gaussian, no baby bunches

o Stable final bunch profile

▪ Merged in the center, not shifting left/right or 

bouncing up/down

Real mountain range data showing 2-to-1 

bunch merge in AGS

Wall current monitor (WCM) generates 

voltage vs time signal. Each separated in 

time by N turns (N accelerator periods)

end of squeeze 

& start of merge

end of merge

start of squeeze
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Bunch merge simulation results

Target functions Agent learned functions• Julia simulator of the bunch merge process

• Soft Actor-Critic (SAC) agent to minimize 

emittance growth: 10,000 initial samples + 

4,000 training steps

• Able to learn target functions pretty well
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Machine test – 
Julia agentInitial

1st step

3rd step

Original

2nd step

RF functions Bunch traces Last trace

• RF cavities voltages are initially 

set to close to 0 during merge 

period to intentionally decrease 

merge quality

• RL agent trained on the Julia 

simulator is applied to correct RF 

settings

• RL agent manage to find good RF 

settings, produce result similar to 

established machine optimum
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Electronic Logbook Upgrade



Electronic Logbook
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• Record information ranging from 

meeting notes, to do lists, and critical 

operations

• Current search feature only provides 

exactly what a user enters, difficult to 

find related entries without the exact 

words

• Goal: provide custom sets of entries 

based on users’ interactions with the 

system



Elog search upgrade workflow
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Elog Database

NLP 

Preprocessing

Doc2Vec 

Model

Classification

Similar Entries

This assumes we have ALL entries from ALL elogs (e.g., RHIC, 

Machine Learning, personal elogs etc.)

Removes any punctuation, stop words, and empty entries. Tokenize 

each entry & save this information.

Gensim Doc2Vec model trains 100 epochs. Returns the top few 

similar elog entries.

SKLearn MultinomialNB classifier predicts any entry’s tag.

Return similar entries in order by most similar.



Similarity by word
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Polarization
• Background ~ 70%

• Beta ~ 69%

• Polarimeter ~ 64%

• Bunch ~ 63%

• Excitation ~ 63%

• Coherence ~ 62%

• Emittance ~ 60%

Blue
• Yellow ~ 94%

• RHIC ~ 87%

• Ramp ~ 84%

• Power ~ 84%

• Run ~ 82%

• Fill ~ 80%

• Delay ~ 79%



Summary
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• Machine learning methods have been developed and tested at multiple experiments and 

accelerators at the RHIC complex

• Promising results indicate that ML algorithms can be powerful tools for various optimization 

problems, suitable for fast and complicated tuning in real time

• Digital-twin development is underway to establish accurate models for different accelerators, 

with a focus on the injection compound, which will remain for the EIC

• Better understanding of beam behavior in the early stages of the acceleration chain

• Facilitate offline development of optimization routines

• Important beam qualities such as emittance and polarization will benefit from incorporation 

of ML algorithms in the control system
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