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Outline
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• BSM searches at low-energy:  landscape and theoretical tools 

• Worked example:  SMEFT analysis of  charged current weak interactions 
and the “Cabibbo angle anomaly”                                               

• Conclusions and outlook 
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• Low-energy measurements can shed light on shortcomings of the Standard Model 

Searching for new physics at low-energy  

X
 Credit: X-ray: NASA/CXC/CfA/M.Markevitch et al.; Optical: NASA/STScI; Magellan/U.Arizona/

D.Clowe et al.; Lensing Map: NASA/STScI; ESO WFI; Magellan/U.Arizona/D.Clowe et al.

 Credit: Fermilab

No Neutrino Mass,  no Baryon Asymmetry,  no Dark Matter,  no Dark Energy,  …                         
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• Low-energy measurements can shed light on shortcomings of the Standard Model 

Searching for new physics at low-energy  

• Precision / sensitivity frontiers:  

- L and B non conservation  
- CP & T violation 
- Flavor violation in quarks & leptons
- …

Search for rare / forbidden processes that violate 
exact or approximate symmetries of the SM                         

Connection to Sakharov conditions for baryogenesis 

Precision tests of SM-allowed processes                                              

New force mediators, from dark sectors to multi-TeV

- Weak decays  
- PV electron scattering
- muon g-2
- …  
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Implications of high-scale BSM physics at low-energy are efficiently analyzed with EFT methods  (scale separation!) 



• “Standard Model EFT” (SMEFT): 

★ Build operators out of SM fields  

★ Impose Lorentz + SM gauge symmetry

★ Organize operators according to mass dimension: power counting in E/Λ, MW/Λ.                                                       
At a given order the EFT is renormalizable and predictive

General framework 

[ Λ ↔  MBSM ]

• Describe new physics originating at Λ >> vew through local operators of increasing mass dimension 
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Weinberg 1979, 
Wilczek-Zee 1979, 
Buchmuller-Wyler 1986, 
 ....  

Grzadkowski-Iskrzynksi- Misiak-Rosiek  2010, 
Alonso, Jenkins, Manohar, Trott 2013
…



[ Λ ↔  MBSM ]
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• Symmetries in SMEFT:

• B, L, Le,μ,τ  not enforced:  per Weinberg’s definition, they are “accidental” in the SM,  i.e. 
consequence of keeping operators of dimension ≤ 4 built out of SM fields & SM gauge group

• Describe new physics originating at Λ >> vew through local operators of increasing mass dimension 

ΔL=2 ΔB=1,  CPV,  FCNC, …   

General framework 



[ Λ ↔  MBSM ]
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• Beyond SMEFT: other EFTs differ in the assumptions about particle content and/or symmetry realization  

• νSMEFT:  SMEFT + νR 

• HEFT: Higgs h is an SU(2) singlet.  More general Higgs potential

• …

• Describe new physics originating at Λ >> vew through local operators of increasing mass dimension 

ΔL=2 ΔB=1,  CPV,  FCNC, …   

General framework 



Connecting scales
To connect new physics to low-energy,  use a tower of EFTs in which SMEFT is the SM-BSM link 

Hadronic 
matrix 

elements 

Nuclear   
matrix 

elements 

Non-perturbative strong interactions

Matching      
BSM theory 
to SMEFT 

Perturbative 
matching 
within SM

BSM dynamics

SMEFT

LEFT

ChPT (π, N)

Chiral EFT (NN, ..)
ΔEnuclear

• Use appropriate 
degrees of freedom 
in each range of 
energies 

• Write down all 
interactions 
consistent with the 
given symmetries  

• At each threshold, 
need  appropriate 
perturbative or   
non-perturbative 
matching conditions:         
Ahi = Alow  

• Expand amplitudes 
to a given order in 
mhow/mhi 
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Operators that give corrections to SM  
“allowed” processes: probe them with 
precision measurements  (muon g-2,             
weak decays,  electron scattering ...)

Operators that violate approximate or exact 
symmetries of the SM: mediate rare or 
forbidden processes  (proton decay,  0νββ,  
EDMs,  μ→e,  quark flavor violation, …)

Two classes of SMEFT operators (↔ probes)
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Operators that violate approximate or exact 
symmetries of the SM: mediate rare or 
forbidden processes  (proton decay,  0νββ,  
EDMs,  μ→e,  quark flavor violation, …)

Discussed in following talks, with an eye to the 
connection between low-E and collider probes 

(including EIC)

Two classes of SMEFT operators (↔ probes)

ΔL=2 processes
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LFV processes CP violation

Emanuele Mereghetti Sebastian Urrutia-Quiroga Kaori Fuyuto 
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• Dominant sources of CPV in so-called          
universal theories 

Higgs-gauge CPV couplings

32

H-H-V-V~      V-V-V~

• Induce CPV signatures at LHC:  pp → h +2 jets,  pp → V +2 jets, … 

• Induce light fermions (chromo)-EDMs at the 1-loop level

Peskin-Takeuchi, PRL 65, 964 (1990)  
Barbieri-Pomarol-Rattazzi-Strumia hep-ph/0405040 

Wells-Zhang, 1510.08462

• Dominant sources of CPV in so-called          
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Demonstrate Majorana nature of massive 
neutrinos (neutrino=antineutrino)  

Demonstrate that an excess of matter over antimatter 
can be created in an elementary process, pointing to an 
explanation of the baryon asymmetry in the universe                                               

ΔL=2 neutrionless processes

Potentially observable only 
in certain even-even nuclei  
(76Ge, 100Mo,136Xe, …) for 
which single beta decay is 
energetically forbidden

2νββ

0νββ

(Ee1 + Ee2)/Q

• Neutrinoless double beta decay

Observation ⇒  BSM physics with far reaching implications 

SMEFT & νSMEFT

• Run 1:  pp @ √s = 7-8 TeV

• Run 2:  pp @  √s = 13 TeV                
Integrated luminosity  ~ 150 fb-1

News from the energy frontier

• Major discovery: Higgs 
boson with mh=125 GeV

• So far negative results 
from searches for TeV-
scale new dynamics

The Large Hadron Collider

The EIC and 
Lepton Flavor Violation

38

The EIC and 
Lepton Flavor Violation

38



Operators that give corrections to SM  
“allowed” processes: probe them with 
precision measurements  (muon g-2,             
weak decays,  electron scattering ...)

Operators that violate approximate or exact 
symmetries of the SM: mediate rare or 
forbidden processes  (proton decay,  0νββ,  
EDMs,  μ→e,  quark flavor violation, …)

Two classes of SMEFT operators (↔ probes)

LHC:  pp → eν + X 

10

Precision tests with weak charged currents 
(from β decays to precision EW tests and  LHC)

In the rest of 
this talk 

dj ui

W

SU(2)W
Z

Gonzalez-Alonso, 
Naviliat-Cuncic, 

Severijns, 1803.08732 

Current low-E data:
dominated by           

b(0+→ 0+),   A(n)

Sensitivity to εS and εT

LHC:  pp →  e ν + X n → p e ν 

18



Up quark 

W boson

Down quark

Up quark 

W boson

New virtual 
particle Down quark

Precision tests with weak 
charged currents 



εL,R 
εL,S,P,T 

dj

ui

dj

ui

1/Λ2 1/Λ2 

dj

uig Vij

g

 GF(β) ~ GF(μ) Vij  ~1/v2 Vij
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Charged current at low energy:  ‘β decays’

• In the SM,  W exchange  ⇒  only “V-A” + Cabibbo and lepton universality

Cabibbo-Kobayashi-Maskawa Lepton Flavor Universality (LFU)

Cabibbo Universality 

εΓ ~ (v/Λ)2   

εL,R 



εL,R 
εL,S,P,T 

dj

ui

dj

ui

1/Λ2 1/Λ2 

dj

uig Vij

g

 GF(β) ~ GF(μ) Vij  ~1/v2 Vij

12

Charged current at low energy:  ‘β decays’

• In the SM,  W exchange  ⇒  only “V-A” + Cabibbo and lepton universality

• New physics can spoil universality.  With current precision of 0.1-0.01% we can probe Λ > 10 TeV   

δVus/Vus ~ 0.2%  δVud/Vud ~ 0.02%  δVub/Vub ~ 5% 

~1.5 ⨉10-5~0.05 ~0..95 Re/μ = Γ (π→eν)/Γ(π→μν) 

Physics Case 1: Test LFUV at precision of theory
• Lepton Flavor Universality test in

This just demands to be tested better!  A clean generic way to look 
for new physics.    Theory vs Experiment in high precision test.

Will be (by far) the most precise test of Lepton Flavor Universality

15 x worse than theory

4

Current Expt. Avg.

SM Theory

Goal of PIONEER

exp 4
/

exp
/

Current Result (PDG):  R (1.2327 0.0023) 10  ( 0.19%)

( 0.09%

)

0.9990 0.0009
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Cabibbo universality tests

13

Channel-dependent 
effective CKM element

Hadronic matrix 
element

Radiative corrections:
(α/π)~ 2.⨉ 10-3

Extract Vud=CosθC and  Vus=SinθC  from meson, neutron & nuclear decays



Cabibbo universality tests

13

Channel-dependent 
effective CKM element

Hadronic matrix 
element

Radiative corrections:
(α/π)~ 2.⨉ 10-3

Calculable coefficients BSM effective couplings 

Extract Vud=CosθC and  Vus=SinθC  from meson, neutron & nuclear decays



with uncertainty entirely dominated by experiment [22]. A
competitive determination requires a dedicated experimental
campaign, as planned at the PIONEER experiment [26].

The best information on Vus comes from kaon decays, K`2 =
K ! `⌫` and K`3 = K ! ⇡`⌫`. The former is typically ana-
lyzed by normalizing to ⇡`2 decays [27], leading to a constraint
on Vus/Vud, while K`3 decays give direct access to Vus when the
corresponding form factor is provided from lattice QCD [28].
Details of the global fit to kaon decays, as well as the input
for decay constants, form factors, and radiative corrections, are
discussed in Sec. 2, leading to

Vus

Vud

�����
K`2/⇡`2

= 0.23108(23)exp(42)FK/F⇡ (16)IB[51]total,

VK`3
us = 0.22330(35)exp(39) f+ (8)IB[53]total, (7)

where the errors refer to experiment, lattice input for the matrix
elements, and isospin-breaking corrections, respectively. To-
gether with the constraints on Vud, these bands give rise to the
situation depicted in Fig. 1: on the one hand, there is a ten-
sion between the best fit and CKM unitarity, but another ten-
sion, arising entirely from meson decays, is due to the fact that
the K`2 and K`3 constraints intersect away from the unitarity
circle. Additional information on Vus can be derived from ⌧
decays [29, 30], but given the larger errors [31, 32] we will
continue to focus on the kaon sector.

The main point of this Letter is that given the various ten-
sions in the Vud–Vus plane, there is urgent need for additional
information on the compatibility of K`2 and K`3 data, especially
when it comes to interpreting either of the tensions (CKM uni-
tarity and K`2 versus K`3) in terms of physics beyond the SM
(BSM). In particular, the data base for K`2 is completely dom-
inated by a single experiment [33], and at the same time the
global fit to all kaon data displays a relatively poor fit quality.
All these points could be scrutinized by a new measurement of
the Kµ3/Kµ2 branching fraction at the level of a few permil, as
possible at the NA62 experiment. Further, once the experimen-
tal situation is clarified, more robust interpretations of the en-
suing tensions will be possible, especially regarding the role of
right-handed currents both in the strange and non-strange sec-
tor. To make the case for the proposed measurement of the
Kµ3/Kµ2 branching fraction, we first discuss in detail its impact
on the global fit to kaon data and the implications for CKM uni-
tarity in Sec. 2. The consequences for physics beyond the SM
are addressed in Sec. 3, before we conclude in Sec. 4.

2. Global fit to kaon data and implications for CKM uni-
tarity

The current values for Vus and Vus/Vud given in Eq. (7) are
obtained from a global fit to kaon decays [34–37], updated
to include the latest measurements, radiative corrections, and
hadronic matrix elements. In particular, the fit includes data on
KS decays from Refs. [38–44], on KL decays from Refs. [45–
56], and on charged-kaon decays from Refs. [33, 57–70]. Since
we focus on the impact of a new Kµ3/Kµ2 measurement, e.g.,
at NA62, we reproduce the details of the charged kaon fit in

0.960 0.965 0.970 0.975
0.220

0.222

0.224

0.226

0.228

V

us

Figure 1: Constraints in the Vud–Vus plane. The partially overlapping vertical
bands correspond to V0+!0+

ud (leftmost, red) and Vn, best
ud (rightmost, violet). The

horizontal band (green) corresponds to VK`3
us . The diagonal band (blue) corre-

sponds to (Vus/Vud)K`2/⇡`2 . The unitarity circle is denoted by the black solid
line. The 68% C.L. ellipse from a fit to all four constraints is depicted in yel-
low (Vud = 0.97378(26), Vus = 0.22422(36), �2/dof = 6.4/2, p-value 4.1%),
it deviates from the unitarity line by 2.8�. Note that the significance tends to
increase in case ⌧ decays are included.

Table 1, where, however, the value for Vus from K`3 decays in-
cludes all charge channels, accounting for correlations among
them. The extraction of Vus from K`3 decays requires further in-
put on the respective form factors, which are taken in the disper-
sive parameterization from Ref. [71], constrained by data from
Refs. [72–78]. This leaves form-factor normalizations, decay
constants, and isospin-breaking corrections in both K`2 and K`3
decays.

For K`2 we follow the established convention to consider the
ratio to ⇡`2 decays [27] (pion lifetime [62, 79–83] and branch-
ing fraction [84–87] are taken from Ref. [12]), since in this ratio
certain structure-dependent radiative corrections [88, 89] cancel
and only the ratio of decay constants FK/F⇡ needs to be pro-
vided. We use the isospin-breaking corrections from Ref. [90]
together with the Nf = 2 + 1 + 1 isospin-limit ratio of de-
cay constants FK/F⇡ = 1.1978(22) [91–94], where this aver-
age accounts for statistical and systematic correlations between
the results, some of which make use of the same lattice en-
sembles. For K`3 decays we use the radiative corrections from
Refs. [95–97] (in line with the earlier calculations [98, 99]), the
strong isospin-breaking correction �SU(2) = 0.0252(11) from
Refs. [98, 100] evaluated with the Nf = 2 + 1 + 1 quark-mass
double ratio Q = 22.5(5) and ratio ms/mud = 27.23(10), both
from Ref. [28] (the value of Q is consistent with Q = 22.1(7)
from ⌘ ! 3⇡ [101] and Q = 22.4(3) from the Cottingham
approach [102]), and the form-factor normalization f+(0) =
0.9698(17) [103, 104]. This global fit then defines the cur-

2

Vus

Vud

 K→
 μν 

/ π→
 μν 

 

(0.22%)

K→ πlν (0.25%)

unitarityNeutron (0.043%)
0+ → 0+ (0.031%)

14

VC-Crivellin-Hoferichter-Moulson  2208.11707  
[and references therein, including FLAG21]

• Bands should intersect in a single region and that region 
should overlap with the unitarity circle

• ~3σ problem even in meson sector (Kl2 vs Kl3)

• ~3σ effect in global fit (ΔCKM= −1.48(53) ⨉10-3)

The Cabibbo Angle Anomaly

ΔCKM = |Vud|2 + |Vus|2  + |Vub|2 - 1
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• Expected experimental improvement:  

• neutron decay  (will match nominal nuclear uncertainty)

• pion beta decay (6x to 10x at PIONEER phases II, III)

• new Kμ3/Kμ2 BR measurement at NA62 

• Expected theoretical scrutiny  

• Lattice:  K→π vector f.f.  and  rad. corr. for Kl3

• EFT for neutron and nuclei, with goal δΔRC ~ 2⨉ 10-4 

• Ab-initio nuclear structure calculations

• …. 

• Possible BSM explanations  

The Cabibbo Angle Anomaly
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Table 1, where, however, the value for Vus from K`3 decays in-
cludes all charge channels, accounting for correlations among
them. The extraction of Vus from K`3 decays requires further in-
put on the respective form factors, which are taken in the disper-
sive parameterization from Ref. [71], constrained by data from
Refs. [72–78]. This leaves form-factor normalizations, decay
constants, and isospin-breaking corrections in both K`2 and K`3
decays.

For K`2 we follow the established convention to consider the
ratio to ⇡`2 decays [27] (pion lifetime [62, 79–83] and branch-
ing fraction [84–87] are taken from Ref. [12]), since in this ratio
certain structure-dependent radiative corrections [88, 89] cancel
and only the ratio of decay constants FK/F⇡ needs to be pro-
vided. We use the isospin-breaking corrections from Ref. [90]
together with the Nf = 2 + 1 + 1 isospin-limit ratio of de-
cay constants FK/F⇡ = 1.1978(22) [91–94], where this aver-
age accounts for statistical and systematic correlations between
the results, some of which make use of the same lattice en-
sembles. For K`3 decays we use the radiative corrections from
Refs. [95–97] (in line with the earlier calculations [98, 99]), the
strong isospin-breaking correction �SU(2) = 0.0252(11) from
Refs. [98, 100] evaluated with the Nf = 2 + 1 + 1 quark-mass
double ratio Q = 22.5(5) and ratio ms/mud = 27.23(10), both
from Ref. [28] (the value of Q is consistent with Q = 22.1(7)
from ⌘ ! 3⇡ [101] and Q = 22.4(3) from the Cottingham
approach [102]), and the form-factor normalization f+(0) =
0.9698(17) [103, 104]. This global fit then defines the cur-
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• neutron decay  (will match nominal nuclear uncertainty)

• pion beta decay (6x to 10x at PIONEER phases II, III)

• new Kμ3/Kμ2 BR measurement at NA62 
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• EFT for neutron and nuclei, with goal δΔRC ~ 2⨉ 10-4 

• Ab-initio nuclear structure calculations

• …. 

• Possible BSM explanations  

Will discuss in the SMEFT framework

The Cabibbo Angle Anomaly

with uncertainty entirely dominated by experiment [22]. A
competitive determination requires a dedicated experimental
campaign, as planned at the PIONEER experiment [26].

The best information on Vus comes from kaon decays, K`2 =
K ! `⌫` and K`3 = K ! ⇡`⌫`. The former is typically ana-
lyzed by normalizing to ⇡`2 decays [27], leading to a constraint
on Vus/Vud, while K`3 decays give direct access to Vus when the
corresponding form factor is provided from lattice QCD [28].
Details of the global fit to kaon decays, as well as the input
for decay constants, form factors, and radiative corrections, are
discussed in Sec. 2, leading to

Vus

Vud

�����
K`2/⇡`2

= 0.23108(23)exp(42)FK/F⇡ (16)IB[51]total,

VK`3
us = 0.22330(35)exp(39) f+ (8)IB[53]total, (7)

where the errors refer to experiment, lattice input for the matrix
elements, and isospin-breaking corrections, respectively. To-
gether with the constraints on Vud, these bands give rise to the
situation depicted in Fig. 1: on the one hand, there is a ten-
sion between the best fit and CKM unitarity, but another ten-
sion, arising entirely from meson decays, is due to the fact that
the K`2 and K`3 constraints intersect away from the unitarity
circle. Additional information on Vus can be derived from ⌧
decays [29, 30], but given the larger errors [31, 32] we will
continue to focus on the kaon sector.

The main point of this Letter is that given the various ten-
sions in the Vud–Vus plane, there is urgent need for additional
information on the compatibility of K`2 and K`3 data, especially
when it comes to interpreting either of the tensions (CKM uni-
tarity and K`2 versus K`3) in terms of physics beyond the SM
(BSM). In particular, the data base for K`2 is completely dom-
inated by a single experiment [33], and at the same time the
global fit to all kaon data displays a relatively poor fit quality.
All these points could be scrutinized by a new measurement of
the Kµ3/Kµ2 branching fraction at the level of a few permil, as
possible at the NA62 experiment. Further, once the experimen-
tal situation is clarified, more robust interpretations of the en-
suing tensions will be possible, especially regarding the role of
right-handed currents both in the strange and non-strange sec-
tor. To make the case for the proposed measurement of the
Kµ3/Kµ2 branching fraction, we first discuss in detail its impact
on the global fit to kaon data and the implications for CKM uni-
tarity in Sec. 2. The consequences for physics beyond the SM
are addressed in Sec. 3, before we conclude in Sec. 4.

2. Global fit to kaon data and implications for CKM uni-
tarity

The current values for Vus and Vus/Vud given in Eq. (7) are
obtained from a global fit to kaon decays [34–37], updated
to include the latest measurements, radiative corrections, and
hadronic matrix elements. In particular, the fit includes data on
KS decays from Refs. [38–44], on KL decays from Refs. [45–
56], and on charged-kaon decays from Refs. [33, 57–70]. Since
we focus on the impact of a new Kµ3/Kµ2 measurement, e.g.,
at NA62, we reproduce the details of the charged kaon fit in
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Figure 1: Constraints in the Vud–Vus plane. The partially overlapping vertical
bands correspond to V0+!0+

ud (leftmost, red) and Vn, best
ud (rightmost, violet). The

horizontal band (green) corresponds to VK`3
us . The diagonal band (blue) corre-

sponds to (Vus/Vud)K`2/⇡`2 . The unitarity circle is denoted by the black solid
line. The 68% C.L. ellipse from a fit to all four constraints is depicted in yel-
low (Vud = 0.97378(26), Vus = 0.22422(36), �2/dof = 6.4/2, p-value 4.1%),
it deviates from the unitarity line by 2.8�. Note that the significance tends to
increase in case ⌧ decays are included.

Table 1, where, however, the value for Vus from K`3 decays in-
cludes all charge channels, accounting for correlations among
them. The extraction of Vus from K`3 decays requires further in-
put on the respective form factors, which are taken in the disper-
sive parameterization from Ref. [71], constrained by data from
Refs. [72–78]. This leaves form-factor normalizations, decay
constants, and isospin-breaking corrections in both K`2 and K`3
decays.

For K`2 we follow the established convention to consider the
ratio to ⇡`2 decays [27] (pion lifetime [62, 79–83] and branch-
ing fraction [84–87] are taken from Ref. [12]), since in this ratio
certain structure-dependent radiative corrections [88, 89] cancel
and only the ratio of decay constants FK/F⇡ needs to be pro-
vided. We use the isospin-breaking corrections from Ref. [90]
together with the Nf = 2 + 1 + 1 isospin-limit ratio of de-
cay constants FK/F⇡ = 1.1978(22) [91–94], where this aver-
age accounts for statistical and systematic correlations between
the results, some of which make use of the same lattice en-
sembles. For K`3 decays we use the radiative corrections from
Refs. [95–97] (in line with the earlier calculations [98, 99]), the
strong isospin-breaking correction �SU(2) = 0.0252(11) from
Refs. [98, 100] evaluated with the Nf = 2 + 1 + 1 quark-mass
double ratio Q = 22.5(5) and ratio ms/mud = 27.23(10), both
from Ref. [28] (the value of Q is consistent with Q = 22.1(7)
from ⌘ ! 3⇡ [101] and Q = 22.4(3) from the Cottingham
approach [102]), and the form-factor normalization f+(0) =
0.9698(17) [103, 104]. This global fit then defines the cur-
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To connect UV physics to beta decays, use EFT
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• Leading (dim-6) new physics effects 
are encoded in 5 quark-level 
operators (up to flavor indices) 

• Quark-level version of Lee-Yang 
effective Lagrangian

• Start with GeV scale effective Lagrangian
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µ(1� �5)d

+ ✏
ab
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with uncertainty entirely dominated by experiment [22]. A
competitive determination requires a dedicated experimental
campaign, as planned at the PIONEER experiment [26].

The best information on Vus comes from kaon decays, K`2 =
K ! `⌫` and K`3 = K ! ⇡`⌫`. The former is typically ana-
lyzed by normalizing to ⇡`2 decays [27], leading to a constraint
on Vus/Vud, while K`3 decays give direct access to Vus when the
corresponding form factor is provided from lattice QCD [28].
Details of the global fit to kaon decays, as well as the input
for decay constants, form factors, and radiative corrections, are
discussed in Sec. 2, leading to

Vus

Vud

�����
K`2/⇡`2

= 0.23108(23)exp(42)FK/F⇡ (16)IB[51]total,

VK`3
us = 0.22330(35)exp(39) f+ (8)IB[53]total, (7)

where the errors refer to experiment, lattice input for the matrix
elements, and isospin-breaking corrections, respectively. To-
gether with the constraints on Vud, these bands give rise to the
situation depicted in Fig. 1: on the one hand, there is a ten-
sion between the best fit and CKM unitarity, but another ten-
sion, arising entirely from meson decays, is due to the fact that
the K`2 and K`3 constraints intersect away from the unitarity
circle. Additional information on Vus can be derived from ⌧
decays [29, 30], but given the larger errors [31, 32] we will
continue to focus on the kaon sector.

The main point of this Letter is that given the various ten-
sions in the Vud–Vus plane, there is urgent need for additional
information on the compatibility of K`2 and K`3 data, especially
when it comes to interpreting either of the tensions (CKM uni-
tarity and K`2 versus K`3) in terms of physics beyond the SM
(BSM). In particular, the data base for K`2 is completely dom-
inated by a single experiment [33], and at the same time the
global fit to all kaon data displays a relatively poor fit quality.
All these points could be scrutinized by a new measurement of
the Kµ3/Kµ2 branching fraction at the level of a few permil, as
possible at the NA62 experiment. Further, once the experimen-
tal situation is clarified, more robust interpretations of the en-
suing tensions will be possible, especially regarding the role of
right-handed currents both in the strange and non-strange sec-
tor. To make the case for the proposed measurement of the
Kµ3/Kµ2 branching fraction, we first discuss in detail its impact
on the global fit to kaon data and the implications for CKM uni-
tarity in Sec. 2. The consequences for physics beyond the SM
are addressed in Sec. 3, before we conclude in Sec. 4.

2. Global fit to kaon data and implications for CKM uni-
tarity

The current values for Vus and Vus/Vud given in Eq. (7) are
obtained from a global fit to kaon decays [34–37], updated
to include the latest measurements, radiative corrections, and
hadronic matrix elements. In particular, the fit includes data on
KS decays from Refs. [38–44], on KL decays from Refs. [45–
56], and on charged-kaon decays from Refs. [33, 57–70]. Since
we focus on the impact of a new Kµ3/Kµ2 measurement, e.g.,
at NA62, we reproduce the details of the charged kaon fit in
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Figure 1: Constraints in the Vud–Vus plane. The partially overlapping vertical
bands correspond to V0+!0+

ud (leftmost, red) and Vn, best
ud (rightmost, violet). The

horizontal band (green) corresponds to VK`3
us . The diagonal band (blue) corre-

sponds to (Vus/Vud)K`2/⇡`2 . The unitarity circle is denoted by the black solid
line. The 68% C.L. ellipse from a fit to all four constraints is depicted in yel-
low (Vud = 0.97378(26), Vus = 0.22422(36), �2/dof = 6.4/2, p-value 4.1%),
it deviates from the unitarity line by 2.8�. Note that the significance tends to
increase in case ⌧ decays are included.

Table 1, where, however, the value for Vus from K`3 decays in-
cludes all charge channels, accounting for correlations among
them. The extraction of Vus from K`3 decays requires further in-
put on the respective form factors, which are taken in the disper-
sive parameterization from Ref. [71], constrained by data from
Refs. [72–78]. This leaves form-factor normalizations, decay
constants, and isospin-breaking corrections in both K`2 and K`3
decays.

For K`2 we follow the established convention to consider the
ratio to ⇡`2 decays [27] (pion lifetime [62, 79–83] and branch-
ing fraction [84–87] are taken from Ref. [12]), since in this ratio
certain structure-dependent radiative corrections [88, 89] cancel
and only the ratio of decay constants FK/F⇡ needs to be pro-
vided. We use the isospin-breaking corrections from Ref. [90]
together with the Nf = 2 + 1 + 1 isospin-limit ratio of de-
cay constants FK/F⇡ = 1.1978(22) [91–94], where this aver-
age accounts for statistical and systematic correlations between
the results, some of which make use of the same lattice en-
sembles. For K`3 decays we use the radiative corrections from
Refs. [95–97] (in line with the earlier calculations [98, 99]), the
strong isospin-breaking correction �SU(2) = 0.0252(11) from
Refs. [98, 100] evaluated with the Nf = 2 + 1 + 1 quark-mass
double ratio Q = 22.5(5) and ratio ms/mud = 27.23(10), both
from Ref. [28] (the value of Q is consistent with Q = 22.1(7)
from ⌘ ! 3⇡ [101] and Q = 22.4(3) from the Cottingham
approach [102]), and the form-factor normalization f+(0) =
0.9698(17) [103, 104]. This global fit then defines the cur-
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with uncertainty entirely dominated by experiment [22]. A
competitive determination requires a dedicated experimental
campaign, as planned at the PIONEER experiment [26].

The best information on Vus comes from kaon decays, K`2 =
K ! `⌫` and K`3 = K ! ⇡`⌫`. The former is typically ana-
lyzed by normalizing to ⇡`2 decays [27], leading to a constraint
on Vus/Vud, while K`3 decays give direct access to Vus when the
corresponding form factor is provided from lattice QCD [28].
Details of the global fit to kaon decays, as well as the input
for decay constants, form factors, and radiative corrections, are
discussed in Sec. 2, leading to
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= 0.23108(23)exp(42)FK/F⇡ (16)IB[51]total,

VK`3
us = 0.22330(35)exp(39) f+ (8)IB[53]total, (7)

where the errors refer to experiment, lattice input for the matrix
elements, and isospin-breaking corrections, respectively. To-
gether with the constraints on Vud, these bands give rise to the
situation depicted in Fig. 1: on the one hand, there is a ten-
sion between the best fit and CKM unitarity, but another ten-
sion, arising entirely from meson decays, is due to the fact that
the K`2 and K`3 constraints intersect away from the unitarity
circle. Additional information on Vus can be derived from ⌧
decays [29, 30], but given the larger errors [31, 32] we will
continue to focus on the kaon sector.

The main point of this Letter is that given the various ten-
sions in the Vud–Vus plane, there is urgent need for additional
information on the compatibility of K`2 and K`3 data, especially
when it comes to interpreting either of the tensions (CKM uni-
tarity and K`2 versus K`3) in terms of physics beyond the SM
(BSM). In particular, the data base for K`2 is completely dom-
inated by a single experiment [33], and at the same time the
global fit to all kaon data displays a relatively poor fit quality.
All these points could be scrutinized by a new measurement of
the Kµ3/Kµ2 branching fraction at the level of a few permil, as
possible at the NA62 experiment. Further, once the experimen-
tal situation is clarified, more robust interpretations of the en-
suing tensions will be possible, especially regarding the role of
right-handed currents both in the strange and non-strange sec-
tor. To make the case for the proposed measurement of the
Kµ3/Kµ2 branching fraction, we first discuss in detail its impact
on the global fit to kaon data and the implications for CKM uni-
tarity in Sec. 2. The consequences for physics beyond the SM
are addressed in Sec. 3, before we conclude in Sec. 4.

2. Global fit to kaon data and implications for CKM uni-
tarity

The current values for Vus and Vus/Vud given in Eq. (7) are
obtained from a global fit to kaon decays [34–37], updated
to include the latest measurements, radiative corrections, and
hadronic matrix elements. In particular, the fit includes data on
KS decays from Refs. [38–44], on KL decays from Refs. [45–
56], and on charged-kaon decays from Refs. [33, 57–70]. Since
we focus on the impact of a new Kµ3/Kµ2 measurement, e.g.,
at NA62, we reproduce the details of the charged kaon fit in
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increase in case ⌧ decays are included.

Table 1, where, however, the value for Vus from K`3 decays in-
cludes all charge channels, accounting for correlations among
them. The extraction of Vus from K`3 decays requires further in-
put on the respective form factors, which are taken in the disper-
sive parameterization from Ref. [71], constrained by data from
Refs. [72–78]. This leaves form-factor normalizations, decay
constants, and isospin-breaking corrections in both K`2 and K`3
decays.

For K`2 we follow the established convention to consider the
ratio to ⇡`2 decays [27] (pion lifetime [62, 79–83] and branch-
ing fraction [84–87] are taken from Ref. [12]), since in this ratio
certain structure-dependent radiative corrections [88, 89] cancel
and only the ratio of decay constants FK/F⇡ needs to be pro-
vided. We use the isospin-breaking corrections from Ref. [90]
together with the Nf = 2 + 1 + 1 isospin-limit ratio of de-
cay constants FK/F⇡ = 1.1978(22) [91–94], where this aver-
age accounts for statistical and systematic correlations between
the results, some of which make use of the same lattice en-
sembles. For K`3 decays we use the radiative corrections from
Refs. [95–97] (in line with the earlier calculations [98, 99]), the
strong isospin-breaking correction �SU(2) = 0.0252(11) from
Refs. [98, 100] evaluated with the Nf = 2 + 1 + 1 quark-mass
double ratio Q = 22.5(5) and ratio ms/mud = 27.23(10), both
from Ref. [28] (the value of Q is consistent with Q = 22.1(7)
from ⌘ ! 3⇡ [101] and Q = 22.4(3) from the Cottingham
approach [102]), and the form-factor normalization f+(0) =
0.9698(17) [103, 104]. This global fit then defines the cur-
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Right-handed quark couplings

• Right-handed currents (in the ‘ud’ and ‘us' sectors)

• CKM elements from vector (axial) channels are shifted by  1+εR  (1-εR) ⇒   Vus/Vud ,  Vud and  Vus  shift in 

anti-correlated way,  can resolve all tensions! 
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ē�µ(1� �5)⌫` · ū�
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Unveiling R-handed quark currents?

ments by almost 0.5�, an e↵ect that would increase further for
the 0.2% scenario. In this case, the significance of the tension
in �(3)

CKM, the measure directly derived from kaon decays, would
increase or decrease by more than 1�, demonstrating that a new
precision measurement of the Kµ3/Kµ2 branching fraction really
has the potential to either resolve or substantially corroborate
the tension between the K`2 and K`3 CKM-element determina-
tions. Once the experimental situation in the kaon sector is clar-
ified, possible BSM interpretations become much more robust,
as we discuss in the subsequent section.

3. Constraints on physics beyond the Standard Model

The current tension with CKM unitarity has triggered re-
newed interest in possible BSM explanations [107, 108], in-
cluding interpretations in terms of vector-like quarks [109–
111] and leptons [112, 113], as modifications of the Fermi
constant [114, 115], in the context of lepton flavor universal-
ity [116–121], and even allowing for a correlation with di-
electron searches at the LHC [122, 123]. Here, we illustrate
the impact of our proposed Kµ3/Kµ2 measurement via the con-
straints on right-handed currents [32, 124–126], which can not
only address the tension between � and kaon decays, but also
between K`2 and K`3. This discussion becomes most transpar-
ent in terms of the �(i)

CKM introduced in Eq. (8).
In general, a single parameter is not su�cient to explain both

tensions, as they are governed by a-priori independent oper-
ators, and we therefore introduce two parameters ✏R, ✏(s)

R (or
equivalently ✏R and �✏R ⌘ ✏(s)

R � ✏R, normalized as in Ref. [32])
to quantify right-handed currents in the non-strange and strange
sectors, respectively. Working at first order in ✏, the CKM ele-
ments in Eq. (8) as extracted from the (vector-current mediated)
three-particle decays are contaminated by 1 + ✏, the ones from
the (axial-current mediated) two-particle decays by 1 � ✏, re-
sulting in

�(1)
CKM = 2✏R + 2�✏RV2

us,

�(2)
CKM = 2✏R � 2�✏RV2

us,

�(3)
CKM = 2✏R + 2�✏R

�
2 � V2
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�
. (9)

The corresponding constraints are shown in Fig. 2 and point
to non-zero values for both ✏R and �✏R. ✏R can be isolated by
taking the average of �(1)

CKM and �(2)
CKM, while �✏R is obtained

from the combination
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Using current input from Eqs. (5) and (7), one obtains:

✏R = �0.69(27) ⇥ 10�3 [2.5�],

�✏R = �3.9(1.6) ⇥ 10�3 [2.4�]. (11)

With a projected measurement of the Kµ3/Kµ2 branching ratio
at 0.2% level at 2� above the current measurement, the above

Figure 2: Constraints in the �✏R–✏R plane from the �(i)
CKM introduced in Eq. (8).

The bands with positive slope (red) correspond to �(2)
CKM. The bands with small

negative slope (blue) correspond to �(1)
CKM, while the bands with steep negative

slope (green) correspond to �(3)
CKM. The filled bands reflect the current situa-

tion (11), the long-dashed ones the +2� scenario (12), and the short-dashed
ones the opposite case (13). Note that in each case the three bands essentially
overlap by construction, since Vud , Vus, subject to the unitarity constraint, and
the BSM contamination via �✏R, ✏R, amount to three free parameters. The main
impact of the proposed new measurement of the Kµ3/Kµ2 branching fraction
thus concerns a corresponding shift in the �(3)

CKM band if the ±2� scenarios
were realized.

numbers change to

✏R = �0.67(27) ⇥ 10�3 [2.5�],

�✏R = �1.8(1.6) ⇥ 10�3 [1.1�], (12)

while a future measurement at 0.2% with central value 2� be-
low the current one would give

✏R = �0.70(27) ⇥ 10�3 [2.6�],

�✏R = �5.7(1.6) ⇥ 10�3 [3.5�]. (13)

This shows that the proposed measurement would have a signif-
icant impact on revealing or further constraining right-handed
charged currents involving strange quarks. In particular, the
non-vanishing value of ✏R is mainly driven by the �-decay ob-
servables, while the goal of the new Kµ3/Kµ2 input would be
a conclusive answer to the question whether or not further
strangeness right-handed currents need to be invoked. Here,
the sensitivity of �✏R to the di↵erent scenarios reflects similar
changes in �(3)

CKM as observed in Table 1.
We note here that other probes of ✏R and �✏R are currently

less constraining and are not reported in Fig. 2. In particular, ✏R
can be determined from the comparison of the experimentally
measured axial charge � = gA/gV and its value computed in
lattice QCD [28, 127, 128], up to a recently uncovered electro-
magnetic correction [129]. This results in ✏R = �0.2(1.2)%.
Similarly, assuming a high-scale origin for the right-handed
couplings and writing the operator in an SU(2) ⇥ U(1) invariant
form, one obtains constraints from associated Higgs production
at the few-percent level [125].

A similar analysis could be performed in terms of pseu-
doscalar couplings ✏P, ✏(s)

P , which only a↵ect the axial-current
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precision measurement of the Kµ3/Kµ2 branching fraction really
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the tension between the K`2 and K`3 CKM-element determina-
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ified, possible BSM interpretations become much more robust,
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the impact of our proposed Kµ3/Kµ2 measurement via the con-
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Unveiling R-handed quark currents?

ments by almost 0.5�, an e↵ect that would increase further for
the 0.2% scenario. In this case, the significance of the tension
in �(3)

CKM, the measure directly derived from kaon decays, would
increase or decrease by more than 1�, demonstrating that a new
precision measurement of the Kµ3/Kµ2 branching fraction really
has the potential to either resolve or substantially corroborate
the tension between the K`2 and K`3 CKM-element determina-
tions. Once the experimental situation in the kaon sector is clar-
ified, possible BSM interpretations become much more robust,
as we discuss in the subsequent section.

3. Constraints on physics beyond the Standard Model

The current tension with CKM unitarity has triggered re-
newed interest in possible BSM explanations [107, 108], in-
cluding interpretations in terms of vector-like quarks [109–
111] and leptons [112, 113], as modifications of the Fermi
constant [114, 115], in the context of lepton flavor universal-
ity [116–121], and even allowing for a correlation with di-
electron searches at the LHC [122, 123]. Here, we illustrate
the impact of our proposed Kµ3/Kµ2 measurement via the con-
straints on right-handed currents [32, 124–126], which can not
only address the tension between � and kaon decays, but also
between K`2 and K`3. This discussion becomes most transpar-
ent in terms of the �(i)

CKM introduced in Eq. (8).
In general, a single parameter is not su�cient to explain both

tensions, as they are governed by a-priori independent oper-
ators, and we therefore introduce two parameters ✏R, ✏(s)
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equivalently ✏R and �✏R ⌘ ✏(s)
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to quantify right-handed currents in the non-strange and strange
sectors, respectively. Working at first order in ✏, the CKM ele-
ments in Eq. (8) as extracted from the (vector-current mediated)
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sulting in

�(1)
CKM = 2✏R + 2�✏RV2

us,

�(2)
CKM = 2✏R � 2�✏RV2

us,

�(3)
CKM = 2✏R + 2�✏R

�
2 � V2

us
�
. (9)

The corresponding constraints are shown in Fig. 2 and point
to non-zero values for both ✏R and �✏R. ✏R can be isolated by
taking the average of �(1)
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CKM, while �✏R is obtained
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the BSM contamination via �✏R, ✏R, amount to three free parameters. The main
impact of the proposed new measurement of the Kµ3/Kµ2 branching fraction
thus concerns a corresponding shift in the �(3)

CKM band if the ±2� scenarios
were realized.
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ē�µ(1� �5)⌫` · ū�
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• Tree-level LEFT-SMEFT (dim-6) matching at 

scale μW ~ 246 GeV 

• Leading-log SMEFT (dim-6) running between Λ 

and μW is known 

W. Dekens, P, Stoffer 1908.05295 

M. Dawid, VC, W. Dekens 2402.06723

R. Alonso, E. Jenkins, A. Manohar, M. Trott, 
1308.2627, 1310.4838, 1312. 2014 
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εL,R   originate from SU(2)xU(1) 
invariant vertex corrections

Weak scale effective Lagrangian (SMEFT)
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Can be generated by
 WL-WR mixing in Left-Right symmetric models 

or by exchange of vector-like  quarks

1 : X3

QG fABCGAν
µ GBρ

ν GCµ
ρ

QG̃ fABCG̃Aν
µ GBρ

ν GCµ
ρ

QW ϵIJKW Iν
µ W Jρ

ν WKµ
ρ

Q
W̃

ϵIJKW̃ Iν
µ W Jρ

ν WKµ
ρ

2 : H6

QH (H†H)3

3 : H4D2

QH! (H†H)!(H†H)

QHD

(
H†DµH

)∗ (
H†DµH

)

5 : ψ2H3 + h.c.

QeH (H†H)(l̄perH)

QuH (H†H)(q̄purH̃)

QdH (H†H)(q̄pdrH)

4 : X2H2

QHG H†HGA
µνG

Aµν

QHG̃ H†H G̃A
µνG

Aµν

QHW H†HW I
µνW

Iµν

Q
HW̃

H†H W̃ I
µνW

Iµν

QHB H†H BµνBµν

QHB̃ H†H B̃µνBµν

QHWB H†τIH W I
µνB

µν

Q
HW̃B

H†τIH W̃ I
µνB

µν

6 : ψ2XH + h.c.

QeW (l̄pσµνer)τIHW I
µν

QeB (l̄pσµνer)HBµν

QuG (q̄pσµνTAur)H̃ GA
µν

QuW (q̄pσµνur)τIH̃ W I
µν

QuB (q̄pσµνur)H̃ Bµν

QdG (q̄pσµνTAdr)H GA
µν

QdW (q̄pσµνdr)τIH W I
µν

QdB (q̄pσµνdr)H Bµν

7 : ψ2H2D

Q(1)
Hl (H†i

←→
D µH)(l̄pγµlr)

Q(3)
Hl (H†i

←→
D I

µH)(l̄pτIγµlr)

QHe (H†i
←→
D µH)(ēpγµer)

Q(1)
Hq (H†i

←→
D µH)(q̄pγµqr)

Q(3)
Hq (H†i

←→
D I

µH)(q̄pτIγµqr)

QHu (H†i
←→
D µH)(ūpγµur)

QHd (H†i
←→
D µH)(d̄pγµdr)

QHud + h.c. i(H̃†DµH)(ūpγµdr)

8 : (L̄L)(L̄L)

Qll (l̄pγµlr)(l̄sγµlt)

Q(1)
qq (q̄pγµqr)(q̄sγµqt)

Q(3)
qq (q̄pγµτIqr)(q̄sγµτIqt)

Q(1)
lq (l̄pγµlr)(q̄sγµqt)

Q(3)
lq (l̄pγµτI lr)(q̄sγµτIqt)

8 : (R̄R)(R̄R)

Qee (ēpγµer)(ēsγµet)

Quu (ūpγµur)(ūsγµut)

Qdd (d̄pγµdr)(d̄sγµdt)

Qeu (ēpγµer)(ūsγµut)

Qed (ēpγµer)(d̄sγµdt)

Q(1)
ud (ūpγµur)(d̄sγµdt)

Q(8)
ud (ūpγµTAur)(d̄sγµTAdt)

8 : (L̄L)(R̄R)

Qle (l̄pγµlr)(ēsγµet)

Qlu (l̄pγµlr)(ūsγµut)

Qld (l̄pγµlr)(d̄sγµdt)

Qqe (q̄pγµqr)(ēsγµet)

Q(1)
qu (q̄pγµqr)(ūsγµut)

Q(8)
qu (q̄pγµTAqr)(ūsγµTAut)

Q(1)
qd (q̄pγµqr)(d̄sγµdt)

Q(8)
qd (q̄pγµTAqr)(d̄sγµTAdt)

8 : (L̄R)(R̄L) + h.c.

Qledq (l̄jper)(d̄sqtj)

8 : (L̄R)(L̄R) + h.c.

Q(1)
quqd (q̄jpur)ϵjk(q̄ks dt)

Q(8)
quqd (q̄jpT

Aur)ϵjk(q̄ksT
Adt)

Q(1)
lequ (l̄jper)ϵjk(q̄

k
sut)

Q(3)
lequ (l̄jpσµνer)ϵjk(q̄

k
sσ

µνut)
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D µH)(ūpγµur)

QHd (H†i
←→
D µH)(d̄pγµdr)

QHud + h.c. i(H̃†DµH)(ūpγµdr)
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Q(8)
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Aur)ϵjk(q̄ksT
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moment operators,

µ
d

dµ
CeB

pr
=

1

16π2

[

4g1Nc (yu + yq)C
(3)
lequ
prst

[Yu]ts

]

+ . . .

µ
d

dµ
CeW

pr
=

1

16π2

[

−2g2NcC
(3)
lequ
prst

[Yu]ts

]

+ . . .

µ
d

dµ
CuB

pr
=

1

16π2

[

4g1(ye + yl)C
(3)
lequ
stpr

[Ye]ts

]

+ . . .

µ
d

dµ
CuW

pr
=

1

16π2

[

−2g2C
(3)
lequ
stpr

[Ye]ts

]

+ . . . , (5.6)

where . . . denotes contributions from other operators, and yi are the U(1) hypercharges.

Eq. (5.6) is an example of non-zero mixing between “tree” and “loop” operators. Eq. (5.6)

cannot be cancelled by other terms, since there are no redundant operators in the basis we

use. The operator Q(3)
lequ can be Fierzed into scalar form (α is a color index),

Q(3)
lequ = (l̄jpσµνer)ϵjk(q̄

k
sσ

µνut) = −4(l̄jper)ϵjk(q̄kαs uαt)− 8(l̄jpuαt)ϵjk(q̄
kα
s er)

= −4Q(1)
lequ − 8(l̄jpuαt)ϵjk(q̄

kα
s er) (5.7)

and can be generated by the tree-level exchange of (3,2, 7/6) scalars, i.e. those with the

quantum numbers of a leptoquark doublet. Tree-level exchange of leptoquarks and heavy

(1,2, 1/2) scalars with H-field quantum numbers can generate any combination of Q(1)
lequ and

Q(3)
lequ.

6 λ,λ2,λy2 Contributions to the L(6) Anomalous Dimension Matrix

The computation of the λ,λ2,λy2 anomalous dimensions has some subtleties. An example

is the graph in Fig. 4 which generates, in addition to the QH! and QHD operators, the

EOM operator EH! of Eq. (3.1). Eq. (3.2) eliminates EH! in terms of our standard basis of

operators, so Fig. 4 contributes to the running of the H6 coefficient CH , as well as the ψ2H3

coefficients CuH , CdH and CeH , and to the running of the dimension four SM coefficients in

Eq. (4.4). Fig. 4 is an example of how terms get shuffled around by the EOM. Fig. 4 has only

external H fields, but contributes to the running of the ψ2H3 operators.

The equations presented below are not the complete RGE, but only the λ,λ2,λy2 terms.

The remaining terms are lengthy, and will be given a subsequent publication. The evolution

of the H6 coefficient is

µ
d

dµ
CH =

1

16π2
[
108λCH − 160λ2 CH! + 48λ2 CHD

]
+

8λ

16π2
η1 +

8λ

16π2
η2 (6.1)

where η1,2 are given in Eq. (4.5). The diagonal CH − CH term 108λ/(16π2) has a large

numerical coefficient, and is independent of the normalization chosen for the H6 operator,
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Building blocks

Gauge  
invariance 

1 : X3

QG fABCGAν
µ GBρ

ν GCµ
ρ

QG̃ fABCG̃Aν
µ GBρ

ν GCµ
ρ

QW ϵIJKW Iν
µ W Jρ

ν WKµ
ρ

Q
W̃

ϵIJKW̃ Iν
µ W Jρ

ν WKµ
ρ

2 : H6

QH (H†H)3

3 : H4D2

QH! (H†H)!(H†H)

QHD

(
H†DµH

)∗ (
H†DµH

)

5 : ψ2H3 + h.c.

QeH (H†H)(l̄perH)

QuH (H†H)(q̄purH̃)

QdH (H†H)(q̄pdrH)

4 : X2H2

QHG H†HGA
µνG

Aµν

QHG̃ H†H G̃A
µνG

Aµν

QHW H†HW I
µνW

Iµν

Q
HW̃

H†H W̃ I
µνW

Iµν

QHB H†H BµνBµν

QHB̃ H†H B̃µνBµν

QHWB H†τIH W I
µνB

µν

Q
HW̃B

H†τIH W̃ I
µνB

µν

6 : ψ2XH + h.c.

QeW (l̄pσµνer)τIHW I
µν

QeB (l̄pσµνer)HBµν

QuG (q̄pσµνTAur)H̃ GA
µν

QuW (q̄pσµνur)τIH̃ W I
µν

QuB (q̄pσµνur)H̃ Bµν

QdG (q̄pσµνTAdr)H GA
µν

QdW (q̄pσµνdr)τIH W I
µν

QdB (q̄pσµνdr)H Bµν

7 : ψ2H2D

Q(1)
Hl (H†i

←→
D µH)(l̄pγµlr)

Q(3)
Hl (H†i

←→
D I

µH)(l̄pτIγµlr)

QHe (H†i
←→
D µH)(ēpγµer)

Q(1)
Hq (H†i

←→
D µH)(q̄pγµqr)

Q(3)
Hq (H†i

←→
D I

µH)(q̄pτIγµqr)

QHu (H†i
←→
D µH)(ūpγµur)

QHd (H†i
←→
D µH)(d̄pγµdr)

QHud + h.c. i(H̃†DµH)(ūpγµdr)

8 : (L̄L)(L̄L)

Qll (l̄pγµlr)(l̄sγµlt)

Q(1)
qq (q̄pγµqr)(q̄sγµqt)

Q(3)
qq (q̄pγµτIqr)(q̄sγµτIqt)

Q(1)
lq (l̄pγµlr)(q̄sγµqt)

Q(3)
lq (l̄pγµτI lr)(q̄sγµτIqt)

8 : (R̄R)(R̄R)

Qee (ēpγµer)(ēsγµet)

Quu (ūpγµur)(ūsγµut)

Qdd (d̄pγµdr)(d̄sγµdt)

Qeu (ēpγµer)(ūsγµut)

Qed (ēpγµer)(d̄sγµdt)

Q(1)
ud (ūpγµur)(d̄sγµdt)

Q(8)
ud (ūpγµTAur)(d̄sγµTAdt)

8 : (L̄L)(R̄R)

Qle (l̄pγµlr)(ēsγµet)

Qlu (l̄pγµlr)(ūsγµut)

Qld (l̄pγµlr)(d̄sγµdt)

Qqe (q̄pγµqr)(ēsγµet)

Q(1)
qu (q̄pγµqr)(ūsγµut)

Q(8)
qu (q̄pγµTAqr)(ūsγµTAut)

Q(1)
qd (q̄pγµqr)(d̄sγµdt)

Q(8)
qd (q̄pγµTAqr)(d̄sγµTAdt)

8 : (L̄R)(R̄L) + h.c.

Qledq (l̄jper)(d̄sqtj)

8 : (L̄R)(L̄R) + h.c.

Q(1)
quqd (q̄jpur)ϵjk(q̄ks dt)

Q(8)
quqd (q̄jpT

Aur)ϵjk(q̄ksT
Adt)

Q(1)
lequ (l̄jper)ϵjk(q̄

k
sut)

Q(3)
lequ (l̄jpσµνer)ϵjk(q̄

k
sσ

µνut)
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8 : (L̄L)(L̄L)

Qll (l̄pγµlr)(l̄sγµlt)

Q(1)
qq (q̄pγµqr)(q̄sγµqt)

Q(3)
qq (q̄pγµτIqr)(q̄sγµτIqt)

Q(1)
lq (l̄pγµlr)(q̄sγµqt)

Q(3)
lq (l̄pγµτI lr)(q̄sγµτIqt)

8 : (R̄R)(R̄R)
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Q(1)
qd (q̄pγµqr)(d̄sγµdt)

Q(8)
qd (q̄pγµTAqr)(d̄sγµTAdt)

8 : (L̄R)(R̄L) + h.c.

Qledq (l̄jper)(d̄sqtj)
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moment operators,
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CeB

pr
=
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4g1Nc (yu + yq)C
(3)
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CeW
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=
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+ . . . , (5.6)

where . . . denotes contributions from other operators, and yi are the U(1) hypercharges.

Eq. (5.6) is an example of non-zero mixing between “tree” and “loop” operators. Eq. (5.6)

cannot be cancelled by other terms, since there are no redundant operators in the basis we

use. The operator Q(3)
lequ can be Fierzed into scalar form (α is a color index),

Q(3)
lequ = (l̄jpσµνer)ϵjk(q̄

k
sσ

µνut) = −4(l̄jper)ϵjk(q̄kαs uαt)− 8(l̄jpuαt)ϵjk(q̄
kα
s er)

= −4Q(1)
lequ − 8(l̄jpuαt)ϵjk(q̄

kα
s er) (5.7)

and can be generated by the tree-level exchange of (3,2, 7/6) scalars, i.e. those with the

quantum numbers of a leptoquark doublet. Tree-level exchange of leptoquarks and heavy

(1,2, 1/2) scalars with H-field quantum numbers can generate any combination of Q(1)
lequ and

Q(3)
lequ.

6 λ,λ2,λy2 Contributions to the L(6) Anomalous Dimension Matrix

The computation of the λ,λ2,λy2 anomalous dimensions has some subtleties. An example

is the graph in Fig. 4 which generates, in addition to the QH! and QHD operators, the

EOM operator EH! of Eq. (3.1). Eq. (3.2) eliminates EH! in terms of our standard basis of

operators, so Fig. 4 contributes to the running of the H6 coefficient CH , as well as the ψ2H3

coefficients CuH , CdH and CeH , and to the running of the dimension four SM coefficients in

Eq. (4.4). Fig. 4 is an example of how terms get shuffled around by the EOM. Fig. 4 has only

external H fields, but contributes to the running of the ψ2H3 operators.

The equations presented below are not the complete RGE, but only the λ,λ2,λy2 terms.

The remaining terms are lengthy, and will be given a subsequent publication. The evolution

of the H6 coefficient is

µ
d

dµ
CH =

1

16π2
[
108λCH − 160λ2 CH! + 48λ2 CHD

]
+

8λ

16π2
η1 +

8λ

16π2
η2 (6.1)

where η1,2 are given in Eq. (4.5). The diagonal CH − CH term 108λ/(16π2) has a large

numerical coefficient, and is independent of the normalization chosen for the H6 operator,
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1 : X3

QG fABCGAν
µ GBρ

ν GCµ
ρ

QG̃ fABCG̃Aν
µ GBρ

ν GCµ
ρ

QW ϵIJKW Iν
µ W Jρ

ν WKµ
ρ

Q
W̃

ϵIJKW̃ Iν
µ W Jρ

ν WKµ
ρ

2 : H6

QH (H†H)3

3 : H4D2

QH! (H†H)!(H†H)

QHD

(
H†DµH

)∗ (
H†DµH

)

5 : ψ2H3 + h.c.

QeH (H†H)(l̄perH)

QuH (H†H)(q̄purH̃)

QdH (H†H)(q̄pdrH)

4 : X2H2

QHG H†HGA
µνG

Aµν

QHG̃ H†H G̃A
µνG

Aµν

QHW H†HW I
µνW

Iµν

Q
HW̃

H†H W̃ I
µνW

Iµν

QHB H†H BµνBµν

QHB̃ H†H B̃µνBµν

QHWB H†τIH W I
µνB

µν

Q
HW̃B

H†τIH W̃ I
µνB

µν

6 : ψ2XH + h.c.

QeW (l̄pσµνer)τIHW I
µν

QeB (l̄pσµνer)HBµν

QuG (q̄pσµνTAur)H̃ GA
µν

QuW (q̄pσµνur)τIH̃ W I
µν

QuB (q̄pσµνur)H̃ Bµν

QdG (q̄pσµνTAdr)H GA
µν

QdW (q̄pσµνdr)τIH W I
µν

QdB (q̄pσµνdr)H Bµν

7 : ψ2H2D

Q(1)
Hl (H†i

←→
D µH)(l̄pγµlr)

Q(3)
Hl (H†i

←→
D I

µH)(l̄pτIγµlr)

QHe (H†i
←→
D µH)(ēpγµer)

Q(1)
Hq (H†i

←→
D µH)(q̄pγµqr)

Q(3)
Hq (H†i

←→
D I

µH)(q̄pτIγµqr)

QHu (H†i
←→
D µH)(ūpγµur)

QHd (H†i
←→
D µH)(d̄pγµdr)

QHud + h.c. i(H̃†DµH)(ūpγµdr)

8 : (L̄L)(L̄L)

Qll (l̄pγµlr)(l̄sγµlt)

Q(1)
qq (q̄pγµqr)(q̄sγµqt)

Q(3)
qq (q̄pγµτIqr)(q̄sγµτIqt)

Q(1)
lq (l̄pγµlr)(q̄sγµqt)

Q(3)
lq (l̄pγµτI lr)(q̄sγµτIqt)

8 : (R̄R)(R̄R)

Qee (ēpγµer)(ēsγµet)

Quu (ūpγµur)(ūsγµut)

Qdd (d̄pγµdr)(d̄sγµdt)

Qeu (ēpγµer)(ūsγµut)

Qed (ēpγµer)(d̄sγµdt)

Q(1)
ud (ūpγµur)(d̄sγµdt)

Q(8)
ud (ūpγµTAur)(d̄sγµTAdt)

8 : (L̄L)(R̄R)

Qle (l̄pγµlr)(ēsγµet)

Qlu (l̄pγµlr)(ūsγµut)

Qld (l̄pγµlr)(d̄sγµdt)

Qqe (q̄pγµqr)(ēsγµet)

Q(1)
qu (q̄pγµqr)(ūsγµut)

Q(8)
qu (q̄pγµTAqr)(ūsγµTAut)

Q(1)
qd (q̄pγµqr)(d̄sγµdt)

Q(8)
qd (q̄pγµTAqr)(d̄sγµTAdt)

8 : (L̄R)(R̄L) + h.c.

Qledq (l̄jper)(d̄sqtj)

8 : (L̄R)(L̄R) + h.c.

Q(1)
quqd (q̄jpur)ϵjk(q̄ks dt)

Q(8)
quqd (q̄jpT

Aur)ϵjk(q̄ksT
Adt)

Q(1)
lequ (l̄jper)ϵjk(q̄

k
sut)

Q(3)
lequ (l̄jpσµνer)ϵjk(q̄

k
sσ

µνut)

Table 1. The 59 independent dimension-six operators built from Standard Model fields which conserve
baryon number, as given in Ref. [2]. The operators are divided into eight classes: X3, H6, etc.
Operators with +h.c. in the table heading also have hermitian conjugates, as does the ψ2H2D operator
QHud. The subscripts p, r, s, t are flavor indices, The notation is described in Sec. 2.
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1 : X3

QG fABCGAν
µ GBρ

ν GCµ
ρ

QG̃ fABCG̃Aν
µ GBρ

ν GCµ
ρ

QW ϵIJKW Iν
µ W Jρ

ν WKµ
ρ

Q
W̃

ϵIJKW̃ Iν
µ W Jρ

ν WKµ
ρ

2 : H6

QH (H†H)3

3 : H4D2

QH! (H†H)!(H†H)

QHD

(
H†DµH

)∗ (
H†DµH

)

5 : ψ2H3 + h.c.

QeH (H†H)(l̄perH)

QuH (H†H)(q̄purH̃)

QdH (H†H)(q̄pdrH)

4 : X2H2

QHG H†HGA
µνG

Aµν

QHG̃ H†H G̃A
µνG

Aµν

QHW H†HW I
µνW

Iµν

Q
HW̃

H†H W̃ I
µνW

Iµν

QHB H†H BµνBµν

QHB̃ H†H B̃µνBµν

QHWB H†τIH W I
µνB

µν

Q
HW̃B

H†τIH W̃ I
µνB

µν

6 : ψ2XH + h.c.

QeW (l̄pσµνer)τIHW I
µν

QeB (l̄pσµνer)HBµν

QuG (q̄pσµνTAur)H̃ GA
µν

QuW (q̄pσµνur)τIH̃ W I
µν

QuB (q̄pσµνur)H̃ Bµν

QdG (q̄pσµνTAdr)H GA
µν

QdW (q̄pσµνdr)τIH W I
µν

QdB (q̄pσµνdr)H Bµν

7 : ψ2H2D

Q(1)
Hl (H†i

←→
D µH)(l̄pγµlr)

Q(3)
Hl (H†i

←→
D I

µH)(l̄pτIγµlr)

QHe (H†i
←→
D µH)(ēpγµer)

Q(1)
Hq (H†i

←→
D µH)(q̄pγµqr)

Q(3)
Hq (H†i

←→
D I

µH)(q̄pτIγµqr)

QHu (H†i
←→
D µH)(ūpγµur)

QHd (H†i
←→
D µH)(d̄pγµdr)

QHud + h.c. i(H̃†DµH)(ūpγµdr)

8 : (L̄L)(L̄L)

Qll (l̄pγµlr)(l̄sγµlt)

Q(1)
qq (q̄pγµqr)(q̄sγµqt)

Q(3)
qq (q̄pγµτIqr)(q̄sγµτIqt)

Q(1)
lq (l̄pγµlr)(q̄sγµqt)

Q(3)
lq (l̄pγµτI lr)(q̄sγµτIqt)

8 : (R̄R)(R̄R)

Qee (ēpγµer)(ēsγµet)

Quu (ūpγµur)(ūsγµut)

Qdd (d̄pγµdr)(d̄sγµdt)

Qeu (ēpγµer)(ūsγµut)

Qed (ēpγµer)(d̄sγµdt)

Q(1)
ud (ūpγµur)(d̄sγµdt)

Q(8)
ud (ūpγµTAur)(d̄sγµTAdt)

8 : (L̄L)(R̄R)

Qle (l̄pγµlr)(ēsγµet)

Qlu (l̄pγµlr)(ūsγµut)

Qld (l̄pγµlr)(d̄sγµdt)

Qqe (q̄pγµqr)(ēsγµet)

Q(1)
qu (q̄pγµqr)(ūsγµut)

Q(8)
qu (q̄pγµTAqr)(ūsγµTAut)

Q(1)
qd (q̄pγµqr)(d̄sγµdt)

Q(8)
qd (q̄pγµTAqr)(d̄sγµTAdt)

8 : (L̄R)(R̄L) + h.c.

Qledq (l̄jper)(d̄sqtj)

8 : (L̄R)(L̄R) + h.c.

Q(1)
quqd (q̄jpur)ϵjk(q̄ks dt)

Q(8)
quqd (q̄jpT

Aur)ϵjk(q̄ksT
Adt)

Q(1)
lequ (l̄jper)ϵjk(q̄

k
sut)

Q(3)
lequ (l̄jpσµνer)ϵjk(q̄

k
sσ

µνut)

Table 1. The 59 independent dimension-six operators built from Standard Model fields which conserve
baryon number, as given in Ref. [2]. The operators are divided into eight classes: X3, H6, etc.
Operators with +h.c. in the table heading also have hermitian conjugates, as does the ψ2H2D operator
QHud. The subscripts p, r, s, t are flavor indices, The notation is described in Sec. 2.
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εL 

εR  

Belfatto-Berezhiani 2103.05549 
Belfatto-Trifinopoulos 2302.14097

Dekens, Andreoli, de Vries, Mereghetti, 
Oosterhof, 2107.10852 



εL,R   originate from SU(2)xU(1) 
invariant vertex corrections

Weak scale effective Lagrangian (SMEFT)

23

1 : X3

QG fABCGAν
µ GBρ

ν GCµ
ρ

QG̃ fABCG̃Aν
µ GBρ

ν GCµ
ρ

QW ϵIJKW Iν
µ W Jρ

ν WKµ
ρ

Q
W̃

ϵIJKW̃ Iν
µ W Jρ

ν WKµ
ρ

2 : H6

QH (H†H)3

3 : H4D2

QH! (H†H)!(H†H)

QHD

(
H†DµH

)∗ (
H†DµH

)

5 : ψ2H3 + h.c.

QeH (H†H)(l̄perH)

QuH (H†H)(q̄purH̃)

QdH (H†H)(q̄pdrH)

4 : X2H2

QHG H†HGA
µνG

Aµν

QHG̃ H†H G̃A
µνG

Aµν

QHW H†HW I
µνW

Iµν

Q
HW̃

H†H W̃ I
µνW

Iµν

QHB H†H BµνBµν

QHB̃ H†H B̃µνBµν

QHWB H†τIH W I
µνB

µν

Q
HW̃B

H†τIH W̃ I
µνB

µν

6 : ψ2XH + h.c.

QeW (l̄pσµνer)τIHW I
µν

QeB (l̄pσµνer)HBµν

QuG (q̄pσµνTAur)H̃ GA
µν

QuW (q̄pσµνur)τIH̃ W I
µν

QuB (q̄pσµνur)H̃ Bµν

QdG (q̄pσµνTAdr)H GA
µν

QdW (q̄pσµνdr)τIH W I
µν

QdB (q̄pσµνdr)H Bµν

7 : ψ2H2D

Q(1)
Hl (H†i

←→
D µH)(l̄pγµlr)

Q(3)
Hl (H†i

←→
D I

µH)(l̄pτIγµlr)

QHe (H†i
←→
D µH)(ēpγµer)

Q(1)
Hq (H†i

←→
D µH)(q̄pγµqr)

Q(3)
Hq (H†i

←→
D I

µH)(q̄pτIγµqr)

QHu (H†i
←→
D µH)(ūpγµur)

QHd (H†i
←→
D µH)(d̄pγµdr)

QHud + h.c. i(H̃†DµH)(ūpγµdr)

8 : (L̄L)(L̄L)

Qll (l̄pγµlr)(l̄sγµlt)

Q(1)
qq (q̄pγµqr)(q̄sγµqt)

Q(3)
qq (q̄pγµτIqr)(q̄sγµτIqt)

Q(1)
lq (l̄pγµlr)(q̄sγµqt)

Q(3)
lq (l̄pγµτI lr)(q̄sγµτIqt)

8 : (R̄R)(R̄R)

Qee (ēpγµer)(ēsγµet)

Quu (ūpγµur)(ūsγµut)

Qdd (d̄pγµdr)(d̄sγµdt)

Qeu (ēpγµer)(ūsγµut)

Qed (ēpγµer)(d̄sγµdt)

Q(1)
ud (ūpγµur)(d̄sγµdt)

Q(8)
ud (ūpγµTAur)(d̄sγµTAdt)

8 : (L̄L)(R̄R)

Qle (l̄pγµlr)(ēsγµet)

Qlu (l̄pγµlr)(ūsγµut)

Qld (l̄pγµlr)(d̄sγµdt)

Qqe (q̄pγµqr)(ēsγµet)

Q(1)
qu (q̄pγµqr)(ūsγµut)

Q(8)
qu (q̄pγµTAqr)(ūsγµTAut)

Q(1)
qd (q̄pγµqr)(d̄sγµdt)

Q(8)
qd (q̄pγµTAqr)(d̄sγµTAdt)

8 : (L̄R)(R̄L) + h.c.

Qledq (l̄jper)(d̄sqtj)

8 : (L̄R)(L̄R) + h.c.

Q(1)
quqd (q̄jpur)ϵjk(q̄ks dt)

Q(8)
quqd (q̄jpT

Aur)ϵjk(q̄ksT
Adt)

Q(1)
lequ (l̄jper)ϵjk(q̄

k
sut)

Q(3)
lequ (l̄jpσµνer)ϵjk(q̄

k
sσ

µνut)
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µ GBρ

ν GCµ
ρ
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ν GCµ
ρ

QW ϵIJKW Iν
µ W Jρ
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µ W Jρ
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2 : H6

QH (H†H)3

3 : H4D2

QH! (H†H)!(H†H)

QHD

(
H†DµH

)∗ (
H†DµH

)

5 : ψ2H3 + h.c.

QeH (H†H)(l̄perH)

QuH (H†H)(q̄purH̃)

QdH (H†H)(q̄pdrH)
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µνG

Aµν

QHG̃ H†H G̃A
µνG

Aµν

QHW H†HW I
µνW

Iµν

Q
HW̃

H†H W̃ I
µνW

Iµν

QHB H†H BµνBµν

QHB̃ H†H B̃µνBµν

QHWB H†τIH W I
µνB

µν

Q
HW̃B

H†τIH W̃ I
µνB

µν

6 : ψ2XH + h.c.

QeW (l̄pσµνer)τIHW I
µν
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µν
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←→
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Qqe (q̄pγµqr)(ēsγµet)

Q(1)
qu (q̄pγµqr)(ūsγµut)

Q(8)
qu (q̄pγµTAqr)(ūsγµTAut)

Q(1)
qd (q̄pγµqr)(d̄sγµdt)

Q(8)
qd (q̄pγµTAqr)(d̄sγµTAdt)

8 : (L̄R)(R̄L) + h.c.

Qledq (l̄jper)(d̄sqtj)

8 : (L̄R)(L̄R) + h.c.

Q(1)
quqd (q̄jpur)ϵjk(q̄ks dt)

Q(8)
quqd (q̄jpT

Aur)ϵjk(q̄ksT
Adt)

Q(1)
lequ (l̄jper)ϵjk(q̄
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moment operators,

µ
d

dµ
CeB

pr
=

1

16π2

[

4g1Nc (yu + yq)C
(3)
lequ
prst

[Yu]ts

]

+ . . .

µ
d

dµ
CeW

pr
=

1

16π2

[

−2g2NcC
(3)
lequ
prst

[Yu]ts

]

+ . . .

µ
d

dµ
CuB

pr
=

1

16π2

[

4g1(ye + yl)C
(3)
lequ
stpr

[Ye]ts

]

+ . . .

µ
d

dµ
CuW

pr
=

1

16π2

[

−2g2C
(3)
lequ
stpr

[Ye]ts

]

+ . . . , (5.6)

where . . . denotes contributions from other operators, and yi are the U(1) hypercharges.

Eq. (5.6) is an example of non-zero mixing between “tree” and “loop” operators. Eq. (5.6)

cannot be cancelled by other terms, since there are no redundant operators in the basis we

use. The operator Q(3)
lequ can be Fierzed into scalar form (α is a color index),

Q(3)
lequ = (l̄jpσµνer)ϵjk(q̄

k
sσ

µνut) = −4(l̄jper)ϵjk(q̄kαs uαt)− 8(l̄jpuαt)ϵjk(q̄
kα
s er)

= −4Q(1)
lequ − 8(l̄jpuαt)ϵjk(q̄

kα
s er) (5.7)

and can be generated by the tree-level exchange of (3,2, 7/6) scalars, i.e. those with the

quantum numbers of a leptoquark doublet. Tree-level exchange of leptoquarks and heavy

(1,2, 1/2) scalars with H-field quantum numbers can generate any combination of Q(1)
lequ and

Q(3)
lequ.

6 λ,λ2,λy2 Contributions to the L(6) Anomalous Dimension Matrix

The computation of the λ,λ2,λy2 anomalous dimensions has some subtleties. An example

is the graph in Fig. 4 which generates, in addition to the QH! and QHD operators, the

EOM operator EH! of Eq. (3.1). Eq. (3.2) eliminates EH! in terms of our standard basis of

operators, so Fig. 4 contributes to the running of the H6 coefficient CH , as well as the ψ2H3

coefficients CuH , CdH and CeH , and to the running of the dimension four SM coefficients in

Eq. (4.4). Fig. 4 is an example of how terms get shuffled around by the EOM. Fig. 4 has only

external H fields, but contributes to the running of the ψ2H3 operators.

The equations presented below are not the complete RGE, but only the λ,λ2,λy2 terms.

The remaining terms are lengthy, and will be given a subsequent publication. The evolution

of the H6 coefficient is

µ
d

dµ
CH =

1

16π2
[
108λCH − 160λ2 CH! + 48λ2 CHD

]
+

8λ

16π2
η1 +

8λ

16π2
η2 (6.1)

where η1,2 are given in Eq. (4.5). The diagonal CH − CH term 108λ/(16π2) has a large

numerical coefficient, and is independent of the normalization chosen for the H6 operator,
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moment operators,

µ
d

dµ
CeB

pr
=

1

16π2

[

4g1Nc (yu + yq)C
(3)
lequ
prst

[Yu]ts

]

+ . . .

µ
d

dµ
CeW

pr
=

1

16π2

[

−2g2NcC
(3)
lequ
prst

[Yu]ts

]

+ . . .

µ
d

dµ
CuB

pr
=

1

16π2

[

4g1(ye + yl)C
(3)
lequ
stpr

[Ye]ts

]

+ . . .

µ
d

dµ
CuW

pr
=

1

16π2

[

−2g2C
(3)
lequ
stpr

[Ye]ts

]

+ . . . , (5.6)

where . . . denotes contributions from other operators, and yi are the U(1) hypercharges.

Eq. (5.6) is an example of non-zero mixing between “tree” and “loop” operators. Eq. (5.6)

cannot be cancelled by other terms, since there are no redundant operators in the basis we

use. The operator Q(3)
lequ can be Fierzed into scalar form (α is a color index),

Q(3)
lequ = (l̄jpσµνer)ϵjk(q̄

k
sσ

µνut) = −4(l̄jper)ϵjk(q̄kαs uαt)− 8(l̄jpuαt)ϵjk(q̄
kα
s er)

= −4Q(1)
lequ − 8(l̄jpuαt)ϵjk(q̄

kα
s er) (5.7)

and can be generated by the tree-level exchange of (3,2, 7/6) scalars, i.e. those with the

quantum numbers of a leptoquark doublet. Tree-level exchange of leptoquarks and heavy

(1,2, 1/2) scalars with H-field quantum numbers can generate any combination of Q(1)
lequ and

Q(3)
lequ.

6 λ,λ2,λy2 Contributions to the L(6) Anomalous Dimension Matrix

The computation of the λ,λ2,λy2 anomalous dimensions has some subtleties. An example

is the graph in Fig. 4 which generates, in addition to the QH! and QHD operators, the

EOM operator EH! of Eq. (3.1). Eq. (3.2) eliminates EH! in terms of our standard basis of

operators, so Fig. 4 contributes to the running of the H6 coefficient CH , as well as the ψ2H3

coefficients CuH , CdH and CeH , and to the running of the dimension four SM coefficients in

Eq. (4.4). Fig. 4 is an example of how terms get shuffled around by the EOM. Fig. 4 has only

external H fields, but contributes to the running of the ψ2H3 operators.

The equations presented below are not the complete RGE, but only the λ,λ2,λy2 terms.

The remaining terms are lengthy, and will be given a subsequent publication. The evolution

of the H6 coefficient is

µ
d

dµ
CH =

1

16π2
[
108λCH − 160λ2 CH! + 48λ2 CHD

]
+

8λ

16π2
η1 +

8λ

16π2
η2 (6.1)

where η1,2 are given in Eq. (4.5). The diagonal CH − CH term 108λ/(16π2) has a large

numerical coefficient, and is independent of the normalization chosen for the H6 operator,
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8 : (L̄L)(L̄L)

Qll (l̄pγµlr)(l̄sγµlt)

Q(1)
qq (q̄pγµqr)(q̄sγµqt)

Q(3)
qq (q̄pγµτIqr)(q̄sγµτIqt)

Q(1)
lq (l̄pγµlr)(q̄sγµqt)

Q(3)
lq (l̄pγµτI lr)(q̄sγµτIqt)

8 : (R̄R)(R̄R)
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Table 1. The 59 independent dimension-six operators built from Standard Model fields which conserve
baryon number, as given in Ref. [2]. The operators are divided into eight classes: X3, H6, etc.
Operators with +h.c. in the table heading also have hermitian conjugates, as does the ψ2H2D operator
QHud. The subscripts p, r, s, t are flavor indices, The notation is described in Sec. 2.
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where . . . denotes contributions from other operators, and yi are the U(1) hypercharges.

Eq. (5.6) is an example of non-zero mixing between “tree” and “loop” operators. Eq. (5.6)

cannot be cancelled by other terms, since there are no redundant operators in the basis we

use. The operator Q(3)
lequ can be Fierzed into scalar form (α is a color index),

Q(3)
lequ = (l̄jpσµνer)ϵjk(q̄

k
sσ

µνut) = −4(l̄jper)ϵjk(q̄kαs uαt)− 8(l̄jpuαt)ϵjk(q̄
kα
s er)

= −4Q(1)
lequ − 8(l̄jpuαt)ϵjk(q̄

kα
s er) (5.7)

and can be generated by the tree-level exchange of (3,2, 7/6) scalars, i.e. those with the

quantum numbers of a leptoquark doublet. Tree-level exchange of leptoquarks and heavy

(1,2, 1/2) scalars with H-field quantum numbers can generate any combination of Q(1)
lequ and

Q(3)
lequ.

6 λ,λ2,λy2 Contributions to the L(6) Anomalous Dimension Matrix

The computation of the λ,λ2,λy2 anomalous dimensions has some subtleties. An example

is the graph in Fig. 4 which generates, in addition to the QH! and QHD operators, the

EOM operator EH! of Eq. (3.1). Eq. (3.2) eliminates EH! in terms of our standard basis of

operators, so Fig. 4 contributes to the running of the H6 coefficient CH , as well as the ψ2H3

coefficients CuH , CdH and CeH , and to the running of the dimension four SM coefficients in

Eq. (4.4). Fig. 4 is an example of how terms get shuffled around by the EOM. Fig. 4 has only

external H fields, but contributes to the running of the ψ2H3 operators.

The equations presented below are not the complete RGE, but only the λ,λ2,λy2 terms.

The remaining terms are lengthy, and will be given a subsequent publication. The evolution

of the H6 coefficient is

µ
d

dµ
CH =

1

16π2
[
108λCH − 160λ2 CH! + 48λ2 CHD

]
+

8λ

16π2
η1 +

8λ

16π2
η2 (6.1)

where η1,2 are given in Eq. (4.5). The diagonal CH − CH term 108λ/(16π2) has a large

numerical coefficient, and is independent of the normalization chosen for the H6 operator,
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Table 1. The 59 independent dimension-six operators built from Standard Model fields which conserve
baryon number, as given in Ref. [2]. The operators are divided into eight classes: X3, H6, etc.
Operators with +h.c. in the table heading also have hermitian conjugates, as does the ψ2H2D operator
QHud. The subscripts p, r, s, t are flavor indices, The notation is described in Sec. 2.
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D µH)(ēp�µer) 7 3 3

Q(1)
Hq

(H†i
 !
D µH)(q̄p�µqr) 7 3 3

Q(3)
Hq

(H†i
 !
D I

µH)(q̄p⌧ I�µqr) 3 3 3

QHu (H†i
 !
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Table 1: The dimension-six SMEFT operators (in the Warsaw basis [43]) that are relevant
for our analysis, with subscripts p, r, s, t indicating weak-eigenstate generation indices. The
last three columns indicate which observables the operators contribute to. ‘L’ stands for the
neutron, nuclear, and meson decays discussed in Appendices B.2.1 and B.2.2; ‘EW’ stands for
the electroweak precision observables of Appendix B.1; ‘C’ stands for the pp! `` and pp! `⌫
processes discussed in Appendix B.3.
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D µH)(ēp�µer) 7 3 3

Q(1)
Hq

(H†i
 !
D µH)(q̄p�µqr) 7 3 3

Q(3)
Hq

(H†i
 !
D I

µH)(q̄p⌧ I�µqr) 3 3 3

QHu (H†i
 !
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D µH)(ūp�µur) 7 3 3

QHd (H†i
 !
D µH)(d̄p�µdr) 7 3 3

QHud + h.c. i( eH†DµH)(ūp�µdr) 3 7 3
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1 : X3

QG fABCGAν
µ GBρ

ν GCµ
ρ

QG̃ fABCG̃Aν
µ GBρ

ν GCµ
ρ

QW ϵIJKW Iν
µ W Jρ

ν WKµ
ρ

Q
W̃

ϵIJKW̃ Iν
µ W Jρ

ν WKµ
ρ

2 : H6

QH (H†H)3

3 : H4D2

QH! (H†H)!(H†H)

QHD

(
H†DµH

)∗ (
H†DµH

)

5 : ψ2H3 + h.c.

QeH (H†H)(l̄perH)

QuH (H†H)(q̄purH̃)

QdH (H†H)(q̄pdrH)

4 : X2H2

QHG H†HGA
µνG

Aµν

QHG̃ H†H G̃A
µνG

Aµν

QHW H†HW I
µνW

Iµν

Q
HW̃

H†H W̃ I
µνW

Iµν

QHB H†H BµνBµν

QHB̃ H†H B̃µνBµν

QHWB H†τIH W I
µνB

µν

Q
HW̃B

H†τIH W̃ I
µνB

µν

6 : ψ2XH + h.c.

QeW (l̄pσµνer)τIHW I
µν

QeB (l̄pσµνer)HBµν

QuG (q̄pσµνTAur)H̃ GA
µν

QuW (q̄pσµνur)τIH̃ W I
µν

QuB (q̄pσµνur)H̃ Bµν

QdG (q̄pσµνTAdr)H GA
µν

QdW (q̄pσµνdr)τIH W I
µν

QdB (q̄pσµνdr)H Bµν

7 : ψ2H2D

Q(1)
Hl (H†i

←→
D µH)(l̄pγµlr)

Q(3)
Hl (H†i

←→
D I

µH)(l̄pτIγµlr)

QHe (H†i
←→
D µH)(ēpγµer)

Q(1)
Hq (H†i

←→
D µH)(q̄pγµqr)

Q(3)
Hq (H†i

←→
D I

µH)(q̄pτIγµqr)

QHu (H†i
←→
D µH)(ūpγµur)

QHd (H†i
←→
D µH)(d̄pγµdr)

QHud + h.c. i(H̃†DµH)(ūpγµdr)

8 : (L̄L)(L̄L)

Qll (l̄pγµlr)(l̄sγµlt)

Q(1)
qq (q̄pγµqr)(q̄sγµqt)

Q(3)
qq (q̄pγµτIqr)(q̄sγµτIqt)

Q(1)
lq (l̄pγµlr)(q̄sγµqt)

Q(3)
lq (l̄pγµτI lr)(q̄sγµτIqt)

8 : (R̄R)(R̄R)

Qee (ēpγµer)(ēsγµet)

Quu (ūpγµur)(ūsγµut)

Qdd (d̄pγµdr)(d̄sγµdt)

Qeu (ēpγµer)(ūsγµut)

Qed (ēpγµer)(d̄sγµdt)

Q(1)
ud (ūpγµur)(d̄sγµdt)

Q(8)
ud (ūpγµTAur)(d̄sγµTAdt)

8 : (L̄L)(R̄R)

Qle (l̄pγµlr)(ēsγµet)

Qlu (l̄pγµlr)(ūsγµut)

Qld (l̄pγµlr)(d̄sγµdt)

Qqe (q̄pγµqr)(ēsγµet)

Q(1)
qu (q̄pγµqr)(ūsγµut)

Q(8)
qu (q̄pγµTAqr)(ūsγµTAut)

Q(1)
qd (q̄pγµqr)(d̄sγµdt)

Q(8)
qd (q̄pγµTAqr)(d̄sγµTAdt)

8 : (L̄R)(R̄L) + h.c.

Qledq (l̄jper)(d̄sqtj)

8 : (L̄R)(L̄R) + h.c.

Q(1)
quqd (q̄jpur)ϵjk(q̄ks dt)

Q(8)
quqd (q̄jpT

Aur)ϵjk(q̄ksT
Adt)

Q(1)
lequ (l̄jper)ϵjk(q̄

k
sut)

Q(3)
lequ (l̄jpσµνer)ϵjk(q̄

k
sσ

µνut)

Table 1. The 59 independent dimension-six operators built from Standard Model fields which conserve
baryon number, as given in Ref. [2]. The operators are divided into eight classes: X3, H6, etc.
Operators with +h.c. in the table heading also have hermitian conjugates, as does the ψ2H2D operator
QHud. The subscripts p, r, s, t are flavor indices, The notation is described in Sec. 2.
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ud (ūpγµTAur)(d̄sγµTAdt)

8 : (L̄L)(R̄R)

Qle (l̄pγµlr)(ēsγµet)
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Q(1)
qu (q̄pγµqr)(ūsγµut)
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Qdd (d̄pγµdr)(d̄sγµdt)
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8 : (L̄L)(L̄L)

Qll (l̄pγµlr)(l̄sγµlt)

Q(1)
qq (q̄pγµqr)(q̄sγµqt)

Q(3)
qq (q̄pγµτIqr)(q̄sγµτIqt)

Q(1)
lq (l̄pγµlr)(q̄sγµqt)

Q(3)
lq (l̄pγµτI lr)(q̄sγµτIqt)

8 : (R̄R)(R̄R)
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Qed (ēpγµer)(d̄sγµdt)

Q(1)
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where . . . denotes contributions from other operators, and yi are the U(1) hypercharges.

Eq. (5.6) is an example of non-zero mixing between “tree” and “loop” operators. Eq. (5.6)

cannot be cancelled by other terms, since there are no redundant operators in the basis we

use. The operator Q(3)
lequ can be Fierzed into scalar form (α is a color index),

Q(3)
lequ = (l̄jpσµνer)ϵjk(q̄

k
sσ

µνut) = −4(l̄jper)ϵjk(q̄kαs uαt)− 8(l̄jpuαt)ϵjk(q̄
kα
s er)

= −4Q(1)
lequ − 8(l̄jpuαt)ϵjk(q̄

kα
s er) (5.7)

and can be generated by the tree-level exchange of (3,2, 7/6) scalars, i.e. those with the

quantum numbers of a leptoquark doublet. Tree-level exchange of leptoquarks and heavy

(1,2, 1/2) scalars with H-field quantum numbers can generate any combination of Q(1)
lequ and

Q(3)
lequ.

6 λ,λ2,λy2 Contributions to the L(6) Anomalous Dimension Matrix

The computation of the λ,λ2,λy2 anomalous dimensions has some subtleties. An example

is the graph in Fig. 4 which generates, in addition to the QH! and QHD operators, the

EOM operator EH! of Eq. (3.1). Eq. (3.2) eliminates EH! in terms of our standard basis of

operators, so Fig. 4 contributes to the running of the H6 coefficient CH , as well as the ψ2H3

coefficients CuH , CdH and CeH , and to the running of the dimension four SM coefficients in

Eq. (4.4). Fig. 4 is an example of how terms get shuffled around by the EOM. Fig. 4 has only

external H fields, but contributes to the running of the ψ2H3 operators.

The equations presented below are not the complete RGE, but only the λ,λ2,λy2 terms.

The remaining terms are lengthy, and will be given a subsequent publication. The evolution

of the H6 coefficient is

µ
d

dµ
CH =

1

16π2
[
108λCH − 160λ2 CH! + 48λ2 CHD

]
+

8λ

16π2
η1 +

8λ

16π2
η2 (6.1)

where η1,2 are given in Eq. (4.5). The diagonal CH − CH term 108λ/(16π2) has a large

numerical coefficient, and is independent of the normalization chosen for the H6 operator,
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D µH)(ūpγµur)

QHd (H†i
←→
D µH)(d̄pγµdr)

QHud + h.c. i(H̃†DµH)(ūpγµdr)
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Qed (ēpγµer)(d̄sγµdt)

Q(1)
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D
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Hl
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 !
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Q(3)
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 !
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QHe (H†i
 !
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(L̄L)(L̄L)

Qll (l̄p�µlr)(l̄s�µlt) parameter shift (G
F
)

Q(1)
lq

(l̄p�µlr)(q̄s�µqt) 7 7 3

Q(3)
lq

(l̄p�µ⌧ I lr)(q̄s�µ⌧ Iqt) 3 7 3

(L̄R)(R̄L) + h.c.
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Q(3)
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(l̄jp�µ⌫er)✏jk(q̄ks�
µ⌫ut) 3 7 3

Table 1: The dimension-six SMEFT operators (in the Warsaw basis [43]) that are relevant
for our analysis, with subscripts p, r, s, t indicating weak-eigenstate generation indices. The
last three columns indicate which observables the operators contribute to. ‘L’ stands for the
neutron, nuclear, and meson decays discussed in Appendices B.2.1 and B.2.2; ‘EW’ stands for
the electroweak precision observables of Appendix B.1; ‘C’ stands for the pp! `` and pp! `⌫
processes discussed in Appendix B.3.
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D µH)(ūp�µur) 7 3 3

QHd (H†i
 !
D µH)(d̄p�µdr) 7 3 3

QHud + h.c. i( eH†DµH)(ūp�µdr) 3 7 3
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Contribute tp  pp →  eν+X and  pp →  e+e− +X  at the LHC

 εα ~10-3 -10-4  LHC:  pp → eν + X 

mT(GeV)

VC, Graesser, Gonzalez-Alonso   
1210.4553 

Alioli-Dekens-Girard-Mereghetti 1804.07407  
Gupta et al. 1806.09006 

Boughezal-Mereghetti-Petriello 
2106.05337 

…

  1706.06786

1 : X3

QG fABCGAν
µ GBρ

ν GCµ
ρ

QG̃ fABCG̃Aν
µ GBρ

ν GCµ
ρ

QW ϵIJKW Iν
µ W Jρ

ν WKµ
ρ

Q
W̃

ϵIJKW̃ Iν
µ W Jρ

ν WKµ
ρ

2 : H6

QH (H†H)3

3 : H4D2

QH! (H†H)!(H†H)

QHD

(
H†DµH

)∗ (
H†DµH

)

5 : ψ2H3 + h.c.

QeH (H†H)(l̄perH)

QuH (H†H)(q̄purH̃)

QdH (H†H)(q̄pdrH)

4 : X2H2

QHG H†HGA
µνG

Aµν

QHG̃ H†H G̃A
µνG

Aµν

QHW H†HW I
µνW

Iµν

Q
HW̃

H†H W̃ I
µνW

Iµν

QHB H†H BµνBµν

QHB̃ H†H B̃µνBµν

QHWB H†τIH W I
µνB

µν

Q
HW̃B

H†τIH W̃ I
µνB

µν

6 : ψ2XH + h.c.

QeW (l̄pσµνer)τIHW I
µν

QeB (l̄pσµνer)HBµν

QuG (q̄pσµνTAur)H̃ GA
µν

QuW (q̄pσµνur)τIH̃ W I
µν

QuB (q̄pσµνur)H̃ Bµν

QdG (q̄pσµνTAdr)H GA
µν

QdW (q̄pσµνdr)τIH W I
µν

QdB (q̄pσµνdr)H Bµν

7 : ψ2H2D

Q(1)
Hl (H†i

←→
D µH)(l̄pγµlr)

Q(3)
Hl (H†i

←→
D I

µH)(l̄pτIγµlr)

QHe (H†i
←→
D µH)(ēpγµer)

Q(1)
Hq (H†i

←→
D µH)(q̄pγµqr)

Q(3)
Hq (H†i

←→
D I

µH)(q̄pτIγµqr)

QHu (H†i
←→
D µH)(ūpγµur)

QHd (H†i
←→
D µH)(d̄pγµdr)

QHud + h.c. i(H̃†DµH)(ūpγµdr)

8 : (L̄L)(L̄L)

Qll (l̄pγµlr)(l̄sγµlt)

Q(1)
qq (q̄pγµqr)(q̄sγµqt)

Q(3)
qq (q̄pγµτIqr)(q̄sγµτIqt)

Q(1)
lq (l̄pγµlr)(q̄sγµqt)

Q(3)
lq (l̄pγµτI lr)(q̄sγµτIqt)

8 : (R̄R)(R̄R)

Qee (ēpγµer)(ēsγµet)

Quu (ūpγµur)(ūsγµut)

Qdd (d̄pγµdr)(d̄sγµdt)

Qeu (ēpγµer)(ūsγµut)

Qed (ēpγµer)(d̄sγµdt)

Q(1)
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Q(8)
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8 : (L̄R)(R̄L) + h.c.

Qledq (l̄jper)(d̄sqtj)

8 : (L̄R)(L̄R) + h.c.

Q(1)
quqd (q̄jpur)ϵjk(q̄ks dt)

Q(8)
quqd (q̄jpT

Aur)ϵjk(q̄ksT
Adt)

Q(1)
lequ (l̄jper)ϵjk(q̄

k
sut)

Q(3)
lequ (l̄jpσµνer)ϵjk(q̄

k
sσ

µνut)
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moment operators,

µ
d

dµ
CeB

pr
=

1

16π2

[

4g1Nc (yu + yq)C
(3)
lequ
prst

[Yu]ts

]

+ . . .

µ
d

dµ
CeW

pr
=

1

16π2

[

−2g2NcC
(3)
lequ
prst

[Yu]ts

]

+ . . .

µ
d

dµ
CuB

pr
=

1

16π2

[

4g1(ye + yl)C
(3)
lequ
stpr

[Ye]ts

]

+ . . .

µ
d

dµ
CuW

pr
=

1

16π2

[

−2g2C
(3)
lequ
stpr

[Ye]ts

]

+ . . . , (5.6)

where . . . denotes contributions from other operators, and yi are the U(1) hypercharges.

Eq. (5.6) is an example of non-zero mixing between “tree” and “loop” operators. Eq. (5.6)

cannot be cancelled by other terms, since there are no redundant operators in the basis we

use. The operator Q(3)
lequ can be Fierzed into scalar form (α is a color index),

Q(3)
lequ = (l̄jpσµνer)ϵjk(q̄

k
sσ

µνut) = −4(l̄jper)ϵjk(q̄kαs uαt)− 8(l̄jpuαt)ϵjk(q̄
kα
s er)

= −4Q(1)
lequ − 8(l̄jpuαt)ϵjk(q̄

kα
s er) (5.7)

and can be generated by the tree-level exchange of (3,2, 7/6) scalars, i.e. those with the

quantum numbers of a leptoquark doublet. Tree-level exchange of leptoquarks and heavy

(1,2, 1/2) scalars with H-field quantum numbers can generate any combination of Q(1)
lequ and

Q(3)
lequ.

6 λ,λ2,λy2 Contributions to the L(6) Anomalous Dimension Matrix

The computation of the λ,λ2,λy2 anomalous dimensions has some subtleties. An example

is the graph in Fig. 4 which generates, in addition to the QH! and QHD operators, the

EOM operator EH! of Eq. (3.1). Eq. (3.2) eliminates EH! in terms of our standard basis of

operators, so Fig. 4 contributes to the running of the H6 coefficient CH , as well as the ψ2H3

coefficients CuH , CdH and CeH , and to the running of the dimension four SM coefficients in

Eq. (4.4). Fig. 4 is an example of how terms get shuffled around by the EOM. Fig. 4 has only

external H fields, but contributes to the running of the ψ2H3 operators.

The equations presented below are not the complete RGE, but only the λ,λ2,λy2 terms.

The remaining terms are lengthy, and will be given a subsequent publication. The evolution

of the H6 coefficient is

µ
d

dµ
CH =

1

16π2
[
108λCH − 160λ2 CH! + 48λ2 CHD

]
+

8λ

16π2
η1 +

8λ

16π2
η2 (6.1)

where η1,2 are given in Eq. (4.5). The diagonal CH − CH term 108λ/(16π2) has a large

numerical coefficient, and is independent of the normalization chosen for the H6 operator,
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QW ϵIJKW Iν
µ W Jρ

ν WKµ
ρ
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D µH)(ūpγµur)

QHd (H†i
←→
D µH)(d̄pγµdr)

QHud + h.c. i(H̃†DµH)(ūpγµdr)
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Qed (ēpγµer)(d̄sγµdt)

Q(1)
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Q(8)
qu (q̄pγµTAqr)(ūsγµTAut)
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8 : (L̄L)(L̄L)

Qll (l̄pγµlr)(l̄sγµlt)

Q(1)
qq (q̄pγµqr)(q̄sγµqt)

Q(3)
qq (q̄pγµτIqr)(q̄sγµτIqt)

Q(1)
lq (l̄pγµlr)(q̄sγµqt)

Q(3)
lq (l̄pγµτI lr)(q̄sγµτIqt)

8 : (R̄R)(R̄R)
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moment operators,

µ
d

dµ
CeB

pr
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CeW

pr
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−2g2NcC
(3)
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[Yu]ts
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µ
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CuB
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4g1(ye + yl)C
(3)
lequ
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[Ye]ts

]
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µ
d
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CuW

pr
=

1

16π2

[

−2g2C
(3)
lequ
stpr

[Ye]ts

]

+ . . . , (5.6)

where . . . denotes contributions from other operators, and yi are the U(1) hypercharges.

Eq. (5.6) is an example of non-zero mixing between “tree” and “loop” operators. Eq. (5.6)

cannot be cancelled by other terms, since there are no redundant operators in the basis we

use. The operator Q(3)
lequ can be Fierzed into scalar form (α is a color index),

Q(3)
lequ = (l̄jpσµνer)ϵjk(q̄

k
sσ

µνut) = −4(l̄jper)ϵjk(q̄kαs uαt)− 8(l̄jpuαt)ϵjk(q̄
kα
s er)

= −4Q(1)
lequ − 8(l̄jpuαt)ϵjk(q̄

kα
s er) (5.7)

and can be generated by the tree-level exchange of (3,2, 7/6) scalars, i.e. those with the

quantum numbers of a leptoquark doublet. Tree-level exchange of leptoquarks and heavy

(1,2, 1/2) scalars with H-field quantum numbers can generate any combination of Q(1)
lequ and

Q(3)
lequ.

6 λ,λ2,λy2 Contributions to the L(6) Anomalous Dimension Matrix

The computation of the λ,λ2,λy2 anomalous dimensions has some subtleties. An example

is the graph in Fig. 4 which generates, in addition to the QH! and QHD operators, the

EOM operator EH! of Eq. (3.1). Eq. (3.2) eliminates EH! in terms of our standard basis of

operators, so Fig. 4 contributes to the running of the H6 coefficient CH , as well as the ψ2H3

coefficients CuH , CdH and CeH , and to the running of the dimension four SM coefficients in

Eq. (4.4). Fig. 4 is an example of how terms get shuffled around by the EOM. Fig. 4 has only

external H fields, but contributes to the running of the ψ2H3 operators.

The equations presented below are not the complete RGE, but only the λ,λ2,λy2 terms.

The remaining terms are lengthy, and will be given a subsequent publication. The evolution

of the H6 coefficient is

µ
d

dµ
CH =

1

16π2
[
108λCH − 160λ2 CH! + 48λ2 CHD

]
+

8λ

16π2
η1 +

8λ

16π2
η2 (6.1)

where η1,2 are given in Eq. (4.5). The diagonal CH − CH term 108λ/(16π2) has a large

numerical coefficient, and is independent of the normalization chosen for the H6 operator,
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µ GBρ
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QG̃ fABCG̃Aν
µ GBρ

ν GCµ
ρ

QW ϵIJKW Iν
µ W Jρ

ν WKµ
ρ

Q
W̃

ϵIJKW̃ Iν
µ W Jρ

ν WKµ
ρ
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7 : ψ2H2D

Q(1)
Hl (H†i
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D µH)(l̄pγµlr)

Q(3)
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QHe (H†i
←→
D µH)(ēpγµer)
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D µH)(ūpγµur)

QHd (H†i
←→
D µH)(d̄pγµdr)

QHud + h.c. i(H̃†DµH)(ūpγµdr)
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4
D
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QHD

�
H†DµH

�⇤ �
H†DµH

�
parameter shift (mZ)

X
2
H

2

QHWB H†⌧ IHW I
µ⌫B

µ⌫ parameter shift (sin ✓W )

 
2
H

2
D

Q(1)
Hl

(H†i
 !
D µH)(l̄p�µlr) 7 3 3

Q(3)
Hl

(H†i
 !
D I

µH)(l̄p⌧ I�µlr) 3 3 3

QHe (H†i
 !
D µH)(ēp�µer) 7 3 3
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 !
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D µH)(ūp�µur) 7 3 3

QHd (H†i
 !
D µH)(d̄p�µdr) 7 3 3

QHud + h.c. i( eH†DµH)(ūp�µdr) 3 7 3
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F
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Q(3)
lequ

(l̄jp�µ⌫er)✏jk(q̄ks�
µ⌫ut) 3 7 3

Table 1: The dimension-six SMEFT operators (in the Warsaw basis [43]) that are relevant
for our analysis, with subscripts p, r, s, t indicating weak-eigenstate generation indices. The
last three columns indicate which observables the operators contribute to. ‘L’ stands for the
neutron, nuclear, and meson decays discussed in Appendices B.2.1 and B.2.2; ‘EW’ stands for
the electroweak precision observables of Appendix B.1; ‘C’ stands for the pp! `` and pp! `⌫
processes discussed in Appendix B.3.

and �i =
q
1� ↵2Z2

i
, with Z the atomic number of the final-state nucleus. The Wilson coe�-

cients are given in terms of the ✏i that vanish in the SM, but are generally nonzero in SMEFT, see

7

Operators L EW C

H
4
D

2

QHD

�
H†DµH

�⇤ �
H†DµH

�
parameter shift (mZ)

X
2
H

2

QHWB H†⌧ IHW I
µ⌫B

µ⌫ parameter shift (sin ✓W )

 
2
H

2
D

Q(1)
Hl

(H†i
 !
D µH)(l̄p�µlr) 7 3 3

Q(3)
Hl

(H†i
 !
D I

µH)(l̄p⌧ I�µlr) 3 3 3

QHe (H†i
 !
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High Energy constraints

Can be probed at the LHC by associated Higgs + W production 
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1 : X3

QG fABCGAν
µ GBρ

ν GCµ
ρ

QG̃ fABCG̃Aν
µ GBρ

ν GCµ
ρ

QW ϵIJKW Iν
µ W Jρ

ν WKµ
ρ

Q
W̃

ϵIJKW̃ Iν
µ W Jρ

ν WKµ
ρ

2 : H6

QH (H†H)3

3 : H4D2

QH! (H†H)!(H†H)

QHD

(
H†DµH

)∗ (
H†DµH

)

5 : ψ2H3 + h.c.

QeH (H†H)(l̄perH)

QuH (H†H)(q̄purH̃)

QdH (H†H)(q̄pdrH)

4 : X2H2

QHG H†HGA
µνG

Aµν

QHG̃ H†H G̃A
µνG

Aµν

QHW H†HW I
µνW

Iµν

Q
HW̃

H†H W̃ I
µνW

Iµν

QHB H†H BµνBµν

QHB̃ H†H B̃µνBµν

QHWB H†τIH W I
µνB

µν

Q
HW̃B

H†τIH W̃ I
µνB

µν

6 : ψ2XH + h.c.

QeW (l̄pσµνer)τIHW I
µν

QeB (l̄pσµνer)HBµν

QuG (q̄pσµνTAur)H̃ GA
µν

QuW (q̄pσµνur)τIH̃ W I
µν

QuB (q̄pσµνur)H̃ Bµν

QdG (q̄pσµνTAdr)H GA
µν

QdW (q̄pσµνdr)τIH W I
µν

QdB (q̄pσµνdr)H Bµν

7 : ψ2H2D

Q(1)
Hl (H†i

←→
D µH)(l̄pγµlr)

Q(3)
Hl (H†i

←→
D I

µH)(l̄pτIγµlr)

QHe (H†i
←→
D µH)(ēpγµer)

Q(1)
Hq (H†i

←→
D µH)(q̄pγµqr)

Q(3)
Hq (H†i

←→
D I

µH)(q̄pτIγµqr)

QHu (H†i
←→
D µH)(ūpγµur)

QHd (H†i
←→
D µH)(d̄pγµdr)

QHud + h.c. i(H̃†DµH)(ūpγµdr)

8 : (L̄L)(L̄L)

Qll (l̄pγµlr)(l̄sγµlt)

Q(1)
qq (q̄pγµqr)(q̄sγµqt)

Q(3)
qq (q̄pγµτIqr)(q̄sγµτIqt)

Q(1)
lq (l̄pγµlr)(q̄sγµqt)

Q(3)
lq (l̄pγµτI lr)(q̄sγµτIqt)

8 : (R̄R)(R̄R)

Qee (ēpγµer)(ēsγµet)

Quu (ūpγµur)(ūsγµut)

Qdd (d̄pγµdr)(d̄sγµdt)

Qeu (ēpγµer)(ūsγµut)

Qed (ēpγµer)(d̄sγµdt)

Q(1)
ud (ūpγµur)(d̄sγµdt)

Q(8)
ud (ūpγµTAur)(d̄sγµTAdt)

8 : (L̄L)(R̄R)

Qle (l̄pγµlr)(ēsγµet)

Qlu (l̄pγµlr)(ūsγµut)

Qld (l̄pγµlr)(d̄sγµdt)

Qqe (q̄pγµqr)(ēsγµet)

Q(1)
qu (q̄pγµqr)(ūsγµut)

Q(8)
qu (q̄pγµTAqr)(ūsγµTAut)

Q(1)
qd (q̄pγµqr)(d̄sγµdt)

Q(8)
qd (q̄pγµTAqr)(d̄sγµTAdt)

8 : (L̄R)(R̄L) + h.c.

Qledq (l̄jper)(d̄sqtj)

8 : (L̄R)(L̄R) + h.c.

Q(1)
quqd (q̄jpur)ϵjk(q̄ks dt)

Q(8)
quqd (q̄jpT

Aur)ϵjk(q̄ksT
Adt)

Q(1)
lequ (l̄jper)ϵjk(q̄

k
sut)

Q(3)
lequ (l̄jpσµνer)ϵjk(q̄

k
sσ

µνut)
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Operators with +h.c. in the table heading also have hermitian conjugates, as does the ψ2H2D operator
QHud. The subscripts p, r, s, t are flavor indices, The notation is described in Sec. 2.
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moment operators,

µ
d

dµ
CeB

pr
=

1

16π2

[

4g1Nc (yu + yq)C
(3)
lequ
prst

[Yu]ts

]

+ . . .

µ
d

dµ
CeW

pr
=

1

16π2

[

−2g2NcC
(3)
lequ
prst

[Yu]ts

]

+ . . .

µ
d

dµ
CuB

pr
=

1

16π2

[

4g1(ye + yl)C
(3)
lequ
stpr

[Ye]ts

]

+ . . .

µ
d

dµ
CuW

pr
=

1

16π2

[

−2g2C
(3)
lequ
stpr

[Ye]ts

]

+ . . . , (5.6)

where . . . denotes contributions from other operators, and yi are the U(1) hypercharges.

Eq. (5.6) is an example of non-zero mixing between “tree” and “loop” operators. Eq. (5.6)

cannot be cancelled by other terms, since there are no redundant operators in the basis we

use. The operator Q(3)
lequ can be Fierzed into scalar form (α is a color index),

Q(3)
lequ = (l̄jpσµνer)ϵjk(q̄

k
sσ

µνut) = −4(l̄jper)ϵjk(q̄kαs uαt)− 8(l̄jpuαt)ϵjk(q̄
kα
s er)

= −4Q(1)
lequ − 8(l̄jpuαt)ϵjk(q̄

kα
s er) (5.7)

and can be generated by the tree-level exchange of (3,2, 7/6) scalars, i.e. those with the

quantum numbers of a leptoquark doublet. Tree-level exchange of leptoquarks and heavy

(1,2, 1/2) scalars with H-field quantum numbers can generate any combination of Q(1)
lequ and

Q(3)
lequ.

6 λ,λ2,λy2 Contributions to the L(6) Anomalous Dimension Matrix

The computation of the λ,λ2,λy2 anomalous dimensions has some subtleties. An example

is the graph in Fig. 4 which generates, in addition to the QH! and QHD operators, the

EOM operator EH! of Eq. (3.1). Eq. (3.2) eliminates EH! in terms of our standard basis of

operators, so Fig. 4 contributes to the running of the H6 coefficient CH , as well as the ψ2H3

coefficients CuH , CdH and CeH , and to the running of the dimension four SM coefficients in

Eq. (4.4). Fig. 4 is an example of how terms get shuffled around by the EOM. Fig. 4 has only

external H fields, but contributes to the running of the ψ2H3 operators.

The equations presented below are not the complete RGE, but only the λ,λ2,λy2 terms.

The remaining terms are lengthy, and will be given a subsequent publication. The evolution

of the H6 coefficient is

µ
d

dµ
CH =

1

16π2
[
108λCH − 160λ2 CH! + 48λ2 CHD

]
+

8λ

16π2
η1 +

8λ

16π2
η2 (6.1)

where η1,2 are given in Eq. (4.5). The diagonal CH − CH term 108λ/(16π2) has a large

numerical coefficient, and is independent of the normalization chosen for the H6 operator,
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Q(1)
qd (q̄pγµqr)(d̄sγµdt)

Q(8)
qd (q̄pγµTAqr)(d̄sγµTAdt)

8 : (L̄R)(R̄L) + h.c.

Qledq (l̄jper)(d̄sqtj)

8 : (L̄R)(L̄R) + h.c.

Q(1)
quqd (q̄jpur)ϵjk(q̄ks dt)

Q(8)
quqd (q̄jpT

Aur)ϵjk(q̄ksT
Adt)

Q(1)
lequ (l̄jper)ϵjk(q̄

k
sut)

Q(3)
lequ (l̄jpσµνer)ϵjk(q̄

k
sσ

µνut)

Table 1. The 59 independent dimension-six operators built from Standard Model fields which conserve
baryon number, as given in Ref. [2]. The operators are divided into eight classes: X3, H6, etc.
Operators with +h.c. in the table heading also have hermitian conjugates, as does the ψ2H2D operator
QHud. The subscripts p, r, s, t are flavor indices, The notation is described in Sec. 2.

– 17 –

moment operators,
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+ . . . , (5.6)

where . . . denotes contributions from other operators, and yi are the U(1) hypercharges.

Eq. (5.6) is an example of non-zero mixing between “tree” and “loop” operators. Eq. (5.6)

cannot be cancelled by other terms, since there are no redundant operators in the basis we

use. The operator Q(3)
lequ can be Fierzed into scalar form (α is a color index),

Q(3)
lequ = (l̄jpσµνer)ϵjk(q̄

k
sσ

µνut) = −4(l̄jper)ϵjk(q̄kαs uαt)− 8(l̄jpuαt)ϵjk(q̄
kα
s er)

= −4Q(1)
lequ − 8(l̄jpuαt)ϵjk(q̄

kα
s er) (5.7)

and can be generated by the tree-level exchange of (3,2, 7/6) scalars, i.e. those with the

quantum numbers of a leptoquark doublet. Tree-level exchange of leptoquarks and heavy

(1,2, 1/2) scalars with H-field quantum numbers can generate any combination of Q(1)
lequ and

Q(3)
lequ.

6 λ,λ2,λy2 Contributions to the L(6) Anomalous Dimension Matrix

The computation of the λ,λ2,λy2 anomalous dimensions has some subtleties. An example

is the graph in Fig. 4 which generates, in addition to the QH! and QHD operators, the

EOM operator EH! of Eq. (3.1). Eq. (3.2) eliminates EH! in terms of our standard basis of

operators, so Fig. 4 contributes to the running of the H6 coefficient CH , as well as the ψ2H3

coefficients CuH , CdH and CeH , and to the running of the dimension four SM coefficients in

Eq. (4.4). Fig. 4 is an example of how terms get shuffled around by the EOM. Fig. 4 has only

external H fields, but contributes to the running of the ψ2H3 operators.

The equations presented below are not the complete RGE, but only the λ,λ2,λy2 terms.

The remaining terms are lengthy, and will be given a subsequent publication. The evolution

of the H6 coefficient is

µ
d

dµ
CH =

1

16π2
[
108λCH − 160λ2 CH! + 48λ2 CHD

]
+

8λ

16π2
η1 +

8λ

16π2
η2 (6.1)

where η1,2 are given in Eq. (4.5). The diagonal CH − CH term 108λ/(16π2) has a large

numerical coefficient, and is independent of the normalization chosen for the H6 operator,
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8 : (L̄L)(L̄L)

Qll (l̄pγµlr)(l̄sγµlt)

Q(1)
qq (q̄pγµqr)(q̄sγµqt)

Q(3)
qq (q̄pγµτIqr)(q̄sγµτIqt)

Q(1)
lq (l̄pγµlr)(q̄sγµqt)

Q(3)
lq (l̄pγµτI lr)(q̄sγµτIqt)

8 : (R̄R)(R̄R)
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Qld (l̄pγµlr)(d̄sγµdt)

Qqe (q̄pγµqr)(ēsγµet)
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Q(1)
qu (q̄pγµqr)(ūsγµut)
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H
4
D

2

QHD
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H†DµH

�⇤ �
H†DµH

�
parameter shift (mZ)

X
2
H

2

QHWB H†⌧ IHW I
µ⌫B

µ⌫ parameter shift (sin ✓W )

 
2
H

2
D

Q(1)
Hl

(H†i
 !
D µH)(l̄p�µlr) 7 3 3

Q(3)
Hl

(H†i
 !
D I

µH)(l̄p⌧ I�µlr) 3 3 3

QHe (H†i
 !
D µH)(ēp�µer) 7 3 3

Q(1)
Hq

(H†i
 !
D µH)(q̄p�µqr) 7 3 3

Q(3)
Hq

(H†i
 !
D I

µH)(q̄p⌧ I�µqr) 3 3 3

QHu (H†i
 !
D µH)(ūp�µur) 7 3 3

QHd (H†i
 !
D µH)(d̄p�µdr) 7 3 3

QHud + h.c. i( eH†DµH)(ūp�µdr) 3 7 3

(L̄L)(L̄L)

Qll (l̄p�µlr)(l̄s�µlt) parameter shift (G
F
)

Q(1)
lq
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Q(3)
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(L̄R)(R̄L) + h.c.

Qledq (l̄jper)(d̄sqtj) 3 7 3

(L̄R)(L̄R) + h.c.

Q(1)
lequ

(l̄jper)✏jk(q̄ksut) 3 7 3

Q(3)
lequ

(l̄jp�µ⌫er)✏jk(q̄ks�
µ⌫ut) 3 7 3

Table 1: The dimension-six SMEFT operators (in the Warsaw basis [43]) that are relevant
for our analysis, with subscripts p, r, s, t indicating weak-eigenstate generation indices. The
last three columns indicate which observables the operators contribute to. ‘L’ stands for the
neutron, nuclear, and meson decays discussed in Appendices B.2.1 and B.2.2; ‘EW’ stands for
the electroweak precision observables of Appendix B.1; ‘C’ stands for the pp! `` and pp! `⌫
processes discussed in Appendix B.3.
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High Energy constraints

Contribute to Z-pole and other precision electroweak (EW) observables, including** MW
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1 : X3

QG fABCGAν
µ GBρ

ν GCµ
ρ

QG̃ fABCG̃Aν
µ GBρ

ν GCµ
ρ

QW ϵIJKW Iν
µ W Jρ

ν WKµ
ρ

Q
W̃

ϵIJKW̃ Iν
µ W Jρ

ν WKµ
ρ

2 : H6

QH (H†H)3

3 : H4D2

QH! (H†H)!(H†H)

QHD

(
H†DµH

)∗ (
H†DµH

)

5 : ψ2H3 + h.c.

QeH (H†H)(l̄perH)

QuH (H†H)(q̄purH̃)

QdH (H†H)(q̄pdrH)

4 : X2H2

QHG H†HGA
µνG

Aµν

QHG̃ H†H G̃A
µνG

Aµν

QHW H†HW I
µνW

Iµν

Q
HW̃

H†H W̃ I
µνW

Iµν

QHB H†H BµνBµν

QHB̃ H†H B̃µνBµν

QHWB H†τIH W I
µνB

µν

Q
HW̃B

H†τIH W̃ I
µνB

µν

6 : ψ2XH + h.c.

QeW (l̄pσµνer)τIHW I
µν

QeB (l̄pσµνer)HBµν

QuG (q̄pσµνTAur)H̃ GA
µν

QuW (q̄pσµνur)τIH̃ W I
µν

QuB (q̄pσµνur)H̃ Bµν

QdG (q̄pσµνTAdr)H GA
µν

QdW (q̄pσµνdr)τIH W I
µν

QdB (q̄pσµνdr)H Bµν

7 : ψ2H2D

Q(1)
Hl (H†i

←→
D µH)(l̄pγµlr)

Q(3)
Hl (H†i

←→
D I

µH)(l̄pτIγµlr)

QHe (H†i
←→
D µH)(ēpγµer)

Q(1)
Hq (H†i

←→
D µH)(q̄pγµqr)

Q(3)
Hq (H†i

←→
D I

µH)(q̄pτIγµqr)

QHu (H†i
←→
D µH)(ūpγµur)

QHd (H†i
←→
D µH)(d̄pγµdr)

QHud + h.c. i(H̃†DµH)(ūpγµdr)

8 : (L̄L)(L̄L)

Qll (l̄pγµlr)(l̄sγµlt)

Q(1)
qq (q̄pγµqr)(q̄sγµqt)

Q(3)
qq (q̄pγµτIqr)(q̄sγµτIqt)

Q(1)
lq (l̄pγµlr)(q̄sγµqt)

Q(3)
lq (l̄pγµτI lr)(q̄sγµτIqt)

8 : (R̄R)(R̄R)

Qee (ēpγµer)(ēsγµet)

Quu (ūpγµur)(ūsγµut)

Qdd (d̄pγµdr)(d̄sγµdt)

Qeu (ēpγµer)(ūsγµut)

Qed (ēpγµer)(d̄sγµdt)

Q(1)
ud (ūpγµur)(d̄sγµdt)

Q(8)
ud (ūpγµTAur)(d̄sγµTAdt)

8 : (L̄L)(R̄R)

Qle (l̄pγµlr)(ēsγµet)

Qlu (l̄pγµlr)(ūsγµut)

Qld (l̄pγµlr)(d̄sγµdt)

Qqe (q̄pγµqr)(ēsγµet)

Q(1)
qu (q̄pγµqr)(ūsγµut)

Q(8)
qu (q̄pγµTAqr)(ūsγµTAut)

Q(1)
qd (q̄pγµqr)(d̄sγµdt)

Q(8)
qd (q̄pγµTAqr)(d̄sγµTAdt)

8 : (L̄R)(R̄L) + h.c.

Qledq (l̄jper)(d̄sqtj)

8 : (L̄R)(L̄R) + h.c.

Q(1)
quqd (q̄jpur)ϵjk(q̄ks dt)

Q(8)
quqd (q̄jpT

Aur)ϵjk(q̄ksT
Adt)

Q(1)
lequ (l̄jper)ϵjk(q̄

k
sut)

Q(3)
lequ (l̄jpσµνer)ϵjk(q̄

k
sσ

µνut)

Table 1. The 59 independent dimension-six operators built from Standard Model fields which conserve
baryon number, as given in Ref. [2]. The operators are divided into eight classes: X3, H6, etc.
Operators with +h.c. in the table heading also have hermitian conjugates, as does the ψ2H2D operator
QHud. The subscripts p, r, s, t are flavor indices, The notation is described in Sec. 2.
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where . . . denotes contributions from other operators, and yi are the U(1) hypercharges.

Eq. (5.6) is an example of non-zero mixing between “tree” and “loop” operators. Eq. (5.6)

cannot be cancelled by other terms, since there are no redundant operators in the basis we

use. The operator Q(3)
lequ can be Fierzed into scalar form (α is a color index),

Q(3)
lequ = (l̄jpσµνer)ϵjk(q̄
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s er)

= −4Q(1)
lequ − 8(l̄jpuαt)ϵjk(q̄

kα
s er) (5.7)

and can be generated by the tree-level exchange of (3,2, 7/6) scalars, i.e. those with the

quantum numbers of a leptoquark doublet. Tree-level exchange of leptoquarks and heavy

(1,2, 1/2) scalars with H-field quantum numbers can generate any combination of Q(1)
lequ and

Q(3)
lequ.

6 λ,λ2,λy2 Contributions to the L(6) Anomalous Dimension Matrix

The computation of the λ,λ2,λy2 anomalous dimensions has some subtleties. An example

is the graph in Fig. 4 which generates, in addition to the QH! and QHD operators, the

EOM operator EH! of Eq. (3.1). Eq. (3.2) eliminates EH! in terms of our standard basis of

operators, so Fig. 4 contributes to the running of the H6 coefficient CH , as well as the ψ2H3

coefficients CuH , CdH and CeH , and to the running of the dimension four SM coefficients in

Eq. (4.4). Fig. 4 is an example of how terms get shuffled around by the EOM. Fig. 4 has only

external H fields, but contributes to the running of the ψ2H3 operators.

The equations presented below are not the complete RGE, but only the λ,λ2,λy2 terms.

The remaining terms are lengthy, and will be given a subsequent publication. The evolution
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numerical coefficient, and is independent of the normalization chosen for the H6 operator,
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Qld (l̄pγµlr)(d̄sγµdt)

Qqe (q̄pγµqr)(ēsγµet)
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Q(8)
qu (q̄pγµTAqr)(ūsγµTAut)
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where . . . denotes contributions from other operators, and yi are the U(1) hypercharges.

Eq. (5.6) is an example of non-zero mixing between “tree” and “loop” operators. Eq. (5.6)

cannot be cancelled by other terms, since there are no redundant operators in the basis we

use. The operator Q(3)
lequ can be Fierzed into scalar form (α is a color index),

Q(3)
lequ = (l̄jpσµνer)ϵjk(q̄

k
sσ

µνut) = −4(l̄jper)ϵjk(q̄kαs uαt)− 8(l̄jpuαt)ϵjk(q̄
kα
s er)

= −4Q(1)
lequ − 8(l̄jpuαt)ϵjk(q̄

kα
s er) (5.7)

and can be generated by the tree-level exchange of (3,2, 7/6) scalars, i.e. those with the

quantum numbers of a leptoquark doublet. Tree-level exchange of leptoquarks and heavy

(1,2, 1/2) scalars with H-field quantum numbers can generate any combination of Q(1)
lequ and

Q(3)
lequ.

6 λ,λ2,λy2 Contributions to the L(6) Anomalous Dimension Matrix

The computation of the λ,λ2,λy2 anomalous dimensions has some subtleties. An example

is the graph in Fig. 4 which generates, in addition to the QH! and QHD operators, the

EOM operator EH! of Eq. (3.1). Eq. (3.2) eliminates EH! in terms of our standard basis of

operators, so Fig. 4 contributes to the running of the H6 coefficient CH , as well as the ψ2H3

coefficients CuH , CdH and CeH , and to the running of the dimension four SM coefficients in

Eq. (4.4). Fig. 4 is an example of how terms get shuffled around by the EOM. Fig. 4 has only

external H fields, but contributes to the running of the ψ2H3 operators.

The equations presented below are not the complete RGE, but only the λ,λ2,λy2 terms.

The remaining terms are lengthy, and will be given a subsequent publication. The evolution

of the H6 coefficient is

µ
d

dµ
CH =

1

16π2
[
108λCH − 160λ2 CH! + 48λ2 CHD

]
+

8λ

16π2
η1 +

8λ

16π2
η2 (6.1)

where η1,2 are given in Eq. (4.5). The diagonal CH − CH term 108λ/(16π2) has a large

numerical coefficient, and is independent of the normalization chosen for the H6 operator,
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Q(1)
qu (q̄pγµqr)(ūsγµut)
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Table 1. The 59 independent dimension-six operators built from Standard Model fields which conserve
baryon number, as given in Ref. [2]. The operators are divided into eight classes: X3, H6, etc.
Operators with +h.c. in the table heading also have hermitian conjugates, as does the ψ2H2D operator
QHud. The subscripts p, r, s, t are flavor indices, The notation is described in Sec. 2.

– 17 –

1 : X3

QG fABCGAν
µ GBρ

ν GCµ
ρ

QG̃ fABCG̃Aν
µ GBρ

ν GCµ
ρ

QW ϵIJKW Iν
µ W Jρ

ν WKµ
ρ

Q
W̃

ϵIJKW̃ Iν
µ W Jρ

ν WKµ
ρ

2 : H6

QH (H†H)3

3 : H4D2

QH! (H†H)!(H†H)

QHD

(
H†DµH

)∗ (
H†DµH

)

5 : ψ2H3 + h.c.

QeH (H†H)(l̄perH)

QuH (H†H)(q̄purH̃)

QdH (H†H)(q̄pdrH)

4 : X2H2

QHG H†HGA
µνG

Aµν

QHG̃ H†H G̃A
µνG

Aµν

QHW H†HW I
µνW

Iµν

Q
HW̃

H†H W̃ I
µνW

Iµν

QHB H†H BµνBµν

QHB̃ H†H B̃µνBµν

QHWB H†τIH W I
µνB

µν

Q
HW̃B

H†τIH W̃ I
µνB

µν

6 : ψ2XH + h.c.

QeW (l̄pσµνer)τIHW I
µν

QeB (l̄pσµνer)HBµν

QuG (q̄pσµνTAur)H̃ GA
µν

QuW (q̄pσµνur)τIH̃ W I
µν

QuB (q̄pσµνur)H̃ Bµν

QdG (q̄pσµνTAdr)H GA
µν

QdW (q̄pσµνdr)τIH W I
µν

QdB (q̄pσµνdr)H Bµν

7 : ψ2H2D

Q(1)
Hl (H†i

←→
D µH)(l̄pγµlr)

Q(3)
Hl (H†i

←→
D I

µH)(l̄pτIγµlr)

QHe (H†i
←→
D µH)(ēpγµer)

Q(1)
Hq (H†i

←→
D µH)(q̄pγµqr)

Q(3)
Hq (H†i

←→
D I

µH)(q̄pτIγµqr)

QHu (H†i
←→
D µH)(ūpγµur)
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Qlu (l̄pγµlr)(ūsγµut)
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D
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QHD

�
H†DµH

�⇤ �
H†DµH

�
parameter shift (mZ)

X
2
H

2

QHWB H†⌧ IHW I
µ⌫B

µ⌫ parameter shift (sin ✓W )

 
2
H

2
D

Q(1)
Hl

(H†i
 !
D µH)(l̄p�µlr) 7 3 3

Q(3)
Hl

(H†i
 !
D I

µH)(l̄p⌧ I�µlr) 3 3 3

QHe (H†i
 !
D µH)(ēp�µer) 7 3 3

Q(1)
Hq

(H†i
 !
D µH)(q̄p�µqr) 7 3 3

Q(3)
Hq

(H†i
 !
D I

µH)(q̄p⌧ I�µqr) 3 3 3

QHu (H†i
 !
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 !
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QHud + h.c. i( eH†DµH)(ūp�µdr) 3 7 3

(L̄L)(L̄L)

Qll (l̄p�µlr)(l̄s�µlt) parameter shift (G
F
)

Q(1)
lq

(l̄p�µlr)(q̄s�µqt) 7 7 3

Q(3)
lq
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Qledq (l̄jper)(d̄sqtj) 3 7 3

(L̄R)(L̄R) + h.c.

Q(1)
lequ

(l̄jper)✏jk(q̄ksut) 3 7 3

Q(3)
lequ

(l̄jp�µ⌫er)✏jk(q̄ks�
µ⌫ut) 3 7 3

Table 1: The dimension-six SMEFT operators (in the Warsaw basis [43]) that are relevant
for our analysis, with subscripts p, r, s, t indicating weak-eigenstate generation indices. The
last three columns indicate which observables the operators contribute to. ‘L’ stands for the
neutron, nuclear, and meson decays discussed in Appendices B.2.1 and B.2.2; ‘EW’ stands for
the electroweak precision observables of Appendix B.1; ‘C’ stands for the pp! `` and pp! `⌫
processes discussed in Appendix B.3.
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i
, with Z the atomic number of the final-state nucleus. The Wilson coe�-

cients are given in terms of the ✏i that vanish in the SM, but are generally nonzero in SMEFT, see
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Hq

(H†i
 !
D I

µH)(q̄p⌧ I�µqr) 3 3 3

QHu (H†i
 !
D µH)(ūp�µur) 7 3 3

QHd (H†i
 !
D µH)(d̄p�µdr) 7 3 3

QHud + h.c. i( eH†DµH)(ūp�µdr) 3 7 3

(L̄L)(L̄L)

Qll (l̄p�µlr)(l̄s�µlt) parameter shift (G
F
)

Q(1)
lq
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Q(3)
lq
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(L̄R)(L̄R) + h.c.

Q(1)
lequ

(l̄jper)✏jk(q̄ksut) 3 7 3

Q(3)
lequ

(l̄jp�µ⌫er)✏jk(q̄ks�
µ⌫ut) 3 7 3
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High Energy constraints

Contribute to Z-pole and other precision electroweak (EW) observables, including** MW

27

1 : X3

QG fABCGAν
µ GBρ

ν GCµ
ρ

QG̃ fABCG̃Aν
µ GBρ

ν GCµ
ρ

QW ϵIJKW Iν
µ W Jρ

ν WKµ
ρ

Q
W̃

ϵIJKW̃ Iν
µ W Jρ

ν WKµ
ρ

2 : H6

QH (H†H)3

3 : H4D2

QH! (H†H)!(H†H)

QHD

(
H†DµH

)∗ (
H†DµH

)

5 : ψ2H3 + h.c.

QeH (H†H)(l̄perH)

QuH (H†H)(q̄purH̃)

QdH (H†H)(q̄pdrH)

4 : X2H2

QHG H†HGA
µνG

Aµν

QHG̃ H†H G̃A
µνG

Aµν

QHW H†HW I
µνW

Iµν

Q
HW̃

H†H W̃ I
µνW

Iµν

QHB H†H BµνBµν

QHB̃ H†H B̃µνBµν

QHWB H†τIH W I
µνB

µν

Q
HW̃B

H†τIH W̃ I
µνB

µν

6 : ψ2XH + h.c.

QeW (l̄pσµνer)τIHW I
µν

QeB (l̄pσµνer)HBµν

QuG (q̄pσµνTAur)H̃ GA
µν

QuW (q̄pσµνur)τIH̃ W I
µν

QuB (q̄pσµνur)H̃ Bµν

QdG (q̄pσµνTAdr)H GA
µν

QdW (q̄pσµνdr)τIH W I
µν

QdB (q̄pσµνdr)H Bµν

7 : ψ2H2D

Q(1)
Hl (H†i

←→
D µH)(l̄pγµlr)

Q(3)
Hl (H†i

←→
D I

µH)(l̄pτIγµlr)

QHe (H†i
←→
D µH)(ēpγµer)

Q(1)
Hq (H†i

←→
D µH)(q̄pγµqr)

Q(3)
Hq (H†i

←→
D I

µH)(q̄pτIγµqr)

QHu (H†i
←→
D µH)(ūpγµur)

QHd (H†i
←→
D µH)(d̄pγµdr)

QHud + h.c. i(H̃†DµH)(ūpγµdr)

8 : (L̄L)(L̄L)

Qll (l̄pγµlr)(l̄sγµlt)

Q(1)
qq (q̄pγµqr)(q̄sγµqt)

Q(3)
qq (q̄pγµτIqr)(q̄sγµτIqt)

Q(1)
lq (l̄pγµlr)(q̄sγµqt)

Q(3)
lq (l̄pγµτI lr)(q̄sγµτIqt)

8 : (R̄R)(R̄R)

Qee (ēpγµer)(ēsγµet)

Quu (ūpγµur)(ūsγµut)

Qdd (d̄pγµdr)(d̄sγµdt)

Qeu (ēpγµer)(ūsγµut)

Qed (ēpγµer)(d̄sγµdt)

Q(1)
ud (ūpγµur)(d̄sγµdt)

Q(8)
ud (ūpγµTAur)(d̄sγµTAdt)

8 : (L̄L)(R̄R)

Qle (l̄pγµlr)(ēsγµet)

Qlu (l̄pγµlr)(ūsγµut)

Qld (l̄pγµlr)(d̄sγµdt)

Qqe (q̄pγµqr)(ēsγµet)

Q(1)
qu (q̄pγµqr)(ūsγµut)

Q(8)
qu (q̄pγµTAqr)(ūsγµTAut)

Q(1)
qd (q̄pγµqr)(d̄sγµdt)

Q(8)
qd (q̄pγµTAqr)(d̄sγµTAdt)

8 : (L̄R)(R̄L) + h.c.

Qledq (l̄jper)(d̄sqtj)

8 : (L̄R)(L̄R) + h.c.

Q(1)
quqd (q̄jpur)ϵjk(q̄ks dt)

Q(8)
quqd (q̄jpT

Aur)ϵjk(q̄ksT
Adt)

Q(1)
lequ (l̄jper)ϵjk(q̄

k
sut)

Q(3)
lequ (l̄jpσµνer)ϵjk(q̄

k
sσ

µνut)

Table 1. The 59 independent dimension-six operators built from Standard Model fields which conserve
baryon number, as given in Ref. [2]. The operators are divided into eight classes: X3, H6, etc.
Operators with +h.c. in the table heading also have hermitian conjugates, as does the ψ2H2D operator
QHud. The subscripts p, r, s, t are flavor indices, The notation is described in Sec. 2.
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1 : X3

QG fABCGAν
µ GBρ

ν GCµ
ρ

QG̃ fABCG̃Aν
µ GBρ

ν GCµ
ρ

QW ϵIJKW Iν
µ W Jρ

ν WKµ
ρ

Q
W̃

ϵIJKW̃ Iν
µ W Jρ

ν WKµ
ρ

2 : H6

QH (H†H)3

3 : H4D2

QH! (H†H)!(H†H)

QHD

(
H†DµH

)∗ (
H†DµH

)

5 : ψ2H3 + h.c.

QeH (H†H)(l̄perH)

QuH (H†H)(q̄purH̃)

QdH (H†H)(q̄pdrH)

4 : X2H2

QHG H†HGA
µνG

Aµν

QHG̃ H†H G̃A
µνG

Aµν

QHW H†HW I
µνW

Iµν

Q
HW̃

H†H W̃ I
µνW

Iµν

QHB H†H BµνBµν

QHB̃ H†H B̃µνBµν

QHWB H†τIH W I
µνB

µν

Q
HW̃B

H†τIH W̃ I
µνB

µν

6 : ψ2XH + h.c.

QeW (l̄pσµνer)τIHW I
µν

QeB (l̄pσµνer)HBµν

QuG (q̄pσµνTAur)H̃ GA
µν

QuW (q̄pσµνur)τIH̃ W I
µν

QuB (q̄pσµνur)H̃ Bµν

QdG (q̄pσµνTAdr)H GA
µν

QdW (q̄pσµνdr)τIH W I
µν

QdB (q̄pσµνdr)H Bµν

7 : ψ2H2D

Q(1)
Hl (H†i

←→
D µH)(l̄pγµlr)

Q(3)
Hl (H†i

←→
D I

µH)(l̄pτIγµlr)

QHe (H†i
←→
D µH)(ēpγµer)

Q(1)
Hq (H†i

←→
D µH)(q̄pγµqr)

Q(3)
Hq (H†i

←→
D I

µH)(q̄pτIγµqr)

QHu (H†i
←→
D µH)(ūpγµur)

QHd (H†i
←→
D µH)(d̄pγµdr)

QHud + h.c. i(H̃†DµH)(ūpγµdr)

8 : (L̄L)(L̄L)

Qll (l̄pγµlr)(l̄sγµlt)

Q(1)
qq (q̄pγµqr)(q̄sγµqt)

Q(3)
qq (q̄pγµτIqr)(q̄sγµτIqt)

Q(1)
lq (l̄pγµlr)(q̄sγµqt)

Q(3)
lq (l̄pγµτI lr)(q̄sγµτIqt)

8 : (R̄R)(R̄R)

Qee (ēpγµer)(ēsγµet)

Quu (ūpγµur)(ūsγµut)

Qdd (d̄pγµdr)(d̄sγµdt)

Qeu (ēpγµer)(ūsγµut)

Qed (ēpγµer)(d̄sγµdt)

Q(1)
ud (ūpγµur)(d̄sγµdt)

Q(8)
ud (ūpγµTAur)(d̄sγµTAdt)

8 : (L̄L)(R̄R)

Qle (l̄pγµlr)(ēsγµet)

Qlu (l̄pγµlr)(ūsγµut)

Qld (l̄pγµlr)(d̄sγµdt)

Qqe (q̄pγµqr)(ēsγµet)

Q(1)
qu (q̄pγµqr)(ūsγµut)

Q(8)
qu (q̄pγµTAqr)(ūsγµTAut)

Q(1)
qd (q̄pγµqr)(d̄sγµdt)

Q(8)
qd (q̄pγµTAqr)(d̄sγµTAdt)

8 : (L̄R)(R̄L) + h.c.

Qledq (l̄jper)(d̄sqtj)

8 : (L̄R)(L̄R) + h.c.

Q(1)
quqd (q̄jpur)ϵjk(q̄ks dt)

Q(8)
quqd (q̄jpT

Aur)ϵjk(q̄ksT
Adt)

Q(1)
lequ (l̄jper)ϵjk(q̄

k
sut)

Q(3)
lequ (l̄jpσµνer)ϵjk(q̄

k
sσ

µνut)
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moment operators,

µ
d

dµ
CeB

pr
=

1

16π2

[

4g1Nc (yu + yq)C
(3)
lequ
prst

[Yu]ts

]

+ . . .

µ
d

dµ
CeW

pr
=

1

16π2

[

−2g2NcC
(3)
lequ
prst

[Yu]ts

]

+ . . .

µ
d

dµ
CuB

pr
=

1

16π2

[

4g1(ye + yl)C
(3)
lequ
stpr

[Ye]ts

]

+ . . .

µ
d

dµ
CuW

pr
=

1

16π2

[

−2g2C
(3)
lequ
stpr

[Ye]ts

]

+ . . . , (5.6)

where . . . denotes contributions from other operators, and yi are the U(1) hypercharges.

Eq. (5.6) is an example of non-zero mixing between “tree” and “loop” operators. Eq. (5.6)

cannot be cancelled by other terms, since there are no redundant operators in the basis we

use. The operator Q(3)
lequ can be Fierzed into scalar form (α is a color index),

Q(3)
lequ = (l̄jpσµνer)ϵjk(q̄

k
sσ

µνut) = −4(l̄jper)ϵjk(q̄kαs uαt)− 8(l̄jpuαt)ϵjk(q̄
kα
s er)

= −4Q(1)
lequ − 8(l̄jpuαt)ϵjk(q̄

kα
s er) (5.7)

and can be generated by the tree-level exchange of (3,2, 7/6) scalars, i.e. those with the

quantum numbers of a leptoquark doublet. Tree-level exchange of leptoquarks and heavy

(1,2, 1/2) scalars with H-field quantum numbers can generate any combination of Q(1)
lequ and

Q(3)
lequ.

6 λ,λ2,λy2 Contributions to the L(6) Anomalous Dimension Matrix

The computation of the λ,λ2,λy2 anomalous dimensions has some subtleties. An example

is the graph in Fig. 4 which generates, in addition to the QH! and QHD operators, the

EOM operator EH! of Eq. (3.1). Eq. (3.2) eliminates EH! in terms of our standard basis of

operators, so Fig. 4 contributes to the running of the H6 coefficient CH , as well as the ψ2H3

coefficients CuH , CdH and CeH , and to the running of the dimension four SM coefficients in

Eq. (4.4). Fig. 4 is an example of how terms get shuffled around by the EOM. Fig. 4 has only

external H fields, but contributes to the running of the ψ2H3 operators.

The equations presented below are not the complete RGE, but only the λ,λ2,λy2 terms.

The remaining terms are lengthy, and will be given a subsequent publication. The evolution

of the H6 coefficient is

µ
d

dµ
CH =

1

16π2
[
108λCH − 160λ2 CH! + 48λ2 CHD

]
+

8λ

16π2
η1 +

8λ

16π2
η2 (6.1)

where η1,2 are given in Eq. (4.5). The diagonal CH − CH term 108λ/(16π2) has a large

numerical coefficient, and is independent of the normalization chosen for the H6 operator,

– 13 –

1 : X3

QG fABCGAν
µ GBρ

ν GCµ
ρ

QG̃ fABCG̃Aν
µ GBρ

ν GCµ
ρ

QW ϵIJKW Iν
µ W Jρ

ν WKµ
ρ

Q
W̃

ϵIJKW̃ Iν
µ W Jρ

ν WKµ
ρ

2 : H6

QH (H†H)3

3 : H4D2

QH! (H†H)!(H†H)

QHD

(
H†DµH

)∗ (
H†DµH

)

5 : ψ2H3 + h.c.

QeH (H†H)(l̄perH)

QuH (H†H)(q̄purH̃)

QdH (H†H)(q̄pdrH)

4 : X2H2

QHG H†HGA
µνG

Aµν

QHG̃ H†H G̃A
µνG

Aµν

QHW H†HW I
µνW

Iµν

Q
HW̃

H†H W̃ I
µνW

Iµν

QHB H†H BµνBµν

QHB̃ H†H B̃µνBµν

QHWB H†τIH W I
µνB

µν

Q
HW̃B

H†τIH W̃ I
µνB

µν

6 : ψ2XH + h.c.

QeW (l̄pσµνer)τIHW I
µν

QeB (l̄pσµνer)HBµν

QuG (q̄pσµνTAur)H̃ GA
µν

QuW (q̄pσµνur)τIH̃ W I
µν

QuB (q̄pσµνur)H̃ Bµν

QdG (q̄pσµνTAdr)H GA
µν

QdW (q̄pσµνdr)τIH W I
µν

QdB (q̄pσµνdr)H Bµν

7 : ψ2H2D

Q(1)
Hl (H†i

←→
D µH)(l̄pγµlr)

Q(3)
Hl (H†i

←→
D I

µH)(l̄pτIγµlr)

QHe (H†i
←→
D µH)(ēpγµer)
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Hq (H†i

←→
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←→
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←→
D µH)(d̄pγµdr)

QHud + h.c. i(H̃†DµH)(ūpγµdr)
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Qll (l̄pγµlr)(l̄sγµlt)

Q(1)
qq (q̄pγµqr)(q̄sγµqt)

Q(3)
qq (q̄pγµτIqr)(q̄sγµτIqt)

Q(1)
lq (l̄pγµlr)(q̄sγµqt)

Q(3)
lq (l̄pγµτI lr)(q̄sγµτIqt)

8 : (R̄R)(R̄R)

Qee (ēpγµer)(ēsγµet)

Quu (ūpγµur)(ūsγµut)

Qdd (d̄pγµdr)(d̄sγµdt)

Qeu (ēpγµer)(ūsγµut)

Qed (ēpγµer)(d̄sγµdt)

Q(1)
ud (ūpγµur)(d̄sγµdt)

Q(8)
ud (ūpγµTAur)(d̄sγµTAdt)

8 : (L̄L)(R̄R)

Qle (l̄pγµlr)(ēsγµet)

Qlu (l̄pγµlr)(ūsγµut)

Qld (l̄pγµlr)(d̄sγµdt)

Qqe (q̄pγµqr)(ēsγµet)

Q(1)
qu (q̄pγµqr)(ūsγµut)

Q(8)
qu (q̄pγµTAqr)(ūsγµTAut)

Q(1)
qd (q̄pγµqr)(d̄sγµdt)

Q(8)
qd (q̄pγµTAqr)(d̄sγµTAdt)

8 : (L̄R)(R̄L) + h.c.

Qledq (l̄jper)(d̄sqtj)

8 : (L̄R)(L̄R) + h.c.

Q(1)
quqd (q̄jpur)ϵjk(q̄ks dt)

Q(8)
quqd (q̄jpT

Aur)ϵjk(q̄ksT
Adt)

Q(1)
lequ (l̄jper)ϵjk(q̄

k
sut)

Q(3)
lequ (l̄jpσµνer)ϵjk(q̄

k
sσ

µνut)
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4 : X2H2

QHG H†HGA
µνG

Aµν

QHG̃ H†H G̃A
µνG

Aµν

QHW H†HW I
µνW
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←→
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where . . . denotes contributions from other operators, and yi are the U(1) hypercharges.

Eq. (5.6) is an example of non-zero mixing between “tree” and “loop” operators. Eq. (5.6)

cannot be cancelled by other terms, since there are no redundant operators in the basis we

use. The operator Q(3)
lequ can be Fierzed into scalar form (α is a color index),

Q(3)
lequ = (l̄jpσµνer)ϵjk(q̄

k
sσ

µνut) = −4(l̄jper)ϵjk(q̄kαs uαt)− 8(l̄jpuαt)ϵjk(q̄
kα
s er)

= −4Q(1)
lequ − 8(l̄jpuαt)ϵjk(q̄

kα
s er) (5.7)

and can be generated by the tree-level exchange of (3,2, 7/6) scalars, i.e. those with the

quantum numbers of a leptoquark doublet. Tree-level exchange of leptoquarks and heavy

(1,2, 1/2) scalars with H-field quantum numbers can generate any combination of Q(1)
lequ and

Q(3)
lequ.

6 λ,λ2,λy2 Contributions to the L(6) Anomalous Dimension Matrix

The computation of the λ,λ2,λy2 anomalous dimensions has some subtleties. An example

is the graph in Fig. 4 which generates, in addition to the QH! and QHD operators, the

EOM operator EH! of Eq. (3.1). Eq. (3.2) eliminates EH! in terms of our standard basis of

operators, so Fig. 4 contributes to the running of the H6 coefficient CH , as well as the ψ2H3

coefficients CuH , CdH and CeH , and to the running of the dimension four SM coefficients in

Eq. (4.4). Fig. 4 is an example of how terms get shuffled around by the EOM. Fig. 4 has only

external H fields, but contributes to the running of the ψ2H3 operators.

The equations presented below are not the complete RGE, but only the λ,λ2,λy2 terms.

The remaining terms are lengthy, and will be given a subsequent publication. The evolution

of the H6 coefficient is

µ
d

dµ
CH =

1

16π2
[
108λCH − 160λ2 CH! + 48λ2 CHD

]
+

8λ

16π2
η1 +

8λ

16π2
η2 (6.1)

where η1,2 are given in Eq. (4.5). The diagonal CH − CH term 108λ/(16π2) has a large

numerical coefficient, and is independent of the normalization chosen for the H6 operator,
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with cw = cos ✓w. In addition, several electroweak precision observables are sensitive to the
(left-handed) couplings of the W boson, which can be written as
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Finally, the expression for mW in SMEFT is given by
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A.2 Translation to low-energy basis

For the decays of kaon and pion, and � decays, the often used low-energy e↵ective Lagrangian
is given by [36,47,71,112]
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where D = {d, s}. The tree-level expressions for the ✏ couplings in terms of SMEFT coe�cients
are given by
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Corollary:  a consistent SMEFT analysis 
of precision EW observables requires 
including constraints from low-energy 

CC processes (β-decays)
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Table 1: The dimension-six SMEFT operators (in the Warsaw basis [43]) that are relevant
for our analysis, with subscripts p, r, s, t indicating weak-eigenstate generation indices. The
last three columns indicate which observables the operators contribute to. ‘L’ stands for the
neutron, nuclear, and meson decays discussed in Appendices B.2.1 and B.2.2; ‘EW’ stands for
the electroweak precision observables of Appendix B.1; ‘C’ stands for the pp! `` and pp! `⌫
processes discussed in Appendix B.3.
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to deal with flavor structure and set up three classes of analyses in addition to the SM analy-
sis. In Section 4 we summarize the statistical tools used in our work. We present our results
in Sections 5-8 providing a discussion of the main features driving the various fits. Apart from
discussing the nearly-global analysis, we also consider a number of simpler scenarios that involve
subsets of SMEFT operators and investigate which one leads to the most favored solution of the
CAA. In Section 9, we explore the potential of future measurements and theoretical developments
to probe the nonzero couplings, which the statistical analysis identifies as the simplest explana-
tion for the CAA. We o↵er our conclusions and outlook in Section 10, while technical details are
provided in the Appendices. We collect the results of the ‘flavor-assumption-independent’ fit in
the Supplemental Material.

2 Analysis framework

2.1 Standard Model E↵ective Field Theory

Assuming that BSM physics appears at a scale ⇤ well above the electroweak scale, ⇤ � v, its
e↵ects can be captured by an EFT. If the BSM dynamics is weakly coupled, the resulting TeV-
scale e↵ective Lagrangian linearly realizes the electroweak symmetry SU(2)⇥U(1) and contains
an SM-like SU(2) Higgs doublet. The relevant EFT is the SMEFT [42, 43], which extends the
SM with operators of canonical dimension d > 4, suppressed by powers of ⇤4�d. The first BSM
operator appears at dimension five [44] and gives rise to neutrino Majorana masses. The leading
contributions to the observables of interest in this work arise from dimension-six operators Qi,
which are described by the following e↵ective Lagrangian

L = LSM +
X

i

CiQi , (2.1)

where the Wilson coe�cients, Ci, have mass dimension �2. There are 2499 operators in SMEFT
at dimension six [45], and we adopt the widely used Warsaw basis [43]. As discussed in the
Introduction, our analysis includes only the operators that a↵ect low-energy CC (semi)leptonic
processes, EWPO, and Drell-Yan at the LHC. We list the relevant operators in Table 1 along
with the classes of observables to which they contribute, making it clear that a joint analysis of
these three classes of observables is required for consistency.

Our notation is such that lT = (⌫L, eL) and qT = (uL, dL) stand for left-handed lepton
and quark SU(2) doublets, while u = uR, d = dR, and e = eR are the right-handed up-type,
down-type, and charged-lepton fields. We use p, r, s, t for generation indices and work in a
basis in which the electron and down-quark Yukawa matrices are diagonal. This implies that
the fields dL,R, eL,R correspond to the mass eigenstates, while for the up-type quarks we have
uL = V †umass

L
, where V is the CKM matrix 2. For further details of our notation, we refer to

Appendix A.
In this work, we will mainly be concerned with the SMEFT Lagrangian at tree level and only

consider loop e↵ects to include sizable QCD corrections at leading-log accuracy. This a↵ects
only the operators in the (L̄R)(L̄R) and (L̄R)(R̄L) classes in Table 1. We will evaluate these
coe�cients at a renormalization scale of µ = 1 TeV when presenting the results. We use the
Lagrangian in Eq. (2.1) to make predictions for observables at or above the electroweak scale,

2We will not be concerned with neutrino mass e↵ects in the current work, implying we do not distinguish
between neutrino mass and flavor eigenstates.

5
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D µH)(ūp�µur) 7 3 3

QHd (H†i
 !
D µH)(d̄p�µdr) 7 3 3

QHud + h.c. i( eH†DµH)(ūp�µdr) 3 7 3
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D µH)(ūp�µur) 7 3 3

QHd (H†i
 !
D µH)(d̄p�µdr) 7 3 3

QHud + h.c. i( eH†DµH)(ūp�µdr) 3 7 3
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to deal with flavor structure and set up three classes of analyses in addition to the SM analy-
sis. In Section 4 we summarize the statistical tools used in our work. We present our results
in Sections 5-8 providing a discussion of the main features driving the various fits. Apart from
discussing the nearly-global analysis, we also consider a number of simpler scenarios that involve
subsets of SMEFT operators and investigate which one leads to the most favored solution of the
CAA. In Section 9, we explore the potential of future measurements and theoretical developments
to probe the nonzero couplings, which the statistical analysis identifies as the simplest explana-
tion for the CAA. We o↵er our conclusions and outlook in Section 10, while technical details are
provided in the Appendices. We collect the results of the ‘flavor-assumption-independent’ fit in
the Supplemental Material.

2 Analysis framework

2.1 Standard Model E↵ective Field Theory

Assuming that BSM physics appears at a scale ⇤ well above the electroweak scale, ⇤ � v, its
e↵ects can be captured by an EFT. If the BSM dynamics is weakly coupled, the resulting TeV-
scale e↵ective Lagrangian linearly realizes the electroweak symmetry SU(2)⇥U(1) and contains
an SM-like SU(2) Higgs doublet. The relevant EFT is the SMEFT [42, 43], which extends the
SM with operators of canonical dimension d > 4, suppressed by powers of ⇤4�d. The first BSM
operator appears at dimension five [44] and gives rise to neutrino Majorana masses. The leading
contributions to the observables of interest in this work arise from dimension-six operators Qi,
which are described by the following e↵ective Lagrangian

L = LSM +
X

i

CiQi , (2.1)

where the Wilson coe�cients, Ci, have mass dimension �2. There are 2499 operators in SMEFT
at dimension six [45], and we adopt the widely used Warsaw basis [43]. As discussed in the
Introduction, our analysis includes only the operators that a↵ect low-energy CC (semi)leptonic
processes, EWPO, and Drell-Yan at the LHC. We list the relevant operators in Table 1 along
with the classes of observables to which they contribute, making it clear that a joint analysis of
these three classes of observables is required for consistency.

Our notation is such that lT = (⌫L, eL) and qT = (uL, dL) stand for left-handed lepton
and quark SU(2) doublets, while u = uR, d = dR, and e = eR are the right-handed up-type,
down-type, and charged-lepton fields. We use p, r, s, t for generation indices and work in a
basis in which the electron and down-quark Yukawa matrices are diagonal. This implies that
the fields dL,R, eL,R correspond to the mass eigenstates, while for the up-type quarks we have
uL = V †umass

L
, where V is the CKM matrix 2. For further details of our notation, we refer to

Appendix A.
In this work, we will mainly be concerned with the SMEFT Lagrangian at tree level and only

consider loop e↵ects to include sizable QCD corrections at leading-log accuracy. This a↵ects
only the operators in the (L̄R)(L̄R) and (L̄R)(R̄L) classes in Table 1. We will evaluate these
coe�cients at a renormalization scale of µ = 1 TeV when presenting the results. We use the
Lagrangian in Eq. (2.1) to make predictions for observables at or above the electroweak scale,

2We will not be concerned with neutrino mass e↵ects in the current work, implying we do not distinguish
between neutrino mass and flavor eigenstates.

5

** We are not including ‘ld, lu, ed, eu, qe’  4-fermion operators that affect Drell-Yan 
(included in our analysis), NC processes at low-E & DIS (not included in our analysis).   
Inclusion of such operators would lead to a ~ closed set of observables ⨂ operators. 
Do not expect big impact on the operators kept in our current analysis.  

Bussolotti-Boughezial-Simsek 2306.05564,   Boughezial et al.  2303.08257, 2204.07557
Crivellin et al., 2107.13569
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What about flavor?
• Most analyses impose flavor symmetry to reduce number of couplings (e.g. only 9 Wilson Coefficients in the 

CLEW analysis if assume U(3)5).   However: 

• Lead to model-dependence (e.g. excludes classes of operators / models such as LRSM)

• Results depend strongly on flavor assumptions   L. Bellafronte, S. Dawson, P. P. Giardino  2304.00029

• We perform a flavor-assumption-independent analysis:  exploit approximate decoupling of CLEW and FCNC

An Bn Cn

CLEW precision observables FCNC observables

Wilson Coefficients: 
An, Bn, Cn 

Bn  strongly constrained by FCNC.
Often appear in CLEW observables 

suppressed by powers of λC~0.2
⇒ Set Bn=0.  Expect minimal impact on An

Ltot = LCLEW(An, Bn) ⨉ LFCNC (Bn Cn) ⨉ …. → Ltot = LCLEW(An, Bn=0) ⨉ LFCNC (Bn Cn) ⨉ …. 

~  factorized likelihood 

(testable with more computing and people-power)



31

What about flavor?

Global analysis Indices

C(1,3)
Hl
pr

, C
He
pr

pr 2 {ee, µµ, ⌧⌧}

C(d)
Hq
pr

, C
Hd
pr

pr 2 {11, 22, 33}

C(u)
Hq
pr

, C
Hu
pr

pr 2 {11, 22}

CHud
pr

pr 2 {11, 12}

C(d)
lq

``pr

, Cledq

``pr

` 2 {e, µ} , pr 2 {11, 22}

C(u)
lq

``11

, C̄(1,3)
lequ

``11

` 2 {e, µ}

CST

C ll
2112

Low energy CC analysis Indices

C(3)
Hl
pr

pr 2 {ee, µµ}

C(d)
Hq
pr

pr 2 {11, 22}

C(u)
Hq

11

CHud
pr

pr 2 {11, 12}

C(d)
lq

``pr

, Cledq

``pr

` 2 {e, µ} , pr 2 {11, 22}

C(u)
lq

``11

, C̄(1,3)
lequ

``11

` 2 {e, µ}

C ll
2112

Table 2: Left panel: The 37 Wilson coe�cients that are relevant to the global analysis, including
low-energy charged-current observables, EWPO, and CC Drell-Yan as described in Section 3.2.
Right panel: The subset of 22 Wilson coe�cients that contribute to low-energy charged-current
observables as described in Section 3.2.

and low-energy CC processes. Nevertheless, explicitly including these operators would be an
interesting extension of the current framework, which we leave for future work.

3.3 Three classes of analyses

Having discussed the relevant operators, we will perform fits in three di↵erent scenarios:

1. U(3)5 fit: We start with a scenario assuming U(3)5 flavor symmetry, neglecting terms
involving the SM Yukawa couplings. This scenario highlights the close connection between
EWPO, low-energy CC observables, and high-energy Drell-Yan processes. We will show
that fits considering only a single class of observables, as often done in the literature, can
lead to a poor description for observables in the other classes, and are thus inconsistent.

2. Flavor-symmetry-independent intermediate fit: A scenario involving only the 22
Wilson coe�cients that a↵ect low-energy CC processes and the CAA (see the right panel
of Table 2), but which nevertheless includes the EWPO and Drell-Yan data. Although
not self-consistent, we will see that this scenario provides a good description of the data,
in particular of the CAA, as long as the CDF measurement of mW is not considered.

3. Flavor-symmetry-independent global fit: A global fit in which all operators in the
left panel of Table 2 are included.

In addition, we will consider several simpler scenarios, involving subsets of the operators,
which will help build some intuition for the larger, more general analysis. In all cases, we
will study the role of di↵erent sets of observables. We will label each of these analyses by
the observables considered and the Wilson coe�cients involved in the scenario. L denotes
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CLEW analysis with no assumption about 
flavor symmetry requires 37 couplings

by simply replacing uL ! V †uL, where V is the CKM matrix. In addition, it will be useful to
identify the couplings that give rise to neutral-current interactions. In the quark mass basis, the
induced couplings of up- and down-type quarks to the Z boson are given by the following linear
combinations of Wilson coe�cients

C(u)
Hq

= V
h
C(1)
Hq

� C(3)
Hq

i
V † , C(d)

Hq
= C(1)

Hq
+ C(3)

Hq
. (3.5)

Similarly, the semileptonic Wilson coe�cients appear as

C(u)
lq

= V
h
C(1)
lq

� C(3)
lq

i
V † , C(d)

lq
= C(1)

lq
+ C(3)

lq
, C̄(1,3)

lequ
= V C(1,3)

lequ
, (3.6)

where C(u)
lq

and C̄(1,3)
lequ

represent the neutral-current couplings between up-type quarks and

charged leptons, while C(d)
lq

and Cledq control the neutral currents between down-type quarks
and charged leptons.

The contributions of these new Wilson coe�cients to CLEW observables can be read o↵ in
a straightforward way in the case of EWPO and neutral-current Drell-Yan, which involve the
diagonal entries of the above couplings. On the other hand, d, s ! u transitions in CC processes,
such as �-decay and CC Drell-Yan, are sensitive to the combinations (D = d, s)

h
V C(d)

Hq
� C(u)

Hq
V
i

uD

,
h
V C(d)

lq
� C(u)
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V
i

``uD
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h
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i

``11
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h
V C†

ledq

i

``22
,

⇣
C̄(1,3)
lequ

⌘†
V

�

``11

. (3.7)

These combinations depend on o↵-diagonal Wilson coe�cients, thus inducing ‘cross-talk’ with
FCNC observables not included in our analysis. Now we discuss the impact of these probes in
greater detail.

Contributions of left-handed interactions to CC processes are proportional to

VuD✏
D`

L =
v2

2

h
V C(d)

Hq
� C(u)

Hq
V
i

uD

�
v2

2

h
V C(d)

lq
� C(u)

lq
V
i

``uD

. (3.8)

Neglecting terms that are suppressed by more than one power of � ⌘ Vus, only a few o↵-diagonal
couplings are expected to contribute without CKM suppression,
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The o↵-diagonal couplings are stringently constrained by the decays of pseudoscalar mesons

to charged leptons. In particular, [C(d)
Hq

]12,21 will have a large impact on kaon decays such

as K ! ⇡ ¯̀̀ , while [C(u)
Hq

]12 a↵ects the analogous D meson decays. We discuss the resulting
constraints in more detail in Appendix C, where the main conclusion is that the o↵-diagonal
elements appearing in Eq. (3.9) are expected to have a minimal impact on low-energy CC

observables because of stringent FCNC constraints. Similarly, [C(u)
Hq

]31 in Eq. (3.9) is constrained
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charged leptons, while C(d)
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and Cledq control the neutral currents between down-type quarks
and charged leptons.

The contributions of these new Wilson coe�cients to CLEW observables can be read o↵ in
a straightforward way in the case of EWPO and neutral-current Drell-Yan, which involve the
diagonal entries of the above couplings. On the other hand, d, s ! u transitions in CC processes,
such as �-decay and CC Drell-Yan, are sensitive to the combinations (D = d, s)
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These combinations depend on o↵-diagonal Wilson coe�cients, thus inducing ‘cross-talk’ with
FCNC observables not included in our analysis. Now we discuss the impact of these probes in
greater detail.
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Neglecting terms that are suppressed by more than one power of � ⌘ Vus, only a few o↵-diagonal
couplings are expected to contribute without CKM suppression,

✏d`L '
v2

2


C(d)
Hq

11

� C(u)
Hq

11

+
Vus

Vud

C(d)
Hq

21

�
Vcd

Vud

C(u)
Hq

12

�
� (CHq ! Clq) ,

✏s`L '
v2

2


Vud

Vus

C(d)
Hq

12

�
Vcs

Vus

C(u)
Hq

12

+ C(d)
Hq

22

� C(u)
Hq

11

�
Vts

Vus

C(u)
Hq

31

�
� (CHq ! Clq) . (3.9)

The o↵-diagonal couplings are stringently constrained by the decays of pseudoscalar mesons

to charged leptons. In particular, [C(d)
Hq

]12,21 will have a large impact on kaon decays such

as K ! ⇡ ¯̀̀ , while [C(u)
Hq

]12 a↵ects the analogous D meson decays. We discuss the resulting
constraints in more detail in Appendix C, where the main conclusion is that the o↵-diagonal
elements appearing in Eq. (3.9) are expected to have a minimal impact on low-energy CC

observables because of stringent FCNC constraints. Similarly, [C(u)
Hq

]31 in Eq. (3.9) is constrained
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by simply replacing uL ! V †uL, where V is the CKM matrix. In addition, it will be useful to
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to charged leptons. In particular, [C(d)
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]12,21 will have a large impact on kaon decays such

as K ! ⇡ ¯̀̀ , while [C(u)
Hq

]12 a↵ects the analogous D meson decays. We discuss the resulting
constraints in more detail in Appendix C, where the main conclusion is that the o↵-diagonal
elements appearing in Eq. (3.9) are expected to have a minimal impact on low-energy CC

observables because of stringent FCNC constraints. Similarly, [C(u)
Hq

]31 in Eq. (3.9) is constrained

12

(mass eigenstates)

by top-quark decays and its contribution to ✏s`
L

is suppressed by a factor of Vts/Vus, so that it
cannot significantly a↵ect the low-energy CC observables. These arguments justify a basis that

includes only the diagonal couplings of C(u,d)
Hq

.

Very similar arguments hold for the coe�cients [C̄(1,3)
lequ

]† and C†
ledq

, whose contributions to

the e↵ective low-energy couplings, ✏S,P,T , have a flavor structure analogous to the C(u)
Hq

and C(d)
Hq

terms in Eq. (3.8), respectively.

The discussion of C(u,d)
lq

is somewhat more involved. Although their appearance in Eq. (3.8)

and (3.6) is analogous to the case of C(u,d)
Hq

couplings, they di↵er due to the fact that these
operators also induce couplings to neutrinos of the form (⌫̄⌫)(q̄q). The flavor structures that
govern neutrino interactions with up- and down-type quarks are given by

C(⌫�u)
lq

= V C(d)
lq

V † , C(⌫�d)
lq

= V †C(u)
lq

V . (3.10)

Thus, o↵-diagonal entries of C(u,d)
lq

can be stringently constrained by meson decays to charged
leptons and neutrinos. The latter are discussed in more detail in Appendix C, where we find

that [C(⌫�d)
lq

]12 is very stringently constrained by K ! ⇡⌫⌫̄, practically forcing [C(u)
lq

]``12 ' 0

and [C(u)
lq

]``11 ' [C(u)
lq

]``22.

The inclusion of low-energy CC processes in the CLEW analysis also a↵ects the linearly
independent combinations of the purely bosonic Wilson coe�cients CHWB and CHD (directly
associated with the Peskin-Takeuchi oblique parameters S and T [84]) that can be constrained
by the data. While ten operators a↵ect EWPO under U(3)5, only eight linear combinations are
actually constrained. We denote these combinations by Ĉi, see Eq. (6.1), which indicates that

C(3)
HF

, with F = {l, q}, appear in a linear combination with CHWB and CHD, while C(1)
HF

and
CHf , with f = {u, d, e}, appear in combination with CHD. Since the low-energy CC observables

(L) are a↵ected by C(3)
HF

but not by CHWB and CHD (see Table 1), they break the degeneracy

between C(3)
HF

and CHWB,HD present in the EW fits. The LEW data thus constrain one linear
combination of CHD and CHWB, which we call CST , while leaving the orthogonal direction,
CTS , unconstrained.

The combinations CST,TS take the form

0

@CST

CTS

1

A ⌘
1p

c2w + 16s2w

0

@4sw cw

�cw 4sw

1

A

0

@CHWB

CHD

1

A , (3.11)

where sw = sin ✓w and cw = cos ✓w, with ✓w being the weak mixing angle. C(1)
HF

and CHf do
not a↵ect the low-energy CC, but do influence the LHC observables by entering the Drell-Yan
process. Their corrections to the Drell-Yan cross section exhibit the same energy dependence
as the SM background. In contrast, the SMEFT 4-fermion operators give corrections with a
stronger energy dependence and dominate the high-energy tail of Drell-Yan processes. Thus,

although some constraints are exerted on C(1)
HF

and CHf by the LHC observables, they are too
weak to substantially lift the degeneracy with CHD. Thus, only the linear combination CST is
well constrained by our CLEW data sets. The orthogonal combination, CTS , on the other hand,
is poorly constrained and we do not include it.
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A CLEWed global analysis 

Large fits (e.g. with 37 Wilson Coefficients) not particularly enlightening 

Not all operators matter for the fit!

Extreme example:   CLEW37 fit with CDF input for  mW

• Best fit W.C.’s  are all consistent with zero at the 2-σ level   

• Analyze eigenvectors of the covariance matrix, their corresponding best fit values, and their 
(uncorrelated) variance  ⇒    A handful of eigenvectors are non-zero at > 3-σ  significance 

0.51CST + 0.33C(3)
Hl
22

+ 0.45C ledq

2222
� 0.40 C̄(1)

lequ

2211

� 0.34C ll
2112

= �0.0016⇥ (3.7± 1)TeV�2 ,

0.41CST � 0.47C(3)
Hl
22

+ 0.42C ll
2112

= �0.0030⇥ (6.5± 1)TeV�2 ,

�0.83CHe
11

� 0.34C(1)
Hl
11

� 0.31C(3)
Hl
11

= 0.0093⇥ (3± 1)TeV�2 . (8.1)

The significant improvement in �AIC is mainly due to the large tension of the CDF W mass.
Fitting CLEW37 with the PDG average of mW instead, we obtain ��2 = 47 and �AIC = �27,
a performance worse than the SM. In this case, there are too many operators that do not
contribute significantly to ��2.

Even with the CDF mW , the inclusion of all 37 operators is ine�cient, resulting in overfitting
and a suboptimal �AIC. In the next section, we perform a systematic analysis of various sce-
narios to pinpoint the SMEFT operators that are most important in addressing the CAA and
the mW anomaly.

8.1 Finding the optimal fit

Section 7 focused on the CAA and we investigated scenarios with various subsets of SMEFT
operators. In these cases, we handpicked the operators that were likely to provide the most
e�cient way to account for the apparent violation of the CKM unitarity. Now that we are also
including the W mass anomaly, this dissection by hand is complicated by the large number of
possible subsets. Therefore, we implement a more systematic approach to find the optimal fit.

Recall that we define a ‘model’ as the SMEFT Lagrangian with a specific subset of Wilson
coe�cients turned on. For example, we found that models with CHud tend to give the highest
�AIC and thus provide a more likely explanation of the CAA. Although we have explored a
fair number of models, they represent only a fraction of the potential combinations of SMEFT
operators. However, evaluating every combination of the 37 operators would amount to 237 =
O(1011) fits, an impractical endeavor. We therefore group the operators into ten categories that
are summarized in Table 9. Our underlying theoretical motivation is that a particular BSM
scenario is unlikely to produce just one quark/lepton flavor component in a specific category.
We therefore turn on, or o↵, all Wilson coe�cients within a certain category simultaneously.
This assumption will be partially relaxed in Section 8.4. For now, we consider all possible
combinations of these ten categories, resulting in 210 = 1024 models.

8.2 PDG value of mW

We start by performing these fits with the PDG value of mW . We show the resulting �AIC as
a function of the number of parameters for all 1024 models in Fig. 12. The figure shows that
the models can be divided into roughly three ‘branches’:

1. Models that include the right-handed current coe�cients CHud (green triangle)

2. Models that include both CST and Cll, but not CHud (orange diamond)

3. Rest of the models (blue circle)
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To gain qualitative and quantitative insight on most relevant operators,  use the 
Akaike Information Criterion

Minimization of AIC: 

balance between goodness of fit (rewarded)  and proliferation of parameters (penalized) 

# of estimated parameters
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Not all operators matter for the fit!



Category Operators Description # of Ops. WPDG
✓

WCDF
✓

I. CST Oblique corrections 1 0.55 1.00

II. CHud RH charged currents 2 0.99 0.96

III. C(1)
Hl

C(3)
Hl

LH lepton vertices 6 0.01 0.11

IV. CHe RH lepton vertices 3 0.09 0.42

V. C(u)
Hq

C(d)
Hq

LH quark vertices 5 0.03 0.13

VI. CHu CHd RH quark vertices 5 0.06 0.32

VII. Cll Lepton 4-fermion 1 0.37 0.87

VIII. C(u)
lq

C(d)
lq

Semileptonic 4-fermion 6 0.03 0.03

IX. Cledq C(1)
lequ

Scalar 4-fermion 6 0.02 0.04

X. C(3)
lequ

Tensor 4-fermion 2 0.13 0.13

Table 9: We divide the 37 operators identified in the left panel of Table 2 into ten categories.
In the third column, each category is described by the type of operators within it, which are
listed in the second column. The fourth column counts how many operators among the 37 are
included in each category. The fifth column gives the total weights of all models that contain
the corresponding category, as described in Eq. (4.8). The sixth column repeats this using the
CDF mW .

The best-performing models fall into the first category which includes right-handed charged
currents. In fact, the optimal model contains �, [CHud]11, [CHud]12, and CST as fit parameters
and has �AIC = 19. The best-fit results are given by

CHud
11

= (�0.030± 0.008)TeV�2 ,

CHud
12

= (�0.040± 0.011)TeV�2 ,

CST = (�0.0038± 0.0022)TeV�2 . (8.2)

The values for CHud are the same as those found in the L2(RH) discussed in the previous
section (see Table 6). The nonzero value of CST accounts for the slight discrepancy in mW that
is present even when the CDF measurement is excluded. In fact, the observables and matrix
elements most improved in this model closely resemble those of L2(RH), which are shown in the
left panel of Fig. 6. In addition, the tension in mW is reduced from approximately 2� to less
than 1�.

The second-best model (with �AIC = 18) is nothing more than L2(RH), while the third-best
model includes CHud and Cll. The two models L7 (V) and L8 (RS) that we studied in Section 7
also fall into this family, with the additional parameters causing a penalty in AIC.

Of the 41 models selected for their performance, where their values of �AIC are within 10
units below the best model, only two exclude the right-handed operator, while they include both
Cll and CST (marked by orange diamonds in Fig. 12). A three-parameter fit with only �, Cll

37

A CLEWed global analysis 
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• Scanned model space by ‘turning on’ 
certain classes of effective couplings 

• Akaike Information Criterion favors  
models with Right-Handed Charged 
Currents of quarks 

• Best fit to CLEW data:  two RH CC 
vertex corrections and the S parameter 

Operators grouped in 10 categories

Scanned this model space 

210 = 1024 ‘models’
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Figure 12: Excluding the CDF mW , we plot �AIC for the 1024 models with respect to their
number of parameters. Models containing the category CHud are marked with green triangles.
Orange diamonds represent those that contain both CST and Cll, but not CHud. The rest of the
models are denoted by blue circles. The purple stars denote the seven models we have analyzed
in Section 7 and are labeled by their acronyms.

and CST has a �AIC = 9, with both Cll and CST nonzero at more than 3�,

Cll = (�0.013± 0.004) TeV�2, CST = �(0.0083± 0.0026) TeV�2 . (8.3)

The combination of Cll and CST performs significantly better than having just one of the two.
Cll can improve low-energy observables at the cost of a poorer description of several EWPO.
Similarly, CST can improve mW a bit but worsens other observables. However, the combination
performs better across the chart.

The nine-parameter model with CST , Cll, and six scalar/pseudoscalar operators yields�AIC =
10. It performs better than the L6(SPS) model, which only contains the scalar/pseudoscalar
operators and has a �AIC = 1, shown in Fig. 12 by a purple star right above the SM line
(�AIC = 0). The remaining three models studied in Section 7, also marked by purple stars, all
have a worse AIC than the SM and thus are disfavored.

Among all models that contain neither CHud nor the pair {CST , Cll} (marked by blue circles),
the best performance, �AIC = 5, is achieved by a model consisting of 13 parameters, including
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Figure 12: Excluding the CDF mW , we plot �AIC for the 1024 models with respect to their
number of parameters. Models containing the category CHud are marked with green triangles.
Orange diamonds represent those that contain both CST and Cll, but not CHud. The rest of the
models are denoted by blue circles. The purple stars denote the seven models we have analyzed
in Section 7 and are labeled by their acronyms.

and CST has a �AIC = 9, with both Cll and CST nonzero at more than 3�,

Cll = (�0.013± 0.004) TeV�2, CST = �(0.0083± 0.0026) TeV�2 . (8.3)

The combination of Cll and CST performs significantly better than having just one of the two.
Cll can improve low-energy observables at the cost of a poorer description of several EWPO.
Similarly, CST can improve mW a bit but worsens other observables. However, the combination
performs better across the chart.

The nine-parameter model with CST , Cll, and six scalar/pseudoscalar operators yields�AIC =
10. It performs better than the L6(SPS) model, which only contains the scalar/pseudoscalar
operators and has a �AIC = 1, shown in Fig. 12 by a purple star right above the SM line
(�AIC = 0). The remaining three models studied in Section 7, also marked by purple stars, all
have a worse AIC than the SM and thus are disfavored.

Among all models that contain neither CHud nor the pair {CST , Cll} (marked by blue circles),
the best performance, �AIC = 5, is achieved by a model consisting of 13 parameters, including

38
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The winner (ΔAIC=19): two RH CC 
vertex corrections and a 
combination of oblique parameters 

(UV completions?   Vector-like 
quarks generate RH CC at tree level 
and oblique at 1-loop)

Category Operators Description # of Ops. WPDG
✓

WCDF
✓

I. CST Oblique corrections 1 0.55 1.00

II. CHud RH charged currents 2 0.99 0.96

III. C(1)
Hl

C(3)
Hl

LH lepton vertices 6 0.01 0.11

IV. CHe RH lepton vertices 3 0.09 0.42

V. C(u)
Hq

C(d)
Hq

LH quark vertices 5 0.03 0.13

VI. CHu CHd RH quark vertices 5 0.06 0.32

VII. Cll Lepton 4-fermion 1 0.37 0.87

VIII. C(u)
lq

C(d)
lq

Semileptonic 4-fermion 6 0.03 0.03

IX. Cledq C(1)
lequ

Scalar 4-fermion 6 0.02 0.04

X. C(3)
lequ

Tensor 4-fermion 2 0.13 0.13

Table 9: We divide the 37 operators identified in the left panel of Table 2 into ten categories.
In the third column, each category is described by the type of operators within it, which are
listed in the second column. The fourth column counts how many operators among the 37 are
included in each category. The fifth column gives the total weights of all models that contain
the corresponding category, as described in Eq. (4.8). The sixth column repeats this using the
CDF mW .

The best-performing models fall into the first category which includes right-handed charged
currents. In fact, the optimal model contains �, [CHud]11, [CHud]12, and CST as fit parameters
and has �AIC = 19. The best-fit results are given by

CHud
11

= (�0.030± 0.008)TeV�2 ,

CHud
12

= (�0.040± 0.011)TeV�2 ,

CST = (�0.0038± 0.0022)TeV�2 . (8.2)

The values for CHud are the same as those found in the L2(RH) discussed in the previous
section (see Table 6). The nonzero value of CST accounts for the slight discrepancy in mW that
is present even when the CDF measurement is excluded. In fact, the observables and matrix
elements most improved in this model closely resemble those of L2(RH), which are shown in the
left panel of Fig. 6. In addition, the tension in mW is reduced from approximately 2� to less
than 1�.

The second-best model (with �AIC = 18) is nothing more than L2(RH), while the third-best
model includes CHud and Cll. The two models L7 (V) and L8 (RS) that we studied in Section 7
also fall into this family, with the additional parameters causing a penalty in AIC.

Of the 41 models selected for their performance, where their values of �AIC are within 10
units below the best model, only two exclude the right-handed operator, while they include both
Cll and CST (marked by orange diamonds in Fig. 12). A three-parameter fit with only �, Cll

37



VC, W. Dekens, J. De Vries,  E. Mereghetti, T. Tong,  JHEP 03 (24) 33, arXiv: 2311.00021

in
cl
u
d
in
g
th
e
sa
m
e
se
t
of

ob
se
rv
ab

le
s
b
u
t
d
i↵
er
en
t
p
ar
am

et
er
s,
in
st
ea
d
of

u
si
n
g
th
e
�
2
p
er

d
eg
re
e

of
fr
ee
d
om

cr
it
er
io
n
,
w
e
ap

p
ly

th
e
A
IC

[2
1]
.

A
IC

is
of
te
n
u
se
d
in

m
od

el
se
le
ct
io
n
.
It

is
a
m
ea
su
re

th
at

b
al
an

ce
s
th
e
go

od
n
es
s
of

fi
t
of

a
m
od

el
ag
ai
n
st

it
s
co
m
p
le
xi
ty
.
T
h
e
A
IC

is
co
m
p
u
te
d
u
si
n
g
th
e
nu

m
b
er

of
p
ar
am

et
er
s
in

th
e

m
od

el
an

d
th
e
m
ax

im
u
m

li
ke
li
h
oo

d
of

th
e
m
od

el
.
In

ou
r
ca
se
,
th
e
A
IC

of
a
fi
t
ca
n
b
e
p
re
se
nt
ed

as

A
IC

=
� M

in
im

al
�
2
� +

2
⇥
(N

u
m
b
er

of
th
e
p
ar
am

et
er
s)

,
(4
.3
)

w
h
er
e
th
e
p
ar
am

et
er
s
h
er
e
re
fe
r
to

th
e
co
n
si
d
er
ed

W
il
so
n
co
e�

ci
en
ts

an
d
�
.
D
ep

en
d
in
g
on

th
e

ob
se
rv
ab

le
s
th
at

ar
e
co
n
si
d
er
ed
,
th
e
p
ar
am

et
er
s
m
ay

al
so

in
cl
u
d
e
se
ve
ra
l
m
at
ri
x
el
em

en
ts

an
d

p
ar
am

et
er
s
th
at

d
es
cr
ib
e
th
eo
re
ti
ca
l
u
n
ce
rt
ai
nt
ie
s.

T
h
e
lo
w
er

th
e
A
IC

,
th
e
b
et
te
r
th
e
m
od

el
is

co
n
si
d
er
ed

to
d
es
cr
ib
e
th
e
d
at
a,

so
th
e
d
i↵
er
en
ce

A
IC

i
�
A
IC

j
is
a
m
ea
su
re

of
th
e
im

p
ro
ve
m
en
t

of
m
od

el
j
ov
er

i.
A
s
m
or
e
p
ar
am

et
er
s
(s
u
ch

as
W

il
so
n

co
e�

ci
en
ts
)
ar
e
ad

d
ed

to
a
m
od

el
,

it
m
ay

b
et
te
r
fi
t
th
e
d
at
a,

b
u
t
it

al
so

b
ec
om

es
m
or
e
co
m
p
le
x
an

d
ru
n
s
th
e
ri
sk

of
ov
er
fi
tt
in
g.

T
h
e
A
IC

b
al
an

ce
s
th
es
e
co
n
si
d
er
at
io
n
s
by

p
en
al
iz
in
g
m
od

el
s
fo
r
in
tr
od

u
ci
n
g
m
or
e
p
ar
am

et
er
s

w
it
h
ou

t
a
co
rr
es
p
on

d
in
g
d
ec
re
as
e
in

�
�
2
.
U
se
d
in

co
n
ju
n
ct
io
n
w
it
h
th
e
�
2
m
et
h
od

,
A
IC

te
n
d
s

to
fi
n
d
a
m
od

el
th
at

n
ot

on
ly

fi
ts

th
e
ex
p
er
im

en
ta
l
d
at
a
w
el
l
b
u
t
al
so

av
oi
d
s
ov
er
co
m
p
li
ca
ti
on

,
th
u
s
im

p
ro
vi
n
g
it
s
p
re
d
ic
ti
ve

ac
cu
ra
cy
.

In
ou

r
an

al
ys
is
,
w
e
w
il
l
of
te
n
b
e
in
te
re
st
ed

in
co
m
p
ar
in
g
th
e
S
M

fi
t
w
it
h
S
M
E
F
T

sc
en
ar
io
s.

W
e
w
il
l
th
u
s
ta
ke

th
e
S
M

as
th
e
re
fe
re
n
ce

m
od

el
,
an

d
d
efi
n
e
d
i↵
er
en
ce
s
in

A
IC

as

�
A
IC

i
=

A
IC

S
M
�
A
IC

i
,

(4
.4
)

w
h
er
e
i
d
en
ot
es

a
p
ar
ti
cu
la
r
S
M
E
F
T

m
od

el
.
H
er
e
an

d
in

w
h
at

fo
ll
ow

s,
w
e
w
il
l
d
efi
n
e
a
‘S
M
E
F
T

m
od

el
’
as

th
e
S
M
E
F
T

w
it
h
a
su
b
se
t
of

W
il
so
n
co
e�

ci
en
ts

tu
rn
ed

on
,
w
it
h
th
e
re
m
ai
n
in
g
co
u
-

p
li
n
gs

se
t
to

ze
ro
.

A
n
ad

va
nt
ag
e
of

th
e
d
efi
n
it
io
n
in

E
q.

(4
.4
)
is

th
at

th
e
S
M

p
ar
am

et
er

�
,

th
e
m
at
ri
x
el
em

en
ts
,
an

d
th
e
p
ar
am

et
er
s
th
at

d
es
cr
ib
e
th
e
th
eo
re
ti
ca
l
u
n
ce
rt
ai
nt
ie
s
d
ro
p
ou

t
in

th
e
ca
lc
u
la
ti
on

of
�
A
IC

i
.
N
ot
ic
e
th
at
,
w
it
h
ou

r
d
efi
n
it
io
n
,
�
A
IC

i
>

0
im

p
li
es

th
at

a
m
od

el
p
er
fo
rm

s
b
et
te
r
th
an

th
e
S
M
.

In
ad

d
it
io
n
to

th
e
ov
er
al
l
qu

al
it
y
of

th
e
fi
t,

as
m
ea
su
re
d
by

th
e
A
IC

,
w
e
ar
e
al
so

in
te
re
st
ed

in
th
e
b
es
t-
fi
t
va
lu
es
,
u
n
ce
rt
ai
nt
ie
s,

an
d
co
rr
el
at
io
n
s
of

th
e
W

il
so
n
co
e�

ci
en
ts

an
d
th
e
ot
h
er

fi
t

p
ar
am

et
er
s.

W
e
u
se

th
e
fa
ct

th
at

th
e
ob

se
rv
ab

le
s
ar
e
li
n
ea
r
in

th
e
W

il
so
n
co
e�

ci
en
ts

to
re
w
ri
te

�
2
=

�
2 m
in
+
(C

�
µ
)T
V̂

�
1
(C

�
µ
)
,

(4
.5
)

w
h
er
e
C

an
d
µ
ar
e
ve
ct
or
s
of

m
od

el
p
ar
am

et
er
s
(W

il
so
n
co
e�

ci
en
ts
)
an

d
th
ei
r
b
es
t-
fi
t
va
lu
es
,

w
h
il
e
V̂

is
th
e
co
va
ri
an

ce
m
at
ri
x
of

th
e
m
od

el
p
ar
am

et
er
s

(V̂
�
1
) i
j
=

1 2

@
2
�
2

@
C
i
@
C
j

� � � C
=
µ

.
(4
.6
)

T
h
e
u
n
ce
rt
ai
nt
ie
s
of

C
i
ca
n
n
ow

b
e
re
ad

fr
om

�̂
2 i
=

V̂
i
i
,
w
h
il
e
th
e
co
rr
el
at
io
n
s
b
et
w
ee
n
th
e
m
od

el
p
ar
am

et
er
s
ar
e
gi
ve
n
by

dco
rr

i
j
=

�̂
�
1

i
V̂
i
j
�̂
�
1

j
.

B
ec
au

se
V̂

�
1
is

sy
m
m
et
ri
c,

it
ca
n
b
e
d
ia
go
n
al
iz
ed

by
an

or
th
og

on
al

m
at
ri
x,

w
h
ic
h
im

p
li
es

th
at

th
er
e
ar
e
li
n
ea
r
co
m
b
in
at
io
n
s
of

C
i
,
co
rr
es
p
on

d
in
g
to

th
e
ei
ge
nv

ec
to
rs

of
V̂

�
1
,
th
at

ar
e
n
ot

co
rr
el
at
ed
.
T
h
is
d
ia
go
n
al
iz
at
io
n
al
lo
w
s
on

e
to

se
e
w
h
ic
h
co
m
b
in
at
io
n
s
of

W
il
so
n
co
e�

ci
en
ts

th
e

ob
se
rv
ab

le
s
ar
e
m
os
t
se
n
si
ti
ve

to
an

d
w
h
ic
h
co
m
b
in
at
io
n
s
ar
e
m
os
t
fa
vo
re
d
to

b
e
n
on

ze
ro
.
T
h
is

17

*

*

*

*
*

*

*

0 10 20 30 40
-30

-20

-10

0

10

20

Figure 12: Excluding the CDF mW , we plot �AIC for the 1024 models with respect to their
number of parameters. Models containing the category CHud are marked with green triangles.
Orange diamonds represent those that contain both CST and Cll, but not CHud. The rest of the
models are denoted by blue circles. The purple stars denote the seven models we have analyzed
in Section 7 and are labeled by their acronyms.

and CST has a �AIC = 9, with both Cll and CST nonzero at more than 3�,

Cll = (�0.013± 0.004) TeV�2, CST = �(0.0083± 0.0026) TeV�2 . (8.3)

The combination of Cll and CST performs significantly better than having just one of the two.
Cll can improve low-energy observables at the cost of a poorer description of several EWPO.
Similarly, CST can improve mW a bit but worsens other observables. However, the combination
performs better across the chart.

The nine-parameter model with CST , Cll, and six scalar/pseudoscalar operators yields�AIC =
10. It performs better than the L6(SPS) model, which only contains the scalar/pseudoscalar
operators and has a �AIC = 1, shown in Fig. 12 by a purple star right above the SM line
(�AIC = 0). The remaining three models studied in Section 7, also marked by purple stars, all
have a worse AIC than the SM and thus are disfavored.

Among all models that contain neither CHud nor the pair {CST , Cll} (marked by blue circles),
the best performance, �AIC = 5, is achieved by a model consisting of 13 parameters, including
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The runner-up (ΔAIC=18):               
just two RH CC vertex corrections! 
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-0.06

-0.05

-0.04

-0.03
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-0.01

0.00

+

●

Figure 5: Results of the L2(RH) fit to low-energy CC observables involving two Wilson coe�-
cients [CHud]11 and [CHud]12, given in units of TeV�2. Three contours illustrate the likelihoods
of 1, 2, and 3�. The best-fit point is marked by a yellow cross, whereas the origin (the SM
point) is marked by a blue dot.

L2(RH) L6(SPS) L8

[CHud]11 �0.030± 0.008 – �0.058± 0.079

[CHud]12 �0.040± 0.011 – 0.080± 0.35

[Cledq]1111 – �0.014± 0.006 0.0010± 0.0075

[Cledq]1122 – �0.014± 0.006 0.0009± 0.0075

[C̄(1)
lequ

]1111 – �0.014± 0.006 0.0010± 0.0075

[Cledq]2211 – 0.0062± 0.0042 0.017± 0.039

[Cledq]2222 – 0.0006± 0.0045 �0.0096± 0.036

[C̄(1)
lequ

]2211 – 0.0054± 0.0043 0.014± 0.036

Table 6: Central values and 1� uncertainties for the Wilson coe�cients in the L2 (RH), L6
(SPS) and L8 (RS) fits, given in units of TeV�2.

The corresponding eigenvectors are given by

0.28CHud
11

+ 0.96CHud
12

= �0.011⇥ (4.2± 1)TeV�2 ,

0.96CHud
11

� 0.28CHud
12

= �0.0076⇥ (2.1± 1)TeV�2 , (7.1)

and thus, respectively, 4.2� and 2.1� away from zero.
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Figure 12: Excluding the CDF mW , we plot �AIC for the 1024 models with respect to their
number of parameters. Models containing the category CHud are marked with green triangles.
Orange diamonds represent those that contain both CST and Cll, but not CHud. The rest of the
models are denoted by blue circles. The purple stars denote the seven models we have analyzed
in Section 7 and are labeled by their acronyms.

and CST has a �AIC = 9, with both Cll and CST nonzero at more than 3�,

Cll = (�0.013± 0.004) TeV�2, CST = �(0.0083± 0.0026) TeV�2 . (8.3)

The combination of Cll and CST performs significantly better than having just one of the two.
Cll can improve low-energy observables at the cost of a poorer description of several EWPO.
Similarly, CST can improve mW a bit but worsens other observables. However, the combination
performs better across the chart.

The nine-parameter model with CST , Cll, and six scalar/pseudoscalar operators yields�AIC =
10. It performs better than the L6(SPS) model, which only contains the scalar/pseudoscalar
operators and has a �AIC = 1, shown in Fig. 12 by a purple star right above the SM line
(�AIC = 0). The remaining three models studied in Section 7, also marked by purple stars, all
have a worse AIC than the SM and thus are disfavored.

Among all models that contain neither CHud nor the pair {CST , Cll} (marked by blue circles),
the best performance, �AIC = 5, is achieved by a model consisting of 13 parameters, including
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• Most important operators:  R-handed CC,  
oblique corrections, 4-lepton 

• R-handed neutral currents (CHe, CHd) 
appear in ‘next best models’:  mitigate 
some Z-pole tensions
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Figure 13: Model-averaged weights for each category of operators, as defined in Eq. (4.8).
Yellow bars: PDG world average of mW . Blue bars: CDF measurement of mW .

CST , the left-handed quark vertices C(u)
Hq

and C(d)
Hq

, and the scalar/pseudoscalar four-fermion

operators Cledq and C(1)
lequ

.

Using the sum of weights W✓ to assess the importance of a given operator, the yellow bars
in Fig. 13 show that CHud is the most important4 with W = 0.99. CST and Cll are the second
and third most important with W = 0.55 and 0.33, respectively, followed by the tensor operator

C(3)
lequ

and the right-handed leptonic vertex corrections CHe, with W ⇠ 0.1. All other operators
have W < 0.1. Using Eq. (4.9), we can provide the model-averaged best-fit values of the most
important Wilson coe�cients,

CHud
11

= �0.029± 0.016 TeV�2, CHud
12

= �0.039± 0.014 TeV�2,

CST = �0.0045± 0.0032 TeV�2, Cll = �0.001± 0.012 TeV�2. (8.4)

Compared to Eq. (8.2), we see that even after model averaging there is evidence for an up-
strange RH current at the 2.7� level, with � defined in Eq. (4.9). The evidence for an up-down
RH current is diluted to roughly 2�. CST deviates from zero by slightly more than 1�, while
Cll is compatible with zero. The values in Eq. (8.4) may provide guidance for model building.

8.3 CDF value of mW

We now repeat our analysis including the CDF mW . We plot �AIC as a function of the number
of parameters for all 1024 fits in Fig. 14. Although it is harder to identify distinct ‘branches’

4A weight of 0.99 means that the 512 models that do not contain right-handed currents collectively carry only
1% of the weight as defined in Eq. (4.8).
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diagonalization can be performed through RT V̂ �1R = v̂, with v̂ a diagonal matrix and R an
orthogonal matrix. The uncorrelated combinations of Wilson coe�cients and the best-fit values
are given by C 0 = RTC and µ0 = RTµ. Here, R is determined by the eigenvectors of V̂ �1, while
the uncertainties of C 0

i
are determined by the eigenvalues of V̂ �1.

4.1 Model averaging

When considering a large number of scenarios involving di↵erent sets of operators, it becomes
interesting to see how (un)favored nonzero values of a particular Wilson coe�cient are across
di↵erent fits. One robust method to tackle this is model averaging using the AIC. Here, we
follow Burnham and Anderson [85], who advocated for the assignment of weights to individual
models based on their AIC scores, thus allowing the derivation of model-averaged estimates for
the parameters. The weight of a model is defined by

wi =
e

1
2�AICi

P
j
e

1
2�AICj

. (4.7)

Notice that the weights wi do not depend on the fact that we used the SM as a reference in the
definition of �AICj . The quality of the models that involve a given SMEFT coe�cient, ✓, will
be gauged by considering the sum of the weights of all the models in which ✓ is turned on,

W✓ =
X

i

wiI✓(i) , (4.8)

where I✓(i) = 1 if the model, i, contains the parameter ✓, and I✓(i) = 0 if it does not. For
the most significant coe�cients, with W✓ = O(1), we will be interested in providing a model-
averaged central value and an estimator of the standard deviation [85],

✓̄ =

P
wiI✓(i)✓i
W✓

, �✓ =

P
wiI✓(i)

q
�2
✓i
+ (✓i � ✓̄)2

W✓

, (4.9)

where ✓i and �✓i are the best-fit value and uncertainty of the Wilson coe�cient ✓ in model i,
respectively. Wilson coe�cients which have W✓ ⌧ 1 are only present in models of poor quality,
making their model-averaged values less important, and we will not consider them.

5 SM analysis

We begin our analysis by studying the Standard Model and the status of the CAA. The numbers
of measurements included in the di↵erent data sets are shown in Table 3. For the collider
data, this represents the total number of bins extracted from the package HighPT. Our most
comprehensive data set, CLEW, contains 239 measurements in total.

The matrix elements a↵ecting the low-energy fit are summarized in Table 14. They do not
a↵ect the number of degrees of freedom as we add a term in �2 for each, e↵ectively treating the
theoretical central value and uncertainty as a ‘measurement’. The parameters ⌘1,2,3, which cap-
ture theoretical uncertainties in superallowed � decays, are treated in a similar manner. When
counting degrees of freedom, in addition to the number of observables and the fit parameters of
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• Qualitatively similar** conclusions if one includes the CDF mW measurement  
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Figure 12: Excluding the CDF mW , we plot �AIC for the 1024 models with respect to their
number of parameters. Models containing the category CHud are marked with green triangles.
Orange diamonds represent those that contain both CST and Cll, but not CHud. The rest of the
models are denoted by blue circles. The purple stars denote the seven models we have analyzed
in Section 7 and are labeled by their acronyms.

and CST has a �AIC = 9, with both Cll and CST nonzero at more than 3�,

Cll = (�0.013± 0.004) TeV�2, CST = �(0.0083± 0.0026) TeV�2 . (8.3)

The combination of Cll and CST performs significantly better than having just one of the two.
Cll can improve low-energy observables at the cost of a poorer description of several EWPO.
Similarly, CST can improve mW a bit but worsens other observables. However, the combination
performs better across the chart.

The nine-parameter model with CST , Cll, and six scalar/pseudoscalar operators yields�AIC =
10. It performs better than the L6(SPS) model, which only contains the scalar/pseudoscalar
operators and has a �AIC = 1, shown in Fig. 12 by a purple star right above the SM line
(�AIC = 0). The remaining three models studied in Section 7, also marked by purple stars, all
have a worse AIC than the SM and thus are disfavored.

Among all models that contain neither CHud nor the pair {CST , Cll} (marked by blue circles),
the best performance, �AIC = 5, is achieved by a model consisting of 13 parameters, including
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Figure 14: Including the CDF mW , we plot �AIC for the 1024 models with respect to their
corresponding number of parameters. The legend shows various categories of Wilson coe�cients
contained in the models, denoted by the corresponding markers.

compared to the PDG results in Fig. 12, the same Wilson coe�cients appear in the highly
performing models: CHud, CST , and Cll (models that include these operators are denoted by
yellow diamonds). In fact, the best model contains only these four operators with their best-fit
values given by

CHud
11

= 0.025± 0.024 TeV�2 , CHud
12

= �0.033± 0.011 TeV�2 ,

CST = �0.022± 0.004 TeV�2 , C ll
2112

= �0.028± 0.011 TeV�2 . (8.5)

This fit has a very high �AIC = 63. We show how it improves certain observables and matrix
elements in the left panel of Fig. 15. In particular, the four operators can reduce the tension in
mW to 1.5� and take care of the problems in kaon and 0+ ! 0+ decays. However, they increase
the tension in forward-backward asymmetry of the bottom quark, A0,b

FB
. We also see this in

Fig. 10 associated with the CLEW22 analysis.
Interestingly, the second-best model contains 12 independent Wilson coe�cients. In addition

to those four in the best model, it includes three RH lepton vertices (CHe) and five RH quark
vertices (CHu and CHd). Despite the inclusion of eight additional parameters, it achieves a
similar �AIC = 62. The best-fit values are given in the third column of Table 10, and the
improvements in observables are illustrated on the right of Fig. 15. Compared to those of the
best-fit model on the left, we see that the high tension in A0,b

FB
disappears due to the nonzero

values of [CHe]11 and [CHd]33, which both have a significance level of 2�. This e↵ect can be
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Figure 13: Model-averaged weights for each category of operators, as defined in Eq. (4.8).
Yellow bars: PDG world average of mW . Blue bars: CDF measurement of mW .

CST , the left-handed quark vertices C(u)
Hq

and C(d)
Hq

, and the scalar/pseudoscalar four-fermion

operators Cledq and C(1)
lequ

.

Using the sum of weights W✓ to assess the importance of a given operator, the yellow bars
in Fig. 13 show that CHud is the most important4 with W = 0.99. CST and Cll are the second
and third most important with W = 0.55 and 0.33, respectively, followed by the tensor operator

C(3)
lequ

and the right-handed leptonic vertex corrections CHe, with W ⇠ 0.1. All other operators
have W < 0.1. Using Eq. (4.9), we can provide the model-averaged best-fit values of the most
important Wilson coe�cients,

CHud
11

= �0.029± 0.016 TeV�2, CHud
12

= �0.039± 0.014 TeV�2,

CST = �0.0045± 0.0032 TeV�2, Cll = �0.001± 0.012 TeV�2. (8.4)

Compared to Eq. (8.2), we see that even after model averaging there is evidence for an up-
strange RH current at the 2.7� level, with � defined in Eq. (4.9). The evidence for an up-down
RH current is diluted to roughly 2�. CST deviates from zero by slightly more than 1�, while
Cll is compatible with zero. The values in Eq. (8.4) may provide guidance for model building.

8.3 CDF value of mW

We now repeat our analysis including the CDF mW . We plot �AIC as a function of the number
of parameters for all 1024 fits in Fig. 14. Although it is harder to identify distinct ‘branches’

4A weight of 0.99 means that the 512 models that do not contain right-handed currents collectively carry only
1% of the weight as defined in Eq. (4.8).
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and C(d)
Hq

, and the scalar/pseudoscalar four-fermion

operators Cledq and C(1)
lequ

.

Using the sum of weights W✓ to assess the importance of a given operator, the yellow bars
in Fig. 13 show that CHud is the most important4 with W = 0.99. CST and Cll are the second
and third most important with W = 0.55 and 0.33, respectively, followed by the tensor operator

C(3)
lequ

and the right-handed leptonic vertex corrections CHe, with W ⇠ 0.1. All other operators
have W < 0.1. Using Eq. (4.9), we can provide the model-averaged best-fit values of the most
important Wilson coe�cients,

CHud
11

= �0.029± 0.016 TeV�2, CHud
12

= �0.039± 0.014 TeV�2,

CST = �0.0045± 0.0032 TeV�2, Cll = �0.001± 0.012 TeV�2. (8.4)

Compared to Eq. (8.2), we see that even after model averaging there is evidence for an up-
strange RH current at the 2.7� level, with � defined in Eq. (4.9). The evidence for an up-down
RH current is diluted to roughly 2�. CST deviates from zero by slightly more than 1�, while
Cll is compatible with zero. The values in Eq. (8.4) may provide guidance for model building.

8.3 CDF value of mW

We now repeat our analysis including the CDF mW . We plot �AIC as a function of the number
of parameters for all 1024 fits in Fig. 14. Although it is harder to identify distinct ‘branches’

4A weight of 0.99 means that the 512 models that do not contain right-handed currents collectively carry only
1% of the weight as defined in Eq. (4.8).
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• Qualitatively similar** conclusions if one includes the CDF mW measurement  
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Figure 12: Excluding the CDF mW , we plot �AIC for the 1024 models with respect to their
number of parameters. Models containing the category CHud are marked with green triangles.
Orange diamonds represent those that contain both CST and Cll, but not CHud. The rest of the
models are denoted by blue circles. The purple stars denote the seven models we have analyzed
in Section 7 and are labeled by their acronyms.

and CST has a �AIC = 9, with both Cll and CST nonzero at more than 3�,

Cll = (�0.013± 0.004) TeV�2, CST = �(0.0083± 0.0026) TeV�2 . (8.3)

The combination of Cll and CST performs significantly better than having just one of the two.
Cll can improve low-energy observables at the cost of a poorer description of several EWPO.
Similarly, CST can improve mW a bit but worsens other observables. However, the combination
performs better across the chart.

The nine-parameter model with CST , Cll, and six scalar/pseudoscalar operators yields�AIC =
10. It performs better than the L6(SPS) model, which only contains the scalar/pseudoscalar
operators and has a �AIC = 1, shown in Fig. 12 by a purple star right above the SM line
(�AIC = 0). The remaining three models studied in Section 7, also marked by purple stars, all
have a worse AIC than the SM and thus are disfavored.

Among all models that contain neither CHud nor the pair {CST , Cll} (marked by blue circles),
the best performance, �AIC = 5, is achieved by a model consisting of 13 parameters, including
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Figure 14: Including the CDF mW , we plot �AIC for the 1024 models with respect to their
corresponding number of parameters. The legend shows various categories of Wilson coe�cients
contained in the models, denoted by the corresponding markers.

compared to the PDG results in Fig. 12, the same Wilson coe�cients appear in the highly
performing models: CHud, CST , and Cll (models that include these operators are denoted by
yellow diamonds). In fact, the best model contains only these four operators with their best-fit
values given by

CHud
11

= 0.025± 0.024 TeV�2 , CHud
12

= �0.033± 0.011 TeV�2 ,

CST = �0.022± 0.004 TeV�2 , C ll
2112

= �0.028± 0.011 TeV�2 . (8.5)

This fit has a very high �AIC = 63. We show how it improves certain observables and matrix
elements in the left panel of Fig. 15. In particular, the four operators can reduce the tension in
mW to 1.5� and take care of the problems in kaon and 0+ ! 0+ decays. However, they increase
the tension in forward-backward asymmetry of the bottom quark, A0,b

FB
. We also see this in

Fig. 10 associated with the CLEW22 analysis.
Interestingly, the second-best model contains 12 independent Wilson coe�cients. In addition

to those four in the best model, it includes three RH lepton vertices (CHe) and five RH quark
vertices (CHu and CHd). Despite the inclusion of eight additional parameters, it achieves a
similar �AIC = 62. The best-fit values are given in the third column of Table 10, and the
improvements in observables are illustrated on the right of Fig. 15. Compared to those of the
best-fit model on the left, we see that the high tension in A0,b

FB
disappears due to the nonzero

values of [CHe]11 and [CHd]33, which both have a significance level of 2�. This e↵ect can be
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Figure 13: Model-averaged weights for each category of operators, as defined in Eq. (4.8).
Yellow bars: PDG world average of mW . Blue bars: CDF measurement of mW .

CST , the left-handed quark vertices C(u)
Hq

and C(d)
Hq

, and the scalar/pseudoscalar four-fermion

operators Cledq and C(1)
lequ

.

Using the sum of weights W✓ to assess the importance of a given operator, the yellow bars
in Fig. 13 show that CHud is the most important4 with W = 0.99. CST and Cll are the second
and third most important with W = 0.55 and 0.33, respectively, followed by the tensor operator

C(3)
lequ

and the right-handed leptonic vertex corrections CHe, with W ⇠ 0.1. All other operators
have W < 0.1. Using Eq. (4.9), we can provide the model-averaged best-fit values of the most
important Wilson coe�cients,

CHud
11

= �0.029± 0.016 TeV�2, CHud
12

= �0.039± 0.014 TeV�2,

CST = �0.0045± 0.0032 TeV�2, Cll = �0.001± 0.012 TeV�2. (8.4)

Compared to Eq. (8.2), we see that even after model averaging there is evidence for an up-
strange RH current at the 2.7� level, with � defined in Eq. (4.9). The evidence for an up-down
RH current is diluted to roughly 2�. CST deviates from zero by slightly more than 1�, while
Cll is compatible with zero. The values in Eq. (8.4) may provide guidance for model building.

8.3 CDF value of mW

We now repeat our analysis including the CDF mW . We plot �AIC as a function of the number
of parameters for all 1024 fits in Fig. 14. Although it is harder to identify distinct ‘branches’

4A weight of 0.99 means that the 512 models that do not contain right-handed currents collectively carry only
1% of the weight as defined in Eq. (4.8).
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and the right-handed leptonic vertex corrections CHe, with W ⇠ 0.1. All other operators
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Compared to Eq. (8.2), we see that even after model averaging there is evidence for an up-
strange RH current at the 2.7� level, with � defined in Eq. (4.9). The evidence for an up-down
RH current is diluted to roughly 2�. CST deviates from zero by slightly more than 1�, while
Cll is compatible with zero. The values in Eq. (8.4) may provide guidance for model building.

8.3 CDF value of mW

We now repeat our analysis including the CDF mW . We plot �AIC as a function of the number
of parameters for all 1024 fits in Fig. 14. Although it is harder to identify distinct ‘branches’

4A weight of 0.99 means that the 512 models that do not contain right-handed currents collectively carry only
1% of the weight as defined in Eq. (4.8).
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CKM “anomaly” not ruled out by other data! 
Unitarity test provides relevant input to unravel possible new physics. 
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Falsifying R-handed current hypothesis
VC, W. Dekens, J. De Vries,  E. Mereghetti, T. Tong,  2311.00021

• Currently less-sensitive probes of R-handed couplings

• gA/gV:  neutron decay  vs  Lattice QCD (need ~ order 
of magnitude theoretical improvement) 

• K →(ππ)I=2 decay amplitude: experiment vs Lattice 
QCD (difficult to improve) 

• WH & WZ production at the High Luminosity LHC 
will reach sensitivity need to test the R-handed 
current solution to the Cabibbo angle anomaly  

Figure 18: Tree level corrections from the RH CC operator CHud to WH and WZ production
at the LHC. CHud is denoted by a square, while SM vertices are denoted by a circle.

SM background. On the other hand, CHud gives large corrections to the associated production
of the W and Higgs boson (WH) and to the production of the W and Z boson (WZ). In the
former case, contact interactions between two quarks, one Higgs and a W , shown by the first
diagram in Fig. 18, induce corrections to WH that are enhanced by s/m2

W compared to the
SM. In WZ production, the presence of a right-handed current a↵ects cancelation between the
t- and s-channel diagrams and also leads to corrections that increase in energy as s/m2

W .
Corrections to WH were discussed in Ref. [33, 60]. Defining the signal strength

µWH =
�W+H + �W�H

�SM

W+H + �SM

W�H

= 1 +
X

ij

aij
⇥
v2CHud

⇤2
ij
, (6.16)

at NLO in QCD the coe�cients a are [60]

a11(13TeV) = 1.6(1) · 102 , a11(14TeV) = 1.7(1) · 102 ,

a12(13TeV) = 0.9(2) · 102 , a12(14TeV) = 1.0(1) · 102 , (6.17)

where the error comes from PDF and scale uncertainties. The latest results from the ATLAS
and CMS collaboration are [61, 62]

µWH(13TeV)|ATLAS = 1.2± 0.2 , µWH(13TeV)|CMS = 1.4± 0.3 , (6.18)

leading to
|[CHud]11| < 0.95 TeV�2 , |[CHud]12| < 1.3 TeV�2 . (6.19)

These limits are about a factor of three/four too weak to constrain the region allowed by the
global fit results presented in Table ??. Being the scaling quadratic with the coe�cient, mea-
surements of the signal strength alone will not be su�cient to competitively constrain CHud.
However, the enhancement of the SMEFT corrections is more pronounced at high Higgs or W
transverse momentum or HW invariant mass, so that dedicated high pT measurements could
further constrain right-handed operators [33, 60].

We calculated the WZ cross section by extending the POWHEG implementation of WZ produc-
tion in the SM [63] to right-handed W couplings. The corrections to the inclusive cross section
are a factor of ten smaller compared to WH, for example, at 13 TeV

µWZ =
�W+Z + �W�Z

�SM

W+Z + �SM

W�Z

= 1 + 19
⇥
v2CHud

⇤2
11

+ 9
⇥
v2CHud

⇤2
12
. (6.20)

However, the absolute cross section is larger, and we can exploit more precise measurements of
the total cross section and di↵erential measurements at high transverse momentum or invariant
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Figure 16: Left panel: the figure shows the L2(RH) scenario with the fit to L observables shown
in red, while the constraint from A2 is shown in blue. The combination of the two is depicted
by the dashed black lines. Right panel: the constraints from EDMs (red) and "0/"K (blue), as
well as their combination (black, dashed), on the imaginary parts of the CHud couplings.

can see that the regions preferred by the fits to � and kaon decays and the constraints from A2

are compatible at the 1� level. The joint fit gives

[CHud]11 = �0.030± 0.0084 , [CHud]12 = �0.026± 0.0085 . (9.14)

The addition of A2 to the fit currently somewhat shifts the best fit point of the L2(RH) scenario
discussed in Section 7 (see Table 6). The preferred value of [CHud]12 is most a↵ected by A2,
although the shift is not greater than ⇠ 1�. Future improvements in the lattice determination
of ASM

2 could provide a more sensitive probe of the RH couplings.

EDMs and ✏0/✏: The phases of the RH CC coe�cients [CHud]11 and [CHud]12 induce tree-level
corrections to the neutron EDM, to atomic EDMs, and to direct CP-violation in kaon decays
(✏0/✏), through the non-leptonic operators O1LR and O2LR. These contributions were studied
in Refs. [96, 101], and lead to very strong constraints, shown in the right panel of Fig. 16. The
constraints on the imaginary parts of [CHud]11 and [CHud]12 can be naively translated into scales
in the 250 to 500 TeV range, much larger than the scales associated with the real part.

Similarly, the CP-violating partner of QHWB contributes to the electron EDM at one loop. In
a single coupling scenario, its coe�cient is restricted to below 3⇥10�6TeV�2 (95% CL) [102,103].
While the combination of right-handed charged currents and oblique corrections provides an
attractive explanation for the CAA and tensions in EWPO, when matching to concrete UV-
complete models, some care must be taken to ensure that their phases are aligned with the
SM.

9.2 Collider signatures

CHWB and CHD are degenerate in EWPO. The degeneracy is broken in Higgs observables, WZ,
and WW production data [41, 65, 104, 105]. With new and more precise data from the LHC,
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Falsifying R-handed current hypothesis

VC, W. Dekens, J. De Vries,  E. Mereghetti, T. Tong,  2311.00021

• Two options  (besides comparing gA  from experiment and Lattice QCD) 

• K →(ππ)I=2 decay amplitude: experiment vs Lattice QCD 

• WH & WZ production at the High Luminosity LHC 

Figure 19: Di↵erential cross section as a function of the variable M(WZ) [64], which provides
a proxy for the WZ invariant mass. The blue line is the SM prediction. The green and red
line add the contribution of [CHud]11 and [CHud]12 on top of the SM. The black point are data
from [64]

.

mass. For example, Fig. 19 illustrates the corrections from right-handed current operators to
the di↵erential cross section with respect to the invariant mass of the WZ pair, with the W
and Z decaying leptonically. As discussed in Ref. [64], the variable M(WZ) is reconstructed
from the neutrino and charged lepton momenta, assuming that the longitudinal momentum of
the neutrino is zero, and it is thus a proxy for the real invariant mass of the WZ pair. From
Fig. 19, we see that the corrections from CHud are enhanced at high invariant mass, and values
still allowed by WH are already excluded by CMS data. At the HL-LHC, couplings of the size
[CHud]12 ⇠ 0.1 TeV�2, which are relevant to the Cabibbo anomaly, will generate hundreds of
events with M(WZ) & 1 TeV, so that at least part of the parameter space identified in Section
?? will be excluded.

ST CHWB and CHD are constrained by Higgs and EWPO data. A SMEFT fit to H ! ��
data [65] yields

CHWB = 0.0020+0.0044
�0.0042 TeV�2, CHD = �0.21+0.42

�0.44TeV
�2 (6.21)

in a single coupling fit. The relatively weak sensitivity to CHD implies that even in the single
coupling assumption, H ! �� is not su�cient to exclude the ST explanation of the W mass.
Future combined fits to EWPO and Higgs will provide further constraints. Can you guys read
anything out of Ref. [66]?
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Figure 18: Tree level corrections from the RH CC operator CHud to WH and WZ production
at the LHC. CHud is denoted by a square, while SM vertices are denoted by a circle.

SM background. On the other hand, CHud gives large corrections to the associated production
of the W and Higgs boson (WH) and to the production of the W and Z boson (WZ). In the
former case, contact interactions between two quarks, one Higgs and a W , shown by the first
diagram in Fig. 18, induce corrections to WH that are enhanced by s/m2

W compared to the
SM. In WZ production, the presence of a right-handed current a↵ects cancelation between the
t- and s-channel diagrams and also leads to corrections that increase in energy as s/m2

W .
Corrections to WH were discussed in Ref. [33, 60]. Defining the signal strength

µWH =
�W+H + �W�H

�SM

W+H + �SM

W�H

= 1 +
X

ij

aij
⇥
v2CHud

⇤2
ij
, (6.16)

at NLO in QCD the coe�cients a are [60]

a11(13TeV) = 1.6(1) · 102 , a11(14TeV) = 1.7(1) · 102 ,

a12(13TeV) = 0.9(2) · 102 , a12(14TeV) = 1.0(1) · 102 , (6.17)

where the error comes from PDF and scale uncertainties. The latest results from the ATLAS
and CMS collaboration are [61, 62]

µWH(13TeV)|ATLAS = 1.2± 0.2 , µWH(13TeV)|CMS = 1.4± 0.3 , (6.18)

leading to
|[CHud]11| < 0.95 TeV�2 , |[CHud]12| < 1.3 TeV�2 . (6.19)

These limits are about a factor of three/four too weak to constrain the region allowed by the
global fit results presented in Table ??. Being the scaling quadratic with the coe�cient, mea-
surements of the signal strength alone will not be su�cient to competitively constrain CHud.
However, the enhancement of the SMEFT corrections is more pronounced at high Higgs or W
transverse momentum or HW invariant mass, so that dedicated high pT measurements could
further constrain right-handed operators [33, 60].

We calculated the WZ cross section by extending the POWHEG implementation of WZ produc-
tion in the SM [63] to right-handed W couplings. The corrections to the inclusive cross section
are a factor of ten smaller compared to WH, for example, at 13 TeV

µWZ =
�W+Z + �W�Z

�SM

W+Z + �SM

W�Z

= 1 + 19
⇥
v2CHud

⇤2
11

+ 9
⇥
v2CHud

⇤2
12
. (6.20)

However, the absolute cross section is larger, and we can exploit more precise measurements of
the total cross section and di↵erential measurements at high transverse momentum or invariant
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Figure 16: Left panel: the figure shows the L2(RH) scenario with the fit to L observables shown
in red, while the constraint from A2 is shown in blue. The combination of the two is depicted
by the dashed black lines. Right panel: the constraints from EDMs (red) and "0/"K (blue), as
well as their combination (black, dashed), on the imaginary parts of the CHud couplings.

can see that the regions preferred by the fits to � and kaon decays and the constraints from A2

are compatible at the 1� level. The joint fit gives

[CHud]11 = �0.030± 0.0084 , [CHud]12 = �0.026± 0.0085 . (9.14)

The addition of A2 to the fit currently somewhat shifts the best fit point of the L2(RH) scenario
discussed in Section 7 (see Table 6). The preferred value of [CHud]12 is most a↵ected by A2,
although the shift is not greater than ⇠ 1�. Future improvements in the lattice determination
of ASM

2 could provide a more sensitive probe of the RH couplings.

EDMs and ✏0/✏: The phases of the RH CC coe�cients [CHud]11 and [CHud]12 induce tree-level
corrections to the neutron EDM, to atomic EDMs, and to direct CP-violation in kaon decays
(✏0/✏), through the non-leptonic operators O1LR and O2LR. These contributions were studied
in Refs. [96, 101], and lead to very strong constraints, shown in the right panel of Fig. 16. The
constraints on the imaginary parts of [CHud]11 and [CHud]12 can be naively translated into scales
in the 250 to 500 TeV range, much larger than the scales associated with the real part.

Similarly, the CP-violating partner of QHWB contributes to the electron EDM at one loop. In
a single coupling scenario, its coe�cient is restricted to below 3⇥10�6TeV�2 (95% CL) [102,103].
While the combination of right-handed charged currents and oblique corrections provides an
attractive explanation for the CAA and tensions in EWPO, when matching to concrete UV-
complete models, some care must be taken to ensure that their phases are aligned with the
SM.

9.2 Collider signatures

CHWB and CHD are degenerate in EWPO. The degeneracy is broken in Higgs observables, WZ,
and WW production data [41, 65, 104, 105]. With new and more precise data from the LHC,
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• The Cabibbo angle anomaly is one of few low-energy “cracks” in 
the SM,  probing new physics up to Λ ~ 20 TeV  — big deal if 
confirmed,  requires both experimental and theoretical scrutiny  

Summary and outlook
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VC, W. Dekens, J. De Vries,  E. Mereghetti, T. Tong,  in preparation 

4

Low energy 
CC and NC 

Collider: 
Drell-Yan,  
associated 

Higgs 
production, … 

Electroweak precision: 
Z decays,  W mass, …  

C L

EW

• Simplest BSM explanations of Cabibbo anomaly given by  “right-
handed vertex corrections” in the SMEFT language

• CLEW framework is necessary for consistent analysis and RH CC 
‘explanation’ of the Cabibbo anomaly survives CLEWed analysis 

with uncertainty entirely dominated by experiment [22]. A
competitive determination requires a dedicated experimental
campaign, as planned at the PIONEER experiment [26].

The best information on Vus comes from kaon decays, K`2 =
K ! `⌫` and K`3 = K ! ⇡`⌫`. The former is typically ana-
lyzed by normalizing to ⇡`2 decays [27], leading to a constraint
on Vus/Vud, while K`3 decays give direct access to Vus when the
corresponding form factor is provided from lattice QCD [28].
Details of the global fit to kaon decays, as well as the input
for decay constants, form factors, and radiative corrections, are
discussed in Sec. 2, leading to

Vus

Vud

�����
K`2/⇡`2

= 0.23108(23)exp(42)FK/F⇡ (16)IB[51]total,

VK`3
us = 0.22330(35)exp(39) f+ (8)IB[53]total, (7)

where the errors refer to experiment, lattice input for the matrix
elements, and isospin-breaking corrections, respectively. To-
gether with the constraints on Vud, these bands give rise to the
situation depicted in Fig. 1: on the one hand, there is a ten-
sion between the best fit and CKM unitarity, but another ten-
sion, arising entirely from meson decays, is due to the fact that
the K`2 and K`3 constraints intersect away from the unitarity
circle. Additional information on Vus can be derived from ⌧
decays [29, 30], but given the larger errors [31, 32] we will
continue to focus on the kaon sector.

The main point of this Letter is that given the various ten-
sions in the Vud–Vus plane, there is urgent need for additional
information on the compatibility of K`2 and K`3 data, especially
when it comes to interpreting either of the tensions (CKM uni-
tarity and K`2 versus K`3) in terms of physics beyond the SM
(BSM). In particular, the data base for K`2 is completely dom-
inated by a single experiment [33], and at the same time the
global fit to all kaon data displays a relatively poor fit quality.
All these points could be scrutinized by a new measurement of
the Kµ3/Kµ2 branching fraction at the level of a few permil, as
possible at the NA62 experiment. Further, once the experimen-
tal situation is clarified, more robust interpretations of the en-
suing tensions will be possible, especially regarding the role of
right-handed currents both in the strange and non-strange sec-
tor. To make the case for the proposed measurement of the
Kµ3/Kµ2 branching fraction, we first discuss in detail its impact
on the global fit to kaon data and the implications for CKM uni-
tarity in Sec. 2. The consequences for physics beyond the SM
are addressed in Sec. 3, before we conclude in Sec. 4.

2. Global fit to kaon data and implications for CKM uni-
tarity

The current values for Vus and Vus/Vud given in Eq. (7) are
obtained from a global fit to kaon decays [34–37], updated
to include the latest measurements, radiative corrections, and
hadronic matrix elements. In particular, the fit includes data on
KS decays from Refs. [38–44], on KL decays from Refs. [45–
56], and on charged-kaon decays from Refs. [33, 57–70]. Since
we focus on the impact of a new Kµ3/Kµ2 measurement, e.g.,
at NA62, we reproduce the details of the charged kaon fit in

0.960 0.965 0.970 0.975
0.220

0.222

0.224

0.226

0.228

V

us

Figure 1: Constraints in the Vud–Vus plane. The partially overlapping vertical
bands correspond to V0+!0+

ud (leftmost, red) and Vn, best
ud (rightmost, violet). The

horizontal band (green) corresponds to VK`3
us . The diagonal band (blue) corre-

sponds to (Vus/Vud)K`2/⇡`2 . The unitarity circle is denoted by the black solid
line. The 68% C.L. ellipse from a fit to all four constraints is depicted in yel-
low (Vud = 0.97378(26), Vus = 0.22422(36), �2/dof = 6.4/2, p-value 4.1%),
it deviates from the unitarity line by 2.8�. Note that the significance tends to
increase in case ⌧ decays are included.

Table 1, where, however, the value for Vus from K`3 decays in-
cludes all charge channels, accounting for correlations among
them. The extraction of Vus from K`3 decays requires further in-
put on the respective form factors, which are taken in the disper-
sive parameterization from Ref. [71], constrained by data from
Refs. [72–78]. This leaves form-factor normalizations, decay
constants, and isospin-breaking corrections in both K`2 and K`3
decays.

For K`2 we follow the established convention to consider the
ratio to ⇡`2 decays [27] (pion lifetime [62, 79–83] and branch-
ing fraction [84–87] are taken from Ref. [12]), since in this ratio
certain structure-dependent radiative corrections [88, 89] cancel
and only the ratio of decay constants FK/F⇡ needs to be pro-
vided. We use the isospin-breaking corrections from Ref. [90]
together with the Nf = 2 + 1 + 1 isospin-limit ratio of de-
cay constants FK/F⇡ = 1.1978(22) [91–94], where this aver-
age accounts for statistical and systematic correlations between
the results, some of which make use of the same lattice en-
sembles. For K`3 decays we use the radiative corrections from
Refs. [95–97] (in line with the earlier calculations [98, 99]), the
strong isospin-breaking correction �SU(2) = 0.0252(11) from
Refs. [98, 100] evaluated with the Nf = 2 + 1 + 1 quark-mass
double ratio Q = 22.5(5) and ratio ms/mud = 27.23(10), both
from Ref. [28] (the value of Q is consistent with Q = 22.1(7)
from ⌘ ! 3⇡ [101] and Q = 22.4(3) from the Cottingham
approach [102]), and the form-factor normalization f+(0) =
0.9698(17) [103, 104]. This global fit then defines the cur-

2

Vus

Vud

 K→
 μν 

/ π→
 μν 

 

(0.22%)

K→ πlν (0.25%)

unitarityNeutron (0.043%)
0+ → 0+ (0.031%)
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• Towards  a complete (tree-level) SMEFT analysis of precision observables that do not involve FCNC and CPV:

• Observables that currently have weaker sensitivity:  K decays;  HW, ZW production at the LHC 

• NC processes:  PVES,  APV,  DIS (→ EIC)

• A SMEFT-based ‘model selection’ analysis (with AIC or other metric) can be quite insightful and ultimately 
should help unraveling the underlying new physics if  anomalies arise / survive

• The traditional set of EWPO considered in the literature should be extended  
(both in the U(3)5 and general flavor case) to include at least low-energy CC 
processes & Drell-Yan:  they constrain subset of couplings at similar precision!

• Flavor symmetry assumptions reintroduce model-dependence in the SMEFT approach. Flavor 
symmetries can make the analysis ‘blind’ to simple BSM scenarios (e.g. U(3)5 and RH currents).  We 
argued that likelihood can be approximately factorized.  

Summary and outlook
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• Cabibbo universality test quantitatively and qualitatively affects global fits to precision EW observables

• Example:  explanations of mW ‘anomaly’ in SMEFT + U(3)5 
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Figure 1. The resulting values of �mW = mW � mSM
W

when turning on Ĉ(3)
Hl

, Ĉll, and all Wilson
coefficients that are probed by EWPO. The red bars indicated the predicted �mW from the EWPO
fit, while the blue bars show the resulting �mW after inclusion of �CKM. The shown values of ��2,
denote the differences in the minimum �2 between the blue and red points. The SM prediction and world
average, taken from Ref. [12], are depicted by the green and orange bands, respectively.

Result Result with CKM
Ĉ(1)
'l

�0.007± 0.011 �0.013± 0.009

Ĉ(3)
'l

�0.042± 0.015 �0.034± 0.014

Ĉ'e �0.017± 0.009 �0.021± 0.009

Ĉ(1)
'q �0.0181± 0.044 �0.048± 0.04

Ĉ(3)
'q �0.114± 0.043 �0.041± 0.015

Ĉ'u 0.086± 0.154 �0.12± 0.11

Ĉ'd �0.626± 0.248 �0.38± 0.22

C� �0.19± 0.09 �0.027± 0.011

Table 2. Results from the dimension-six SMEFT fit of Ref. [12], before and after the inclusion of �CKM.
All Wilson coefficients are given in units of TeV�2.

while the values of the other Wilson coefficients return to their original value given in the second
column of Table 2. However, care must be taken that such values of C(3)

lq
are not excluded by

LHC constraints [38–42]. In particular, Ref. [43] analysed 8 TeV pp ! ll data from [44] in the
SMEFT at dimension-8. Limiting the analysis to MFV dimension-six operators, we find

C(3)
lq

= �(0.028± 0.028)TeV�2 (Single coupling, 95%C.L.) ,

C(3)
lq

= �(0.05± 0.1)TeV�2 (Global fit, 95%C.L.) , (3.7)

when in the first line only C(3)
lq

is turned on, while in second line seven operators were turned
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• Explanations of MW anomaly in SMEFT (beyond oblique corrections) 
are in tension with ΔCKM in MFV limit  

OHWB H†⌧ IHW I
µ⌫B

µ⌫

OHD

��H†DµH
��2

O
(3)
Hl

�
H†i

$
DI

µH
� �

l̄p⌧ I�µlr
�

O
(3)
Hq

�
H†i

$
DI

µH
� �

q̄p⌧ I�µqr
�

Oll

�
l̄p�µlr

� �
l̄s�µlt

�

O
(3)
lq

�
l̄p⌧ I�µlr

� �
q̄s⌧ I�µqt

�

Table 1. List of the most relevant SMEFT dimension-six operators that are involved in this analysis.

Calculated at linear order in SMEFT, the shift to W mass from the SM prediction due to
dimension-six operators is given by [23, 24]

�m2
W

m2
W

= v2
swcw

s2w � c2w


2CHWB +

cw
2sw

CHD +
sw
cw

⇣
2C(3)

Hl
� Cll

⌘�
, (2.2)

where v ' 246 GeV is the vacuum expectation value of the Higgs field, sw = sin ✓w and
cw = cos ✓w. The Weinberg angle ✓w is fixed by the electroweak input parameters {GF ,mZ ,↵EW }

[25]. Here we define �m2
W

= m2
W
(SMEFT)�m2

W
(SM). The mass of the W boson receives cor-

rections from four Wilson coefficients, namely CHWB, CHD, C(3)
Hl

, and Cll. For the corresponding
operators, see Tab. 1.

CHWB and CHD are related to the oblique parameters S and T [10]. They have been
thoroughly studied for constraining ’universal’ theories [11, 26] with electroweak precision ob-
servables as well as in light of the W -boson mass anomaly [5–8]. The linear combination of
Wilson coefficients shown in Eq. (2.2),

⇣
2C(3)

Hl
� Cll

⌘
, is related to the shift to Fermi constant

in SMEFT.

3 EWPO fits and CKM unitarity

Under the assumption of flavor universality, 10 operators affect the EWPO at tree level, but
only 8 linear combinations can be determined by data [12]. Following Ref. [12], these linear
combination are written with Ĉi notation and given by Ĉ(1)

Hf
= C(1)

Hf
� (Yf/2)CHD, where f runs

over left-handed lepton and quark doublets and right-handed quark and lepton singlets, and
Ĉ(3)
Hf

= C(3)
Hf

+ (cw/sw)CHWB + (c2w/4s
2
w)CHD where f denotes left-handed lepton and quark

doublets, and Ĉll = (Cll)1221. Here Yf is the hypercharge of the fermion f .
Ref. [12] reported the results of their fits including the correlation matrix from which we can

reconstruct the �2. For concreteness we use their ‘standard average’ results but our point would
hold for the ‘conservative average’ as well. To investigate the consequences of CKM unitarity
on the fit, we will assume the flavor structures of the operators follow Minimal Flavor Violation
(MFV) [27, 28]. That is, we assume the operators are invariant under a U(3)q⇥U(3)u⇥U(3)d⇥

– 3 –

U(3)l ⇥U(3)e flavor symmetry. In addition, we slightly change the operator basis and trade the
Wilson coefficient Ĉll for the linear combination

C� = 2
h
C(3)
Hq

� C(3)
Hl

+ Ĉll

i
. (3.1)

We then refit the Wilson coefficients to the EWPO and obtain the results in the second column
of Table 2. In particular, we obtain

C� = � (0.19± 0.09) TeV�2 . (3.2)

This combination of Wilson coefficients contributes to the violation of unitarity in the first
row of the CKM matrix tracked by �CKM ⌘ |Vud|

2 + |Vus|
2
� 1, where we neglected the tiny

|Vub|
2 corrections. Within the MFV assumption, we can write [29]

�CKM = v2
h
C� � 2C(3)

lq

i
. (3.3)

The C(3)
lq

operator that appears here does not affect EWPO and does not play a role in the fit
of Ref. [12]. If one assumes this coefficient to be zero, Eq. (3.2) causes a shift

�EWfit
CKM = �(0.012± 0.005) , (3.4)

implying large, percent-level, deviations from CKM unitarity.
Based on up-to-date theoretical predictions for 0+ ! 0+ transitions and Kaon decays [30–

36], the PDG average indicates that unitarity is indeed violated by a bit more than two standard
deviations [37]

�CKM = �0.0015(7) , (3.5)

but in much smaller amounts than predicted by Eq. (3.4). This exercise shows that global fits
to EWPO and the W mass anomaly that include BSM physics beyond the oblique parameters
S and T, such as the one of Ref. [12], are severely disfavored by �-decay data. While we did
not repeat the fits of Refs. [14, 17], the central values of their Wilson coefficients also indicate a
negative percent-level shift to �CKM, consistent with Eq. (3.4).

Indeed, combining the EWPO with �CKM, we find that the minimum �2 increases by 3.3

and Wilson coefficients are shifted, as shown in Tab. 2. Again this shows that the Cabibbo
universality test has a significant impact and should be included in EWPO analyses of the W -
boson mass anomaly. These statements are illustrated in Fig. 1, which shows the values of
�mW = mW � mSM

W
obtained by fitting EWPO alone or EWPO and �CKM for two single-

operator scenarios and the global analysis involving all operators.
Another way to proceed is to effectively decouple the CKM unitarity constraint from EWPO

by letting C(3)
lq

6= 0, which is consistent with the MFV approach. The �CKM observable is then
accounted for by a nonzero value

C(3)
lq

= �(0.082± 0.045)TeV�2 , (3.6)
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Figure 1. The resulting values of �mW = mW � mSM
W

when turning on Ĉ(3)
Hl

, Ĉll, and all Wilson
coefficients that are probed by EWPO. The red bars indicated the predicted �mW from the EWPO
fit, while the blue bars show the resulting �mW after inclusion of �CKM. The shown values of ��2,
denote the differences in the minimum �2 between the blue and red points. The SM prediction and world
average, taken from Ref. [12], are depicted by the green and orange bands, respectively.
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Ĉ'd �0.626± 0.248 �0.38± 0.22

C� �0.19± 0.09 �0.027± 0.011

Table 2. Results from the dimension-six SMEFT fit of Ref. [12], before and after the inclusion of �CKM.
All Wilson coefficients are given in units of TeV�2.
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are not excluded by

LHC constraints [38–42]. In particular, Ref. [43] analysed 8 TeV pp ! ll data from [44] in the
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Ĉ(1)
'l

�0.007± 0.011 �0.013± 0.009
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to EWPO and the W mass anomaly that include BSM physics beyond the oblique parameters
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Indeed, combining the EWPO with �CKM, we find that the minimum �2 increases by 3.3

and Wilson coefficients are shifted, as shown in Tab. 2. Again this shows that the Cabibbo
universality test has a significant impact and should be included in EWPO analyses of the W -
boson mass anomaly. These statements are illustrated in Fig. 1, which shows the values of
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Calculated at linear order in SMEFT, the shift to W mass from the SM prediction due to
dimension-six operators is given by [23, 24]
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operators, see Tab. 1.

CHWB and CHD are related to the oblique parameters S and T [10]. They have been
thoroughly studied for constraining ’universal’ theories [11, 26] with electroweak precision ob-
servables as well as in light of the W -boson mass anomaly [5–8]. The linear combination of
Wilson coefficients shown in Eq. (2.2),
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3 EWPO fits and CKM unitarity

Under the assumption of flavor universality, 10 operators affect the EWPO at tree level, but
only 8 linear combinations can be determined by data [12]. Following Ref. [12], these linear
combination are written with Ĉi notation and given by Ĉ(1)
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doublets, and Ĉll = (Cll)1221. Here Yf is the hypercharge of the fermion f .
Ref. [12] reported the results of their fits including the correlation matrix from which we can

reconstruct the �2. For concreteness we use their ‘standard average’ results but our point would
hold for the ‘conservative average’ as well. To investigate the consequences of CKM unitarity
on the fit, we will assume the flavor structures of the operators follow Minimal Flavor Violation
(MFV) [27, 28]. That is, we assume the operators are invariant under a U(3)q⇥U(3)u⇥U(3)d⇥
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We then refit the Wilson coefficients to the EWPO and obtain the results in the second column
of Table 2. In particular, we obtain
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36], the PDG average indicates that unitarity is indeed violated by a bit more than two standard
deviations [37]
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but in much smaller amounts than predicted by Eq. (3.4). This exercise shows that global fits
to EWPO and the W mass anomaly that include BSM physics beyond the oblique parameters
S and T, such as the one of Ref. [12], are severely disfavored by �-decay data. While we did
not repeat the fits of Refs. [14, 17], the central values of their Wilson coefficients also indicate a
negative percent-level shift to �CKM, consistent with Eq. (3.4).

Indeed, combining the EWPO with �CKM, we find that the minimum �2 increases by 3.3

and Wilson coefficients are shifted, as shown in Tab. 2. Again this shows that the Cabibbo
universality test has a significant impact and should be included in EWPO analyses of the W -
boson mass anomaly. These statements are illustrated in Fig. 1, which shows the values of
�mW = mW � mSM

W
obtained by fitting EWPO alone or EWPO and �CKM for two single-

operator scenarios and the global analysis involving all operators.
Another way to proceed is to effectively decouple the CKM unitarity constraint from EWPO

by letting C(3)
lq

6= 0, which is consistent with the MFV approach. The �CKM observable is then
accounted for by a nonzero value

C(3)
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= �(0.082± 0.045)TeV�2 , (3.6)
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Figure 1. The resulting values of �mW = mW � mSM
W

when turning on Ĉ(3)
Hl

, Ĉll, and all Wilson
coefficients that are probed by EWPO. The red bars indicated the predicted �mW from the EWPO
fit, while the blue bars show the resulting �mW after inclusion of �CKM. The shown values of ��2,
denote the differences in the minimum �2 between the blue and red points. The SM prediction and world
average, taken from Ref. [12], are depicted by the green and orange bands, respectively.

Result Result with CKM
Ĉ(1)
'l

�0.007± 0.011 �0.013± 0.009

Ĉ(3)
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�0.042± 0.015 �0.034± 0.014

Ĉ'e �0.017± 0.009 �0.021± 0.009

Ĉ(1)
'q �0.0181± 0.044 �0.048± 0.04

Ĉ(3)
'q �0.114± 0.043 �0.041± 0.015

Ĉ'u 0.086± 0.154 �0.12± 0.11

Ĉ'd �0.626± 0.248 �0.38± 0.22

C� �0.19± 0.09 �0.027± 0.011

Table 2. Results from the dimension-six SMEFT fit of Ref. [12], before and after the inclusion of �CKM.
All Wilson coefficients are given in units of TeV�2.

while the values of the other Wilson coefficients return to their original value given in the second
column of Table 2. However, care must be taken that such values of C(3)

lq
are not excluded by

LHC constraints [38–42]. In particular, Ref. [43] analysed 8 TeV pp ! ll data from [44] in the
SMEFT at dimension-8. Limiting the analysis to MFV dimension-six operators, we find

C(3)
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= �(0.028± 0.028)TeV�2 (Single coupling, 95%C.L.) ,

C(3)
lq

= �(0.05± 0.1)TeV�2 (Global fit, 95%C.L.) , (3.7)

when in the first line only C(3)
lq

is turned on, while in second line seven operators were turned
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We then refit the Wilson coefficients to the EWPO and obtain the results in the second column
of Table 2. In particular, we obtain

C� = � (0.19± 0.09) TeV�2 . (3.2)

This combination of Wilson coefficients contributes to the violation of unitarity in the first
row of the CKM matrix tracked by �CKM ⌘ |Vud|
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2 corrections. Within the MFV assumption, we can write [29]
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The C(3)
lq

operator that appears here does not affect EWPO and does not play a role in the fit
of Ref. [12]. If one assumes this coefficient to be zero, Eq. (3.2) causes a shift

�EWfit
CKM = �(0.012± 0.005) , (3.4)

implying large, percent-level, deviations from CKM unitarity.
Based on up-to-date theoretical predictions for 0+ ! 0+ transitions and Kaon decays [30–

36], the PDG average indicates that unitarity is indeed violated by a bit more than two standard
deviations [37]

�CKM = �0.0015(7) , (3.5)

but in much smaller amounts than predicted by Eq. (3.4). This exercise shows that global fits
to EWPO and the W mass anomaly that include BSM physics beyond the oblique parameters
S and T, such as the one of Ref. [12], are severely disfavored by �-decay data. While we did
not repeat the fits of Refs. [14, 17], the central values of their Wilson coefficients also indicate a
negative percent-level shift to �CKM, consistent with Eq. (3.4).

Indeed, combining the EWPO with �CKM, we find that the minimum �2 increases by 3.3

and Wilson coefficients are shifted, as shown in Tab. 2. Again this shows that the Cabibbo
universality test has a significant impact and should be included in EWPO analyses of the W -
boson mass anomaly. These statements are illustrated in Fig. 1, which shows the values of
�mW = mW � mSM

W
obtained by fitting EWPO alone or EWPO and �CKM for two single-

operator scenarios and the global analysis involving all operators.
Another way to proceed is to effectively decouple the CKM unitarity constraint from EWPO

by letting C(3)
lq

6= 0, which is consistent with the MFV approach. The �CKM observable is then
accounted for by a nonzero value

C(3)
lq

= �(0.082± 0.045)TeV�2 , (3.6)
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Wilson coefficient Ĉll for the linear combination

C� = 2
h
C(3)
Hq

� C(3)
Hl

+ Ĉll
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Calculated at linear order in SMEFT, the shift to W mass from the SM prediction due to
dimension-six operators is given by [23, 24]
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where v ' 246 GeV is the vacuum expectation value of the Higgs field, sw = sin ✓w and
cw = cos ✓w. The Weinberg angle ✓w is fixed by the electroweak input parameters {GF ,mZ ,↵EW }
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CHWB and CHD are related to the oblique parameters S and T [10]. They have been
thoroughly studied for constraining ’universal’ theories [11, 26] with electroweak precision ob-
servables as well as in light of the W -boson mass anomaly [5–8]. The linear combination of
Wilson coefficients shown in Eq. (2.2),
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3 EWPO fits and CKM unitarity

Under the assumption of flavor universality, 10 operators affect the EWPO at tree level, but
only 8 linear combinations can be determined by data [12]. Following Ref. [12], these linear
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Ref. [12] reported the results of their fits including the correlation matrix from which we can

reconstruct the �2. For concreteness we use their ‘standard average’ results but our point would
hold for the ‘conservative average’ as well. To investigate the consequences of CKM unitarity
on the fit, we will assume the flavor structures of the operators follow Minimal Flavor Violation
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Hl
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U(3)l ⇥U(3)e flavor symmetry. In addition, we slightly change the operator basis and trade the
Wilson coefficient Ĉll for the linear combination

C� = 2
h
C(3)
Hq

� C(3)
Hl

+ Ĉll

i
. (3.1)

We then refit the Wilson coefficients to the EWPO and obtain the results in the second column
of Table 2. In particular, we obtain

C� = � (0.19± 0.09) TeV�2 . (3.2)

This combination of Wilson coefficients contributes to the violation of unitarity in the first
row of the CKM matrix tracked by �CKM ⌘ |Vud|

2 + |Vus|
2
� 1, where we neglected the tiny

|Vub|
2 corrections. Within the MFV assumption, we can write [29]

�CKM = v2
h
C� � 2C(3)

lq

i
. (3.3)

The C(3)
lq

operator that appears here does not affect EWPO and does not play a role in the fit
of Ref. [12]. If one assumes this coefficient to be zero, Eq. (3.2) causes a shift

�EWfit
CKM = �(0.012± 0.005) , (3.4)

implying large, percent-level, deviations from CKM unitarity.
Based on up-to-date theoretical predictions for 0+ ! 0+ transitions and Kaon decays [30–

36], the PDG average indicates that unitarity is indeed violated by a bit more than two standard
deviations [37]

�CKM = �0.0015(7) , (3.5)

but in much smaller amounts than predicted by Eq. (3.4). This exercise shows that global fits
to EWPO and the W mass anomaly that include BSM physics beyond the oblique parameters
S and T, such as the one of Ref. [12], are severely disfavored by �-decay data. While we did
not repeat the fits of Refs. [14, 17], the central values of their Wilson coefficients also indicate a
negative percent-level shift to �CKM, consistent with Eq. (3.4).

Indeed, combining the EWPO with �CKM, we find that the minimum �2 increases by 3.3

and Wilson coefficients are shifted, as shown in Tab. 2. Again this shows that the Cabibbo
universality test has a significant impact and should be included in EWPO analyses of the W -
boson mass anomaly. These statements are illustrated in Fig. 1, which shows the values of
�mW = mW � mSM

W
obtained by fitting EWPO alone or EWPO and �CKM for two single-

operator scenarios and the global analysis involving all operators.
Another way to proceed is to effectively decouple the CKM unitarity constraint from EWPO

by letting C(3)
lq

6= 0, which is consistent with the MFV approach. The �CKM observable is then
accounted for by a nonzero value

C(3)
lq

= �(0.082± 0.045)TeV�2 , (3.6)
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Examples of impact of ΔCKM (1)

• Explanations of MW anomaly in SMEFT (beyond oblique corrections) 
are in tension with ΔCKM in MFV limit  
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Table 1. List of the most relevant SMEFT dimension-six operators that are involved in this analysis.

Calculated at linear order in SMEFT, the shift to W mass from the SM prediction due to
dimension-six operators is given by [23, 24]

�m2
W

m2
W

= v2
swcw
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
2CHWB +

cw
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CHD +
sw
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2C(3)

Hl
� Cll

⌘�
, (2.2)

where v ' 246 GeV is the vacuum expectation value of the Higgs field, sw = sin ✓w and
cw = cos ✓w. The Weinberg angle ✓w is fixed by the electroweak input parameters {GF ,mZ ,↵EW }

[25]. Here we define �m2
W

= m2
W
(SMEFT)�m2

W
(SM). The mass of the W boson receives cor-

rections from four Wilson coefficients, namely CHWB, CHD, C(3)
Hl

, and Cll. For the corresponding
operators, see Tab. 1.

CHWB and CHD are related to the oblique parameters S and T [10]. They have been
thoroughly studied for constraining ’universal’ theories [11, 26] with electroweak precision ob-
servables as well as in light of the W -boson mass anomaly [5–8]. The linear combination of
Wilson coefficients shown in Eq. (2.2),

⇣
2C(3)

Hl
� Cll

⌘
, is related to the shift to Fermi constant

in SMEFT.

3 EWPO fits and CKM unitarity

Under the assumption of flavor universality, 10 operators affect the EWPO at tree level, but
only 8 linear combinations can be determined by data [12]. Following Ref. [12], these linear
combination are written with Ĉi notation and given by Ĉ(1)

Hf
= C(1)

Hf
� (Yf/2)CHD, where f runs

over left-handed lepton and quark doublets and right-handed quark and lepton singlets, and
Ĉ(3)
Hf

= C(3)
Hf

+ (cw/sw)CHWB + (c2w/4s
2
w)CHD where f denotes left-handed lepton and quark

doublets, and Ĉll = (Cll)1221. Here Yf is the hypercharge of the fermion f .
Ref. [12] reported the results of their fits including the correlation matrix from which we can

reconstruct the �2. For concreteness we use their ‘standard average’ results but our point would
hold for the ‘conservative average’ as well. To investigate the consequences of CKM unitarity
on the fit, we will assume the flavor structures of the operators follow Minimal Flavor Violation
(MFV) [27, 28]. That is, we assume the operators are invariant under a U(3)q⇥U(3)u⇥U(3)d⇥
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Figure 1. The resulting values of �mW = mW � mSM
W

when turning on Ĉ(3)
Hl

, Ĉll, and all Wilson
coefficients that are probed by EWPO. The red bars indicated the predicted �mW from the EWPO
fit, while the blue bars show the resulting �mW after inclusion of �CKM. The shown values of ��2,
denote the differences in the minimum �2 between the blue and red points. The SM prediction and world
average, taken from Ref. [12], are depicted by the green and orange bands, respectively.
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Ĉ(1)
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Ĉ(1)
'q �0.0181± 0.044 �0.048± 0.04

Ĉ(3)
'q �0.114± 0.043 �0.041± 0.015

Ĉ'u 0.086± 0.154 �0.12± 0.11

Ĉ'd �0.626± 0.248 �0.38± 0.22

C� �0.19± 0.09 �0.027± 0.011

Table 2. Results from the dimension-six SMEFT fit of Ref. [12], before and after the inclusion of �CKM.
All Wilson coefficients are given in units of TeV�2.

while the values of the other Wilson coefficients return to their original value given in the second
column of Table 2. However, care must be taken that such values of C(3)

lq
are not excluded by

LHC constraints [38–42]. In particular, Ref. [43] analysed 8 TeV pp ! ll data from [44] in the
SMEFT at dimension-8. Limiting the analysis to MFV dimension-six operators, we find

C(3)
lq

= �(0.028± 0.028)TeV�2 (Single coupling, 95%C.L.) ,
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Ĉ'u 0.086± 0.154 �0.12± 0.11
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We then refit the Wilson coefficients to the EWPO and obtain the results in the second column
of Table 2. In particular, we obtain
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This combination of Wilson coefficients contributes to the violation of unitarity in the first
row of the CKM matrix tracked by �CKM ⌘ |Vud|

2 + |Vus|
2
� 1, where we neglected the tiny

|Vub|
2 corrections. Within the MFV assumption, we can write [29]

�CKM = v2
h
C� � 2C(3)

lq

i
. (3.3)
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operator that appears here does not affect EWPO and does not play a role in the fit
of Ref. [12]. If one assumes this coefficient to be zero, Eq. (3.2) causes a shift

�EWfit
CKM = �(0.012± 0.005) , (3.4)

implying large, percent-level, deviations from CKM unitarity.
Based on up-to-date theoretical predictions for 0+ ! 0+ transitions and Kaon decays [30–

36], the PDG average indicates that unitarity is indeed violated by a bit more than two standard
deviations [37]

�CKM = �0.0015(7) , (3.5)

but in much smaller amounts than predicted by Eq. (3.4). This exercise shows that global fits
to EWPO and the W mass anomaly that include BSM physics beyond the oblique parameters
S and T, such as the one of Ref. [12], are severely disfavored by �-decay data. While we did
not repeat the fits of Refs. [14, 17], the central values of their Wilson coefficients also indicate a
negative percent-level shift to �CKM, consistent with Eq. (3.4).

Indeed, combining the EWPO with �CKM, we find that the minimum �2 increases by 3.3

and Wilson coefficients are shifted, as shown in Tab. 2. Again this shows that the Cabibbo
universality test has a significant impact and should be included in EWPO analyses of the W -
boson mass anomaly. These statements are illustrated in Fig. 1, which shows the values of
�mW = mW � mSM

W
obtained by fitting EWPO alone or EWPO and �CKM for two single-

operator scenarios and the global analysis involving all operators.
Another way to proceed is to effectively decouple the CKM unitarity constraint from EWPO

by letting C(3)
lq

6= 0, which is consistent with the MFV approach. The �CKM observable is then
accounted for by a nonzero value

C(3)
lq

= �(0.082± 0.045)TeV�2 , (3.6)
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reconstruct the �2. For concreteness we use their ‘standard average’ results but our point would
hold for the ‘conservative average’ as well. To investigate the consequences of CKM unitarity
on the fit, we will assume the flavor structures of the operators follow Minimal Flavor Violation
(MFV) [27, 28]. That is, we assume the operators are invariant under a U(3)q⇥U(3)u⇥U(3)d⇥
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U(3)l ⇥U(3)e flavor symmetry. In addition, we slightly change the operator basis and trade the
Wilson coefficient Ĉll for the linear combination
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i
. (3.1)

We then refit the Wilson coefficients to the EWPO and obtain the results in the second column
of Table 2. In particular, we obtain

C� = � (0.19± 0.09) TeV�2 . (3.2)

This combination of Wilson coefficients contributes to the violation of unitarity in the first
row of the CKM matrix tracked by �CKM ⌘ |Vud|

2 + |Vus|
2
� 1, where we neglected the tiny

|Vub|
2 corrections. Within the MFV assumption, we can write [29]

�CKM = v2
h
C� � 2C(3)

lq

i
. (3.3)

The C(3)
lq

operator that appears here does not affect EWPO and does not play a role in the fit
of Ref. [12]. If one assumes this coefficient to be zero, Eq. (3.2) causes a shift

�EWfit
CKM = �(0.012± 0.005) , (3.4)

implying large, percent-level, deviations from CKM unitarity.
Based on up-to-date theoretical predictions for 0+ ! 0+ transitions and Kaon decays [30–

36], the PDG average indicates that unitarity is indeed violated by a bit more than two standard
deviations [37]

�CKM = �0.0015(7) , (3.5)

but in much smaller amounts than predicted by Eq. (3.4). This exercise shows that global fits
to EWPO and the W mass anomaly that include BSM physics beyond the oblique parameters
S and T, such as the one of Ref. [12], are severely disfavored by �-decay data. While we did
not repeat the fits of Refs. [14, 17], the central values of their Wilson coefficients also indicate a
negative percent-level shift to �CKM, consistent with Eq. (3.4).

Indeed, combining the EWPO with �CKM, we find that the minimum �2 increases by 3.3

and Wilson coefficients are shifted, as shown in Tab. 2. Again this shows that the Cabibbo
universality test has a significant impact and should be included in EWPO analyses of the W -
boson mass anomaly. These statements are illustrated in Fig. 1, which shows the values of
�mW = mW � mSM

W
obtained by fitting EWPO alone or EWPO and �CKM for two single-

operator scenarios and the global analysis involving all operators.
Another way to proceed is to effectively decouple the CKM unitarity constraint from EWPO

by letting C(3)
lq

6= 0, which is consistent with the MFV approach. The �CKM observable is then
accounted for by a nonzero value

C(3)
lq

= �(0.082± 0.045)TeV�2 , (3.6)
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Figure 1. The resulting values of �mW = mW � mSM
W

when turning on Ĉ(3)
Hl

, Ĉll, and all Wilson
coefficients that are probed by EWPO. The red bars indicated the predicted �mW from the EWPO
fit, while the blue bars show the resulting �mW after inclusion of �CKM. The shown values of ��2,
denote the differences in the minimum �2 between the blue and red points. The SM prediction and world
average, taken from Ref. [12], are depicted by the green and orange bands, respectively.
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C� �0.19± 0.09 �0.027± 0.011

Table 2. Results from the dimension-six SMEFT fit of Ref. [12], before and after the inclusion of �CKM.
All Wilson coefficients are given in units of TeV�2.

while the values of the other Wilson coefficients return to their original value given in the second
column of Table 2. However, care must be taken that such values of C(3)
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are not excluded by

LHC constraints [38–42]. In particular, Ref. [43] analysed 8 TeV pp ! ll data from [44] in the
SMEFT at dimension-8. Limiting the analysis to MFV dimension-six operators, we find
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deviations [37]
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Examples of impact of ΔCKM (1)

Shift to GF

‘Oblique 
corrections’ 

BSM explanations?
• ‘Turn on’ only vertex corrections to leptons 

Relevant for RV

Relevant for RA

• RV and RA unchanged

• Shift the Vud vertical band to the left 

• No resolution of Kl3 vs Kl2 and RV vs RA tension

µ�

νµ
_

Eqs. (5.1), (5.2), and (5.3). This is due to the fact that only the fit to low-energy data involves
free parameters in the form of �, matrix elements, and parameters that describe theoretical
uncertainties, while the EWPO and collider data are, to a good approximation, independent of
these variables.

6 SMEFT analysis with U(3)5 flavor assumption

We start by considering a BSM scenario in which we impose a U(3)5 flavor symmetry on the
SMEFT coe�cients. Ref. [61] investigated the impact of the measurement of the CDF W mass
on the EWPO fit under these assumptions. The EWPO depend on eight combinations of Wilson

coe�cients [58], namely Ĉ(1,3)
Hl

, Ĉ(1,3)
Hq

, ĈHe, ĈHu, ĈHd, and Ĉll. As mentioned in Section 3.1, the
hat-notation is used to identify the linear combinations that cannot be separated using EWPO
alone:

Ĉ(3)
HF

= C(3)
HF

+
cw
sw

CHWB +
c2w
4s2w

CHD ,

Ĉ(1)
HF

= C(1)
HF

�
YF
2
CHD ,

ĈHf = CHf �
Yf
2
CHD , (6.1)

for F = {l, q} and f = {u, d, e} and YF,f denotes the corresponding weak hypercharge. We
follow [40] and define

C� = 2
h
Ĉ(3)
Hq

� Ĉ(3)
Hl

+ Ĉll

i
, (6.2)

where Ĉll = [Cll]1221. Defining C� will be useful, as it is the linear combination of Wilson
coe�cients that appears in the EWPO that contributes to deviations from CKM unitarity.
Therefore, we will use this relation to trade Ĉll for C�. The SMEFT corrections to the W mass
can be expressed in terms of these operators as [59, 86]

�m2
W

m2
W

= v2
swcw

s2w � c2w


2CHWB +

cw
2sw

CHD +
sw
cw

⇣
2C(3)

Hl
� Ĉll

⌘�

= v2
s2w

s2w � c2w

⇣
2 Ĉ(3)

Hl
� Ĉll

⌘
= v2

s2w
s2w � c2w

✓
Ĉ(3)
Hl

+ Ĉ(3)
Hq

�
1

2
C�

◆
. (6.3)

The expression of sw in terms of the input parameters GF , mZ , and ↵em is given in Eq. (A.7).
Finally, under the assumption of U(3)5 flavor symmetry, the violation of CKM unitarity is
described by

�CKM = |Ṽud|
2 + |Ṽus|

2
� 1 = v2

⇣
C� � 2C(3)

lq

⌘
. (6.4)

Here, Ṽij are the e↵ective CKM elements that are probed in low-energy measurements of � and
K decays, while Ṽub can be neglected at the current level of precision. C� entirely captures the

contribution to �CKM of the operators that enter EWPO, whereas C(3)
lq

does not play a role in
EWPO and is therefore traditionally not included.
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• Cabibbo universality test quantitatively and qualitatively affects global fits to precision EW observables

• Example:  explanations of mW ‘anomaly’ in SMEFT + U(3)5 
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Figure 1. The resulting values of �mW = mW � mSM
W

when turning on Ĉ(3)
Hl

, Ĉll, and all Wilson
coefficients that are probed by EWPO. The red bars indicated the predicted �mW from the EWPO
fit, while the blue bars show the resulting �mW after inclusion of �CKM. The shown values of ��2,
denote the differences in the minimum �2 between the blue and red points. The SM prediction and world
average, taken from Ref. [12], are depicted by the green and orange bands, respectively.
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C� �0.19± 0.09 �0.027± 0.011

Table 2. Results from the dimension-six SMEFT fit of Ref. [12], before and after the inclusion of �CKM.
All Wilson coefficients are given in units of TeV�2.

while the values of the other Wilson coefficients return to their original value given in the second
column of Table 2. However, care must be taken that such values of C(3)

lq
are not excluded by

LHC constraints [38–42]. In particular, Ref. [43] analysed 8 TeV pp ! ll data from [44] in the
SMEFT at dimension-8. Limiting the analysis to MFV dimension-six operators, we find

C(3)
lq

= �(0.028± 0.028)TeV�2 (Single coupling, 95%C.L.) ,

C(3)
lq

= �(0.05± 0.1)TeV�2 (Global fit, 95%C.L.) , (3.7)

when in the first line only C(3)
lq

is turned on, while in second line seven operators were turned
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• Explanations of MW anomaly in SMEFT (beyond oblique corrections) 
are in tension with ΔCKM in MFV limit  
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Table 1. List of the most relevant SMEFT dimension-six operators that are involved in this analysis.

Calculated at linear order in SMEFT, the shift to W mass from the SM prediction due to
dimension-six operators is given by [23, 24]

�m2
W

m2
W

= v2
swcw

s2w � c2w


2CHWB +

cw
2sw

CHD +
sw
cw

⇣
2C(3)

Hl
� Cll

⌘�
, (2.2)

where v ' 246 GeV is the vacuum expectation value of the Higgs field, sw = sin ✓w and
cw = cos ✓w. The Weinberg angle ✓w is fixed by the electroweak input parameters {GF ,mZ ,↵EW }

[25]. Here we define �m2
W

= m2
W
(SMEFT)�m2

W
(SM). The mass of the W boson receives cor-

rections from four Wilson coefficients, namely CHWB, CHD, C(3)
Hl

, and Cll. For the corresponding
operators, see Tab. 1.

CHWB and CHD are related to the oblique parameters S and T [10]. They have been
thoroughly studied for constraining ’universal’ theories [11, 26] with electroweak precision ob-
servables as well as in light of the W -boson mass anomaly [5–8]. The linear combination of
Wilson coefficients shown in Eq. (2.2),

⇣
2C(3)

Hl
� Cll

⌘
, is related to the shift to Fermi constant

in SMEFT.

3 EWPO fits and CKM unitarity

Under the assumption of flavor universality, 10 operators affect the EWPO at tree level, but
only 8 linear combinations can be determined by data [12]. Following Ref. [12], these linear
combination are written with Ĉi notation and given by Ĉ(1)

Hf
= C(1)

Hf
� (Yf/2)CHD, where f runs

over left-handed lepton and quark doublets and right-handed quark and lepton singlets, and
Ĉ(3)
Hf

= C(3)
Hf

+ (cw/sw)CHWB + (c2w/4s
2
w)CHD where f denotes left-handed lepton and quark

doublets, and Ĉll = (Cll)1221. Here Yf is the hypercharge of the fermion f .
Ref. [12] reported the results of their fits including the correlation matrix from which we can

reconstruct the �2. For concreteness we use their ‘standard average’ results but our point would
hold for the ‘conservative average’ as well. To investigate the consequences of CKM unitarity
on the fit, we will assume the flavor structures of the operators follow Minimal Flavor Violation
(MFV) [27, 28]. That is, we assume the operators are invariant under a U(3)q⇥U(3)u⇥U(3)d⇥
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, Ĉll, and all Wilson
coefficients that are probed by EWPO. The red bars indicated the predicted �mW from the EWPO
fit, while the blue bars show the resulting �mW after inclusion of �CKM. The shown values of ��2,
denote the differences in the minimum �2 between the blue and red points. The SM prediction and world
average, taken from Ref. [12], are depicted by the green and orange bands, respectively.

Result Result with CKM
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U(3)l ⇥U(3)e flavor symmetry. In addition, we slightly change the operator basis and trade the
Wilson coefficient Ĉll for the linear combination

C� = 2
h
C(3)
Hq

� C(3)
Hl

+ Ĉll

i
. (3.1)

We then refit the Wilson coefficients to the EWPO and obtain the results in the second column
of Table 2. In particular, we obtain

C� = � (0.19± 0.09) TeV�2 . (3.2)

This combination of Wilson coefficients contributes to the violation of unitarity in the first
row of the CKM matrix tracked by �CKM ⌘ |Vud|

2 + |Vus|
2
� 1, where we neglected the tiny

|Vub|
2 corrections. Within the MFV assumption, we can write [29]

�CKM = v2
h
C� � 2C(3)

lq

i
. (3.3)

The C(3)
lq

operator that appears here does not affect EWPO and does not play a role in the fit
of Ref. [12]. If one assumes this coefficient to be zero, Eq. (3.2) causes a shift

�EWfit
CKM = �(0.012± 0.005) , (3.4)

implying large, percent-level, deviations from CKM unitarity.
Based on up-to-date theoretical predictions for 0+ ! 0+ transitions and Kaon decays [30–

36], the PDG average indicates that unitarity is indeed violated by a bit more than two standard
deviations [37]

�CKM = �0.0015(7) , (3.5)

but in much smaller amounts than predicted by Eq. (3.4). This exercise shows that global fits
to EWPO and the W mass anomaly that include BSM physics beyond the oblique parameters
S and T, such as the one of Ref. [12], are severely disfavored by �-decay data. While we did
not repeat the fits of Refs. [14, 17], the central values of their Wilson coefficients also indicate a
negative percent-level shift to �CKM, consistent with Eq. (3.4).

Indeed, combining the EWPO with �CKM, we find that the minimum �2 increases by 3.3

and Wilson coefficients are shifted, as shown in Tab. 2. Again this shows that the Cabibbo
universality test has a significant impact and should be included in EWPO analyses of the W -
boson mass anomaly. These statements are illustrated in Fig. 1, which shows the values of
�mW = mW � mSM

W
obtained by fitting EWPO alone or EWPO and �CKM for two single-

operator scenarios and the global analysis involving all operators.
Another way to proceed is to effectively decouple the CKM unitarity constraint from EWPO

by letting C(3)
lq

6= 0, which is consistent with the MFV approach. The �CKM observable is then
accounted for by a nonzero value

C(3)
lq

= �(0.082± 0.045)TeV�2 , (3.6)
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Examples of impact of ΔCKM (1)

• Explanations of MW anomaly in SMEFT (beyond oblique corrections) 
are in tension with ΔCKM in MFV limit  
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Table 1. List of the most relevant SMEFT dimension-six operators that are involved in this analysis.

Calculated at linear order in SMEFT, the shift to W mass from the SM prediction due to
dimension-six operators is given by [23, 24]

�m2
W

m2
W

= v2
swcw

s2w � c2w


2CHWB +

cw
2sw

CHD +
sw
cw

⇣
2C(3)

Hl
� Cll

⌘�
, (2.2)

where v ' 246 GeV is the vacuum expectation value of the Higgs field, sw = sin ✓w and
cw = cos ✓w. The Weinberg angle ✓w is fixed by the electroweak input parameters {GF ,mZ ,↵EW }

[25]. Here we define �m2
W

= m2
W
(SMEFT)�m2

W
(SM). The mass of the W boson receives cor-

rections from four Wilson coefficients, namely CHWB, CHD, C(3)
Hl

, and Cll. For the corresponding
operators, see Tab. 1.

CHWB and CHD are related to the oblique parameters S and T [10]. They have been
thoroughly studied for constraining ’universal’ theories [11, 26] with electroweak precision ob-
servables as well as in light of the W -boson mass anomaly [5–8]. The linear combination of
Wilson coefficients shown in Eq. (2.2),

⇣
2C(3)

Hl
� Cll

⌘
, is related to the shift to Fermi constant

in SMEFT.

3 EWPO fits and CKM unitarity

Under the assumption of flavor universality, 10 operators affect the EWPO at tree level, but
only 8 linear combinations can be determined by data [12]. Following Ref. [12], these linear
combination are written with Ĉi notation and given by Ĉ(1)

Hf
= C(1)

Hf
� (Yf/2)CHD, where f runs

over left-handed lepton and quark doublets and right-handed quark and lepton singlets, and
Ĉ(3)
Hf

= C(3)
Hf

+ (cw/sw)CHWB + (c2w/4s
2
w)CHD where f denotes left-handed lepton and quark

doublets, and Ĉll = (Cll)1221. Here Yf is the hypercharge of the fermion f .
Ref. [12] reported the results of their fits including the correlation matrix from which we can

reconstruct the �2. For concreteness we use their ‘standard average’ results but our point would
hold for the ‘conservative average’ as well. To investigate the consequences of CKM unitarity
on the fit, we will assume the flavor structures of the operators follow Minimal Flavor Violation
(MFV) [27, 28]. That is, we assume the operators are invariant under a U(3)q⇥U(3)u⇥U(3)d⇥
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Figure 1. The resulting values of �mW = mW � mSM
W

when turning on Ĉ(3)
Hl

, Ĉll, and all Wilson
coefficients that are probed by EWPO. The red bars indicated the predicted �mW from the EWPO
fit, while the blue bars show the resulting �mW after inclusion of �CKM. The shown values of ��2,
denote the differences in the minimum �2 between the blue and red points. The SM prediction and world
average, taken from Ref. [12], are depicted by the green and orange bands, respectively.

Result Result with CKM
Ĉ(1)
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�0.007± 0.011 �0.013± 0.009

Ĉ(3)
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�0.042± 0.015 �0.034± 0.014

Ĉ'e �0.017± 0.009 �0.021± 0.009

Ĉ(1)
'q �0.0181± 0.044 �0.048± 0.04

Ĉ(3)
'q �0.114± 0.043 �0.041± 0.015

Ĉ'u 0.086± 0.154 �0.12± 0.11

Ĉ'd �0.626± 0.248 �0.38± 0.22

C� �0.19± 0.09 �0.027± 0.011

Table 2. Results from the dimension-six SMEFT fit of Ref. [12], before and after the inclusion of �CKM.
All Wilson coefficients are given in units of TeV�2.

while the values of the other Wilson coefficients return to their original value given in the second
column of Table 2. However, care must be taken that such values of C(3)

lq
are not excluded by

LHC constraints [38–42]. In particular, Ref. [43] analysed 8 TeV pp ! ll data from [44] in the
SMEFT at dimension-8. Limiting the analysis to MFV dimension-six operators, we find

C(3)
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We then refit the Wilson coefficients to the EWPO and obtain the results in the second column
of Table 2. In particular, we obtain
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operator that appears here does not affect EWPO and does not play a role in the fit
of Ref. [12]. If one assumes this coefficient to be zero, Eq. (3.2) causes a shift

�EWfit
CKM = �(0.012± 0.005) , (3.4)

implying large, percent-level, deviations from CKM unitarity.
Based on up-to-date theoretical predictions for 0+ ! 0+ transitions and Kaon decays [30–

36], the PDG average indicates that unitarity is indeed violated by a bit more than two standard
deviations [37]

�CKM = �0.0015(7) , (3.5)

but in much smaller amounts than predicted by Eq. (3.4). This exercise shows that global fits
to EWPO and the W mass anomaly that include BSM physics beyond the oblique parameters
S and T, such as the one of Ref. [12], are severely disfavored by �-decay data. While we did
not repeat the fits of Refs. [14, 17], the central values of their Wilson coefficients also indicate a
negative percent-level shift to �CKM, consistent with Eq. (3.4).

Indeed, combining the EWPO with �CKM, we find that the minimum �2 increases by 3.3

and Wilson coefficients are shifted, as shown in Tab. 2. Again this shows that the Cabibbo
universality test has a significant impact and should be included in EWPO analyses of the W -
boson mass anomaly. These statements are illustrated in Fig. 1, which shows the values of
�mW = mW � mSM

W
obtained by fitting EWPO alone or EWPO and �CKM for two single-

operator scenarios and the global analysis involving all operators.
Another way to proceed is to effectively decouple the CKM unitarity constraint from EWPO

by letting C(3)
lq

6= 0, which is consistent with the MFV approach. The �CKM observable is then
accounted for by a nonzero value

C(3)
lq

= �(0.082± 0.045)TeV�2 , (3.6)
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reconstruct the �2. For concreteness we use their ‘standard average’ results but our point would
hold for the ‘conservative average’ as well. To investigate the consequences of CKM unitarity
on the fit, we will assume the flavor structures of the operators follow Minimal Flavor Violation
(MFV) [27, 28]. That is, we assume the operators are invariant under a U(3)q⇥U(3)u⇥U(3)d⇥
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U(3)l ⇥U(3)e flavor symmetry. In addition, we slightly change the operator basis and trade the
Wilson coefficient Ĉll for the linear combination

C� = 2
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C(3)
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� C(3)
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+ Ĉll

i
. (3.1)

We then refit the Wilson coefficients to the EWPO and obtain the results in the second column
of Table 2. In particular, we obtain

C� = � (0.19± 0.09) TeV�2 . (3.2)

This combination of Wilson coefficients contributes to the violation of unitarity in the first
row of the CKM matrix tracked by �CKM ⌘ |Vud|

2 + |Vus|
2
� 1, where we neglected the tiny

|Vub|
2 corrections. Within the MFV assumption, we can write [29]

�CKM = v2
h
C� � 2C(3)

lq

i
. (3.3)

The C(3)
lq

operator that appears here does not affect EWPO and does not play a role in the fit
of Ref. [12]. If one assumes this coefficient to be zero, Eq. (3.2) causes a shift

�EWfit
CKM = �(0.012± 0.005) , (3.4)

implying large, percent-level, deviations from CKM unitarity.
Based on up-to-date theoretical predictions for 0+ ! 0+ transitions and Kaon decays [30–

36], the PDG average indicates that unitarity is indeed violated by a bit more than two standard
deviations [37]

�CKM = �0.0015(7) , (3.5)

but in much smaller amounts than predicted by Eq. (3.4). This exercise shows that global fits
to EWPO and the W mass anomaly that include BSM physics beyond the oblique parameters
S and T, such as the one of Ref. [12], are severely disfavored by �-decay data. While we did
not repeat the fits of Refs. [14, 17], the central values of their Wilson coefficients also indicate a
negative percent-level shift to �CKM, consistent with Eq. (3.4).

Indeed, combining the EWPO with �CKM, we find that the minimum �2 increases by 3.3

and Wilson coefficients are shifted, as shown in Tab. 2. Again this shows that the Cabibbo
universality test has a significant impact and should be included in EWPO analyses of the W -
boson mass anomaly. These statements are illustrated in Fig. 1, which shows the values of
�mW = mW � mSM

W
obtained by fitting EWPO alone or EWPO and �CKM for two single-

operator scenarios and the global analysis involving all operators.
Another way to proceed is to effectively decouple the CKM unitarity constraint from EWPO

by letting C(3)
lq

6= 0, which is consistent with the MFV approach. The �CKM observable is then
accounted for by a nonzero value

C(3)
lq

= �(0.082± 0.045)TeV�2 , (3.6)
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Figure 1. The resulting values of �mW = mW � mSM
W

when turning on Ĉ(3)
Hl

, Ĉll, and all Wilson
coefficients that are probed by EWPO. The red bars indicated the predicted �mW from the EWPO
fit, while the blue bars show the resulting �mW after inclusion of �CKM. The shown values of ��2,
denote the differences in the minimum �2 between the blue and red points. The SM prediction and world
average, taken from Ref. [12], are depicted by the green and orange bands, respectively.

Result Result with CKM
Ĉ(1)
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'q �0.0181± 0.044 �0.048± 0.04

Ĉ(3)
'q �0.114± 0.043 �0.041± 0.015

Ĉ'u 0.086± 0.154 �0.12± 0.11

Ĉ'd �0.626± 0.248 �0.38± 0.22

C� �0.19± 0.09 �0.027± 0.011

Table 2. Results from the dimension-six SMEFT fit of Ref. [12], before and after the inclusion of �CKM.
All Wilson coefficients are given in units of TeV�2.

while the values of the other Wilson coefficients return to their original value given in the second
column of Table 2. However, care must be taken that such values of C(3)

lq
are not excluded by

LHC constraints [38–42]. In particular, Ref. [43] analysed 8 TeV pp ! ll data from [44] in the
SMEFT at dimension-8. Limiting the analysis to MFV dimension-six operators, we find

C(3)
lq

= �(0.028± 0.028)TeV�2 (Single coupling, 95%C.L.) ,
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We then refit the Wilson coefficients to the EWPO and obtain the results in the second column
of Table 2. In particular, we obtain

C� = � (0.19± 0.09) TeV�2 . (3.2)

This combination of Wilson coefficients contributes to the violation of unitarity in the first
row of the CKM matrix tracked by �CKM ⌘ |Vud|
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2 corrections. Within the MFV assumption, we can write [29]
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operator that appears here does not affect EWPO and does not play a role in the fit
of Ref. [12]. If one assumes this coefficient to be zero, Eq. (3.2) causes a shift

�EWfit
CKM = �(0.012± 0.005) , (3.4)

implying large, percent-level, deviations from CKM unitarity.
Based on up-to-date theoretical predictions for 0+ ! 0+ transitions and Kaon decays [30–

36], the PDG average indicates that unitarity is indeed violated by a bit more than two standard
deviations [37]

�CKM = �0.0015(7) , (3.5)

but in much smaller amounts than predicted by Eq. (3.4). This exercise shows that global fits
to EWPO and the W mass anomaly that include BSM physics beyond the oblique parameters
S and T, such as the one of Ref. [12], are severely disfavored by �-decay data. While we did
not repeat the fits of Refs. [14, 17], the central values of their Wilson coefficients also indicate a
negative percent-level shift to �CKM, consistent with Eq. (3.4).

Indeed, combining the EWPO with �CKM, we find that the minimum �2 increases by 3.3

and Wilson coefficients are shifted, as shown in Tab. 2. Again this shows that the Cabibbo
universality test has a significant impact and should be included in EWPO analyses of the W -
boson mass anomaly. These statements are illustrated in Fig. 1, which shows the values of
�mW = mW � mSM

W
obtained by fitting EWPO alone or EWPO and �CKM for two single-

operator scenarios and the global analysis involving all operators.
Another way to proceed is to effectively decouple the CKM unitarity constraint from EWPO

by letting C(3)
lq

6= 0, which is consistent with the MFV approach. The �CKM observable is then
accounted for by a nonzero value

C(3)
lq

= �(0.082± 0.045)TeV�2 , (3.6)
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• Explanations of MW anomaly in SMEFT (beyond oblique corrections) 
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Table 1. List of the most relevant SMEFT dimension-six operators that are involved in this analysis.

Calculated at linear order in SMEFT, the shift to W mass from the SM prediction due to
dimension-six operators is given by [23, 24]

�m2
W

m2
W

= v2
swcw

s2w � c2w


2CHWB +

cw
2sw

CHD +
sw
cw

⇣
2C(3)

Hl
� Cll

⌘�
, (2.2)

where v ' 246 GeV is the vacuum expectation value of the Higgs field, sw = sin ✓w and
cw = cos ✓w. The Weinberg angle ✓w is fixed by the electroweak input parameters {GF ,mZ ,↵EW }

[25]. Here we define �m2
W

= m2
W
(SMEFT)�m2

W
(SM). The mass of the W boson receives cor-

rections from four Wilson coefficients, namely CHWB, CHD, C(3)
Hl

, and Cll. For the corresponding
operators, see Tab. 1.

CHWB and CHD are related to the oblique parameters S and T [10]. They have been
thoroughly studied for constraining ’universal’ theories [11, 26] with electroweak precision ob-
servables as well as in light of the W -boson mass anomaly [5–8]. The linear combination of
Wilson coefficients shown in Eq. (2.2),

⇣
2C(3)

Hl
� Cll

⌘
, is related to the shift to Fermi constant

in SMEFT.

3 EWPO fits and CKM unitarity

Under the assumption of flavor universality, 10 operators affect the EWPO at tree level, but
only 8 linear combinations can be determined by data [12]. Following Ref. [12], these linear
combination are written with Ĉi notation and given by Ĉ(1)

Hf
= C(1)

Hf
� (Yf/2)CHD, where f runs

over left-handed lepton and quark doublets and right-handed quark and lepton singlets, and
Ĉ(3)
Hf

= C(3)
Hf

+ (cw/sw)CHWB + (c2w/4s
2
w)CHD where f denotes left-handed lepton and quark

doublets, and Ĉll = (Cll)1221. Here Yf is the hypercharge of the fermion f .
Ref. [12] reported the results of their fits including the correlation matrix from which we can

reconstruct the �2. For concreteness we use their ‘standard average’ results but our point would
hold for the ‘conservative average’ as well. To investigate the consequences of CKM unitarity
on the fit, we will assume the flavor structures of the operators follow Minimal Flavor Violation
(MFV) [27, 28]. That is, we assume the operators are invariant under a U(3)q⇥U(3)u⇥U(3)d⇥
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Figure 1. The resulting values of �mW = mW � mSM
W

when turning on Ĉ(3)
Hl

, Ĉll, and all Wilson
coefficients that are probed by EWPO. The red bars indicated the predicted �mW from the EWPO
fit, while the blue bars show the resulting �mW after inclusion of �CKM. The shown values of ��2,
denote the differences in the minimum �2 between the blue and red points. The SM prediction and world
average, taken from Ref. [12], are depicted by the green and orange bands, respectively.
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Table 2. Results from the dimension-six SMEFT fit of Ref. [12], before and after the inclusion of �CKM.
All Wilson coefficients are given in units of TeV�2.
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column of Table 2. However, care must be taken that such values of C(3)

lq
are not excluded by
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operator that appears here does not affect EWPO and does not play a role in the fit
of Ref. [12]. If one assumes this coefficient to be zero, Eq. (3.2) causes a shift
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implying large, percent-level, deviations from CKM unitarity.
Based on up-to-date theoretical predictions for 0+ ! 0+ transitions and Kaon decays [30–

36], the PDG average indicates that unitarity is indeed violated by a bit more than two standard
deviations [37]
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but in much smaller amounts than predicted by Eq. (3.4). This exercise shows that global fits
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S and T, such as the one of Ref. [12], are severely disfavored by �-decay data. While we did
not repeat the fits of Refs. [14, 17], the central values of their Wilson coefficients also indicate a
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and Wilson coefficients are shifted, as shown in Tab. 2. Again this shows that the Cabibbo
universality test has a significant impact and should be included in EWPO analyses of the W -
boson mass anomaly. These statements are illustrated in Fig. 1, which shows the values of
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obtained by fitting EWPO alone or EWPO and �CKM for two single-

operator scenarios and the global analysis involving all operators.
Another way to proceed is to effectively decouple the CKM unitarity constraint from EWPO

by letting C(3)
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6= 0, which is consistent with the MFV approach. The �CKM observable is then
accounted for by a nonzero value
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= �(0.082± 0.045)TeV�2 , (3.6)
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• Explanations of MW anomaly in SMEFT (beyond oblique corrections) 
are in tension with ΔCKM in MFV limit  
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Table 1. List of the most relevant SMEFT dimension-six operators that are involved in this analysis.
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Indeed, combining the EWPO with �CKM, we find that the minimum �2 increases by 3.3

and Wilson coefficients are shifted, as shown in Tab. 2. Again this shows that the Cabibbo
universality test has a significant impact and should be included in EWPO analyses of the W -
boson mass anomaly. These statements are illustrated in Fig. 1, which shows the values of
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obtained by fitting EWPO alone or EWPO and �CKM for two single-

operator scenarios and the global analysis involving all operators.
Another way to proceed is to effectively decouple the CKM unitarity constraint from EWPO

by letting C(3)
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Figure 1. The resulting values of �mW = mW � mSM
W

when turning on Ĉ(3)
Hl

, Ĉll, and all Wilson
coefficients that are probed by EWPO. The red bars indicated the predicted �mW from the EWPO
fit, while the blue bars show the resulting �mW after inclusion of �CKM. The shown values of ��2,
denote the differences in the minimum �2 between the blue and red points. The SM prediction and world
average, taken from Ref. [12], are depicted by the green and orange bands, respectively.

Result Result with CKM
Ĉ(1)
'l

�0.007± 0.011 �0.013± 0.009

Ĉ(3)
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�0.042± 0.015 �0.034± 0.014

Ĉ'e �0.017± 0.009 �0.021± 0.009

Ĉ(1)
'q �0.0181± 0.044 �0.048± 0.04

Ĉ(3)
'q �0.114± 0.043 �0.041± 0.015

Ĉ'u 0.086± 0.154 �0.12± 0.11

Ĉ'd �0.626± 0.248 �0.38± 0.22

C� �0.19± 0.09 �0.027± 0.011

Table 2. Results from the dimension-six SMEFT fit of Ref. [12], before and after the inclusion of �CKM.
All Wilson coefficients are given in units of TeV�2.

while the values of the other Wilson coefficients return to their original value given in the second
column of Table 2. However, care must be taken that such values of C(3)

lq
are not excluded by

LHC constraints [38–42]. In particular, Ref. [43] analysed 8 TeV pp ! ll data from [44] in the
SMEFT at dimension-8. Limiting the analysis to MFV dimension-six operators, we find

C(3)
lq

= �(0.028± 0.028)TeV�2 (Single coupling, 95%C.L.) ,

C(3)
lq

= �(0.05± 0.1)TeV�2 (Global fit, 95%C.L.) , (3.7)

when in the first line only C(3)
lq

is turned on, while in second line seven operators were turned
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We then refit the Wilson coefficients to the EWPO and obtain the results in the second column
of Table 2. In particular, we obtain

C� = � (0.19± 0.09) TeV�2 . (3.2)

This combination of Wilson coefficients contributes to the violation of unitarity in the first
row of the CKM matrix tracked by �CKM ⌘ |Vud|
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2 corrections. Within the MFV assumption, we can write [29]
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The C(3)
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operator that appears here does not affect EWPO and does not play a role in the fit
of Ref. [12]. If one assumes this coefficient to be zero, Eq. (3.2) causes a shift

�EWfit
CKM = �(0.012± 0.005) , (3.4)

implying large, percent-level, deviations from CKM unitarity.
Based on up-to-date theoretical predictions for 0+ ! 0+ transitions and Kaon decays [30–

36], the PDG average indicates that unitarity is indeed violated by a bit more than two standard
deviations [37]

�CKM = �0.0015(7) , (3.5)

but in much smaller amounts than predicted by Eq. (3.4). This exercise shows that global fits
to EWPO and the W mass anomaly that include BSM physics beyond the oblique parameters
S and T, such as the one of Ref. [12], are severely disfavored by �-decay data. While we did
not repeat the fits of Refs. [14, 17], the central values of their Wilson coefficients also indicate a
negative percent-level shift to �CKM, consistent with Eq. (3.4).

Indeed, combining the EWPO with �CKM, we find that the minimum �2 increases by 3.3

and Wilson coefficients are shifted, as shown in Tab. 2. Again this shows that the Cabibbo
universality test has a significant impact and should be included in EWPO analyses of the W -
boson mass anomaly. These statements are illustrated in Fig. 1, which shows the values of
�mW = mW � mSM

W
obtained by fitting EWPO alone or EWPO and �CKM for two single-

operator scenarios and the global analysis involving all operators.
Another way to proceed is to effectively decouple the CKM unitarity constraint from EWPO

by letting C(3)
lq

6= 0, which is consistent with the MFV approach. The �CKM observable is then
accounted for by a nonzero value

C(3)
lq

= �(0.082± 0.045)TeV�2 , (3.6)
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+ Ĉll

i
. (3.1)

We then refit the Wilson coefficients to the EWPO and obtain the results in the second column
of Table 2. In particular, we obtain

C� = � (0.19± 0.09) TeV�2 . (3.2)

This combination of Wilson coefficients contributes to the violation of unitarity in the first
row of the CKM matrix tracked by �CKM ⌘ |Vud|

2 + |Vus|
2
� 1, where we neglected the tiny

|Vub|
2 corrections. Within the MFV assumption, we can write [29]

�CKM = v2
h
C� � 2C(3)

lq

i
. (3.3)

The C(3)
lq

operator that appears here does not affect EWPO and does not play a role in the fit
of Ref. [12]. If one assumes this coefficient to be zero, Eq. (3.2) causes a shift

�EWfit
CKM = �(0.012± 0.005) , (3.4)

implying large, percent-level, deviations from CKM unitarity.
Based on up-to-date theoretical predictions for 0+ ! 0+ transitions and Kaon decays [30–

36], the PDG average indicates that unitarity is indeed violated by a bit more than two standard
deviations [37]

�CKM = �0.0015(7) , (3.5)

but in much smaller amounts than predicted by Eq. (3.4). This exercise shows that global fits
to EWPO and the W mass anomaly that include BSM physics beyond the oblique parameters
S and T, such as the one of Ref. [12], are severely disfavored by �-decay data. While we did
not repeat the fits of Refs. [14, 17], the central values of their Wilson coefficients also indicate a
negative percent-level shift to �CKM, consistent with Eq. (3.4).

Indeed, combining the EWPO with �CKM, we find that the minimum �2 increases by 3.3

and Wilson coefficients are shifted, as shown in Tab. 2. Again this shows that the Cabibbo
universality test has a significant impact and should be included in EWPO analyses of the W -
boson mass anomaly. These statements are illustrated in Fig. 1, which shows the values of
�mW = mW � mSM

W
obtained by fitting EWPO alone or EWPO and �CKM for two single-

operator scenarios and the global analysis involving all operators.
Another way to proceed is to effectively decouple the CKM unitarity constraint from EWPO

by letting C(3)
lq

6= 0, which is consistent with the MFV approach. The �CKM observable is then
accounted for by a nonzero value

C(3)
lq

= �(0.082± 0.045)TeV�2 , (3.6)

– 4 –

MFV

VC, Dekens, deVries, Mereghetti, Tong 2204.08440

deBlas et al 2204.04204,  
Bagnaschi et al 2204.05260, … 

34

Examples of impact of ΔCKM (1)

U(3)l ⇥U(3)e flavor symmetry. In addition, we slightly change the operator basis and trade the
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Eqs. (5.1), (5.2), and (5.3). This is due to the fact that only the fit to low-energy data involves
free parameters in the form of �, matrix elements, and parameters that describe theoretical
uncertainties, while the EWPO and collider data are, to a good approximation, independent of
these variables.

6 SMEFT analysis with U(3)5 flavor assumption

We start by considering a BSM scenario in which we impose a U(3)5 flavor symmetry on the
SMEFT coe�cients. Ref. [61] investigated the impact of the measurement of the CDF W mass
on the EWPO fit under these assumptions. The EWPO depend on eight combinations of Wilson

coe�cients [58], namely Ĉ(1,3)
Hl

, Ĉ(1,3)
Hq

, ĈHe, ĈHu, ĈHd, and Ĉll. As mentioned in Section 3.1, the
hat-notation is used to identify the linear combinations that cannot be separated using EWPO
alone:

Ĉ(3)
HF

= C(3)
HF

+
cw
sw

CHWB +
c2w
4s2w

CHD ,

Ĉ(1)
HF

= C(1)
HF

�
YF
2
CHD ,

ĈHf = CHf �
Yf
2
CHD , (6.1)

for F = {l, q} and f = {u, d, e} and YF,f denotes the corresponding weak hypercharge. We
follow [40] and define

C� = 2
h
Ĉ(3)
Hq

� Ĉ(3)
Hl

+ Ĉll

i
, (6.2)

where Ĉll = [Cll]1221. Defining C� will be useful, as it is the linear combination of Wilson
coe�cients that appears in the EWPO that contributes to deviations from CKM unitarity.
Therefore, we will use this relation to trade Ĉll for C�. The SMEFT corrections to the W mass
can be expressed in terms of these operators as [59, 86]

�m2
W

m2
W

= v2
swcw

s2w � c2w


2CHWB +

cw
2sw

CHD +
sw
cw

⇣
2C(3)

Hl
� Ĉll

⌘�

= v2
s2w

s2w � c2w

⇣
2 Ĉ(3)

Hl
� Ĉll

⌘
= v2

s2w
s2w � c2w

✓
Ĉ(3)
Hl

+ Ĉ(3)
Hq

�
1

2
C�

◆
. (6.3)

The expression of sw in terms of the input parameters GF , mZ , and ↵em is given in Eq. (A.7).
Finally, under the assumption of U(3)5 flavor symmetry, the violation of CKM unitarity is
described by

�CKM = |Ṽud|
2 + |Ṽus|

2
� 1 = v2

⇣
C� � 2C(3)

lq

⌘
. (6.4)

Here, Ṽij are the e↵ective CKM elements that are probed in low-energy measurements of � and
K decays, while Ṽub can be neglected at the current level of precision. C� entirely captures the

contribution to �CKM of the operators that enter EWPO, whereas C(3)
lq

does not play a role in
EWPO and is therefore traditionally not included.
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of Table 2. In particular, we obtain
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This combination of Wilson coefficients contributes to the violation of unitarity in the first
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operator that appears here does not affect EWPO and does not play a role in the fit
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implying large, percent-level, deviations from CKM unitarity.
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Table 2. Results from the dimension-six SMEFT fit of Ref. [12], before and after the inclusion of �CKM.
All Wilson coefficients are given in units of TeV�2.
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Table 1. List of the most relevant SMEFT dimension-six operators that are involved in this analysis.

Calculated at linear order in SMEFT, the shift to W mass from the SM prediction due to
dimension-six operators is given by [23, 24]

�m2
W

m2
W

= v2
swcw

s2w � c2w


2CHWB +

cw
2sw

CHD +
sw
cw

⇣
2C(3)

Hl
� Cll

⌘�
, (2.2)

where v ' 246 GeV is the vacuum expectation value of the Higgs field, sw = sin ✓w and
cw = cos ✓w. The Weinberg angle ✓w is fixed by the electroweak input parameters {GF ,mZ ,↵EW }

[25]. Here we define �m2
W

= m2
W
(SMEFT)�m2

W
(SM). The mass of the W boson receives cor-

rections from four Wilson coefficients, namely CHWB, CHD, C(3)
Hl

, and Cll. For the corresponding
operators, see Tab. 1.

CHWB and CHD are related to the oblique parameters S and T [10]. They have been
thoroughly studied for constraining ’universal’ theories [11, 26] with electroweak precision ob-
servables as well as in light of the W -boson mass anomaly [5–8]. The linear combination of
Wilson coefficients shown in Eq. (2.2),

⇣
2C(3)

Hl
� Cll

⌘
, is related to the shift to Fermi constant

in SMEFT.

3 EWPO fits and CKM unitarity

Under the assumption of flavor universality, 10 operators affect the EWPO at tree level, but
only 8 linear combinations can be determined by data [12]. Following Ref. [12], these linear
combination are written with Ĉi notation and given by Ĉ(1)

Hf
= C(1)

Hf
� (Yf/2)CHD, where f runs

over left-handed lepton and quark doublets and right-handed quark and lepton singlets, and
Ĉ(3)
Hf

= C(3)
Hf

+ (cw/sw)CHWB + (c2w/4s
2
w)CHD where f denotes left-handed lepton and quark

doublets, and Ĉll = (Cll)1221. Here Yf is the hypercharge of the fermion f .
Ref. [12] reported the results of their fits including the correlation matrix from which we can

reconstruct the �2. For concreteness we use their ‘standard average’ results but our point would
hold for the ‘conservative average’ as well. To investigate the consequences of CKM unitarity
on the fit, we will assume the flavor structures of the operators follow Minimal Flavor Violation
(MFV) [27, 28]. That is, we assume the operators are invariant under a U(3)q⇥U(3)u⇥U(3)d⇥
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fit, while the blue bars show the resulting �mW after inclusion of �CKM. The shown values of ��2,
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Ĉ(3)
'l

�0.042± 0.015 �0.034± 0.014
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• Explanations of MW anomaly in SMEFT (beyond oblique corrections) 
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Calculated at linear order in SMEFT, the shift to W mass from the SM prediction due to
dimension-six operators is given by [23, 24]
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, (2.2)

where v ' 246 GeV is the vacuum expectation value of the Higgs field, sw = sin ✓w and
cw = cos ✓w. The Weinberg angle ✓w is fixed by the electroweak input parameters {GF ,mZ ,↵EW }

[25]. Here we define �m2
W

= m2
W
(SMEFT)�m2

W
(SM). The mass of the W boson receives cor-

rections from four Wilson coefficients, namely CHWB, CHD, C(3)
Hl

, and Cll. For the corresponding
operators, see Tab. 1.

CHWB and CHD are related to the oblique parameters S and T [10]. They have been
thoroughly studied for constraining ’universal’ theories [11, 26] with electroweak precision ob-
servables as well as in light of the W -boson mass anomaly [5–8]. The linear combination of
Wilson coefficients shown in Eq. (2.2),

⇣
2C(3)

Hl
� Cll

⌘
, is related to the shift to Fermi constant

in SMEFT.

3 EWPO fits and CKM unitarity

Under the assumption of flavor universality, 10 operators affect the EWPO at tree level, but
only 8 linear combinations can be determined by data [12]. Following Ref. [12], these linear
combination are written with Ĉi notation and given by Ĉ(1)

Hf
= C(1)

Hf
� (Yf/2)CHD, where f runs

over left-handed lepton and quark doublets and right-handed quark and lepton singlets, and
Ĉ(3)
Hf

= C(3)
Hf

+ (cw/sw)CHWB + (c2w/4s
2
w)CHD where f denotes left-handed lepton and quark

doublets, and Ĉll = (Cll)1221. Here Yf is the hypercharge of the fermion f .
Ref. [12] reported the results of their fits including the correlation matrix from which we can

reconstruct the �2. For concreteness we use their ‘standard average’ results but our point would
hold for the ‘conservative average’ as well. To investigate the consequences of CKM unitarity
on the fit, we will assume the flavor structures of the operators follow Minimal Flavor Violation
(MFV) [27, 28]. That is, we assume the operators are invariant under a U(3)q⇥U(3)u⇥U(3)d⇥
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U(3)l ⇥U(3)e flavor symmetry. In addition, we slightly change the operator basis and trade the
Wilson coefficient Ĉll for the linear combination

C� = 2
h
C(3)
Hq

� C(3)
Hl

+ Ĉll

i
. (3.1)

We then refit the Wilson coefficients to the EWPO and obtain the results in the second column
of Table 2. In particular, we obtain

C� = � (0.19± 0.09) TeV�2 . (3.2)

This combination of Wilson coefficients contributes to the violation of unitarity in the first
row of the CKM matrix tracked by �CKM ⌘ |Vud|

2 + |Vus|
2
� 1, where we neglected the tiny

|Vub|
2 corrections. Within the MFV assumption, we can write [29]

�CKM = v2
h
C� � 2C(3)

lq

i
. (3.3)

The C(3)
lq

operator that appears here does not affect EWPO and does not play a role in the fit
of Ref. [12]. If one assumes this coefficient to be zero, Eq. (3.2) causes a shift

�EWfit
CKM = �(0.012± 0.005) , (3.4)

implying large, percent-level, deviations from CKM unitarity.
Based on up-to-date theoretical predictions for 0+ ! 0+ transitions and Kaon decays [30–

36], the PDG average indicates that unitarity is indeed violated by a bit more than two standard
deviations [37]

�CKM = �0.0015(7) , (3.5)

but in much smaller amounts than predicted by Eq. (3.4). This exercise shows that global fits
to EWPO and the W mass anomaly that include BSM physics beyond the oblique parameters
S and T, such as the one of Ref. [12], are severely disfavored by �-decay data. While we did
not repeat the fits of Refs. [14, 17], the central values of their Wilson coefficients also indicate a
negative percent-level shift to �CKM, consistent with Eq. (3.4).

Indeed, combining the EWPO with �CKM, we find that the minimum �2 increases by 3.3

and Wilson coefficients are shifted, as shown in Tab. 2. Again this shows that the Cabibbo
universality test has a significant impact and should be included in EWPO analyses of the W -
boson mass anomaly. These statements are illustrated in Fig. 1, which shows the values of
�mW = mW � mSM

W
obtained by fitting EWPO alone or EWPO and �CKM for two single-

operator scenarios and the global analysis involving all operators.
Another way to proceed is to effectively decouple the CKM unitarity constraint from EWPO

by letting C(3)
lq

6= 0, which is consistent with the MFV approach. The �CKM observable is then
accounted for by a nonzero value

C(3)
lq

= �(0.082± 0.045)TeV�2 , (3.6)
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Figure 1. The resulting values of �mW = mW � mSM
W

when turning on Ĉ(3)
Hl

, Ĉll, and all Wilson
coefficients that are probed by EWPO. The red bars indicated the predicted �mW from the EWPO
fit, while the blue bars show the resulting �mW after inclusion of �CKM. The shown values of ��2,
denote the differences in the minimum �2 between the blue and red points. The SM prediction and world
average, taken from Ref. [12], are depicted by the green and orange bands, respectively.

Result Result with CKM
Ĉ(1)
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�0.007± 0.011 �0.013± 0.009

Ĉ(3)
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�0.042± 0.015 �0.034± 0.014

Ĉ'e �0.017± 0.009 �0.021± 0.009

Ĉ(1)
'q �0.0181± 0.044 �0.048± 0.04

Ĉ(3)
'q �0.114± 0.043 �0.041± 0.015

Ĉ'u 0.086± 0.154 �0.12± 0.11

Ĉ'd �0.626± 0.248 �0.38± 0.22

C� �0.19± 0.09 �0.027± 0.011

Table 2. Results from the dimension-six SMEFT fit of Ref. [12], before and after the inclusion of �CKM.
All Wilson coefficients are given in units of TeV�2.

while the values of the other Wilson coefficients return to their original value given in the second
column of Table 2. However, care must be taken that such values of C(3)

lq
are not excluded by

LHC constraints [38–42]. In particular, Ref. [43] analysed 8 TeV pp ! ll data from [44] in the
SMEFT at dimension-8. Limiting the analysis to MFV dimension-six operators, we find

C(3)
lq

= �(0.028± 0.028)TeV�2 (Single coupling, 95%C.L.) ,

C(3)
lq

= �(0.05± 0.1)TeV�2 (Global fit, 95%C.L.) , (3.7)
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lq

is turned on, while in second line seven operators were turned
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Ĉ'u 0.086± 0.154 �0.12± 0.11
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We then refit the Wilson coefficients to the EWPO and obtain the results in the second column
of Table 2. In particular, we obtain

C� = � (0.19± 0.09) TeV�2 . (3.2)

This combination of Wilson coefficients contributes to the violation of unitarity in the first
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2 corrections. Within the MFV assumption, we can write [29]
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operator that appears here does not affect EWPO and does not play a role in the fit
of Ref. [12]. If one assumes this coefficient to be zero, Eq. (3.2) causes a shift
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implying large, percent-level, deviations from CKM unitarity.
Based on up-to-date theoretical predictions for 0+ ! 0+ transitions and Kaon decays [30–

36], the PDG average indicates that unitarity is indeed violated by a bit more than two standard
deviations [37]
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but in much smaller amounts than predicted by Eq. (3.4). This exercise shows that global fits
to EWPO and the W mass anomaly that include BSM physics beyond the oblique parameters
S and T, such as the one of Ref. [12], are severely disfavored by �-decay data. While we did
not repeat the fits of Refs. [14, 17], the central values of their Wilson coefficients also indicate a
negative percent-level shift to �CKM, consistent with Eq. (3.4).

Indeed, combining the EWPO with �CKM, we find that the minimum �2 increases by 3.3

and Wilson coefficients are shifted, as shown in Tab. 2. Again this shows that the Cabibbo
universality test has a significant impact and should be included in EWPO analyses of the W -
boson mass anomaly. These statements are illustrated in Fig. 1, which shows the values of
�mW = mW � mSM

W
obtained by fitting EWPO alone or EWPO and �CKM for two single-

operator scenarios and the global analysis involving all operators.
Another way to proceed is to effectively decouple the CKM unitarity constraint from EWPO

by letting C(3)
lq

6= 0, which is consistent with the MFV approach. The �CKM observable is then
accounted for by a nonzero value

C(3)
lq

= �(0.082± 0.045)TeV�2 , (3.6)

– 4 –

U(3)l ⇥U(3)e flavor symmetry. In addition, we slightly change the operator basis and trade the
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Calculated at linear order in SMEFT, the shift to W mass from the SM prediction due to
dimension-six operators is given by [23, 24]
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where v ' 246 GeV is the vacuum expectation value of the Higgs field, sw = sin ✓w and
cw = cos ✓w. The Weinberg angle ✓w is fixed by the electroweak input parameters {GF ,mZ ,↵EW }

[25]. Here we define �m2
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(SMEFT)�m2

W
(SM). The mass of the W boson receives cor-

rections from four Wilson coefficients, namely CHWB, CHD, C(3)
Hl

, and Cll. For the corresponding
operators, see Tab. 1.

CHWB and CHD are related to the oblique parameters S and T [10]. They have been
thoroughly studied for constraining ’universal’ theories [11, 26] with electroweak precision ob-
servables as well as in light of the W -boson mass anomaly [5–8]. The linear combination of
Wilson coefficients shown in Eq. (2.2),
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, is related to the shift to Fermi constant

in SMEFT.

3 EWPO fits and CKM unitarity

Under the assumption of flavor universality, 10 operators affect the EWPO at tree level, but
only 8 linear combinations can be determined by data [12]. Following Ref. [12], these linear
combination are written with Ĉi notation and given by Ĉ(1)
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2
w)CHD where f denotes left-handed lepton and quark

doublets, and Ĉll = (Cll)1221. Here Yf is the hypercharge of the fermion f .
Ref. [12] reported the results of their fits including the correlation matrix from which we can

reconstruct the �2. For concreteness we use their ‘standard average’ results but our point would
hold for the ‘conservative average’ as well. To investigate the consequences of CKM unitarity
on the fit, we will assume the flavor structures of the operators follow Minimal Flavor Violation
(MFV) [27, 28]. That is, we assume the operators are invariant under a U(3)q⇥U(3)u⇥U(3)d⇥
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We then refit the Wilson coefficients to the EWPO and obtain the results in the second column
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36], the PDG average indicates that unitarity is indeed violated by a bit more than two standard
deviations [37]
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but in much smaller amounts than predicted by Eq. (3.4). This exercise shows that global fits
to EWPO and the W mass anomaly that include BSM physics beyond the oblique parameters
S and T, such as the one of Ref. [12], are severely disfavored by �-decay data. While we did
not repeat the fits of Refs. [14, 17], the central values of their Wilson coefficients also indicate a
negative percent-level shift to �CKM, consistent with Eq. (3.4).

Indeed, combining the EWPO with �CKM, we find that the minimum �2 increases by 3.3

and Wilson coefficients are shifted, as shown in Tab. 2. Again this shows that the Cabibbo
universality test has a significant impact and should be included in EWPO analyses of the W -
boson mass anomaly. These statements are illustrated in Fig. 1, which shows the values of
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Figure 1. The resulting values of �mW = mW � mSM
W

when turning on Ĉ(3)
Hl

, Ĉll, and all Wilson
coefficients that are probed by EWPO. The red bars indicated the predicted �mW from the EWPO
fit, while the blue bars show the resulting �mW after inclusion of �CKM. The shown values of ��2,
denote the differences in the minimum �2 between the blue and red points. The SM prediction and world
average, taken from Ref. [12], are depicted by the green and orange bands, respectively.
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Table 2. Results from the dimension-six SMEFT fit of Ref. [12], before and after the inclusion of �CKM.
All Wilson coefficients are given in units of TeV�2.
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column of Table 2. However, care must be taken that such values of C(3)
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are not excluded by

LHC constraints [38–42]. In particular, Ref. [43] analysed 8 TeV pp ! ll data from [44] in the
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of Table 2. In particular, we obtain
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operator that appears here does not affect EWPO and does not play a role in the fit
of Ref. [12]. If one assumes this coefficient to be zero, Eq. (3.2) causes a shift

�EWfit
CKM = �(0.012± 0.005) , (3.4)

implying large, percent-level, deviations from CKM unitarity.
Based on up-to-date theoretical predictions for 0+ ! 0+ transitions and Kaon decays [30–

36], the PDG average indicates that unitarity is indeed violated by a bit more than two standard
deviations [37]

�CKM = �0.0015(7) , (3.5)

but in much smaller amounts than predicted by Eq. (3.4). This exercise shows that global fits
to EWPO and the W mass anomaly that include BSM physics beyond the oblique parameters
S and T, such as the one of Ref. [12], are severely disfavored by �-decay data. While we did
not repeat the fits of Refs. [14, 17], the central values of their Wilson coefficients also indicate a
negative percent-level shift to �CKM, consistent with Eq. (3.4).

Indeed, combining the EWPO with �CKM, we find that the minimum �2 increases by 3.3

and Wilson coefficients are shifted, as shown in Tab. 2. Again this shows that the Cabibbo
universality test has a significant impact and should be included in EWPO analyses of the W -
boson mass anomaly. These statements are illustrated in Fig. 1, which shows the values of
�mW = mW � mSM

W
obtained by fitting EWPO alone or EWPO and �CKM for two single-

operator scenarios and the global analysis involving all operators.
Another way to proceed is to effectively decouple the CKM unitarity constraint from EWPO

by letting C(3)
lq

6= 0, which is consistent with the MFV approach. The �CKM observable is then
accounted for by a nonzero value

C(3)
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= �(0.082± 0.045)TeV�2 , (3.6)
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Examples of impact of ΔCKM (1)

Eqs. (5.1), (5.2), and (5.3). This is due to the fact that only the fit to low-energy data involves
free parameters in the form of �, matrix elements, and parameters that describe theoretical
uncertainties, while the EWPO and collider data are, to a good approximation, independent of
these variables.

6 SMEFT analysis with U(3)5 flavor assumption

We start by considering a BSM scenario in which we impose a U(3)5 flavor symmetry on the
SMEFT coe�cients. Ref. [61] investigated the impact of the measurement of the CDF W mass
on the EWPO fit under these assumptions. The EWPO depend on eight combinations of Wilson

coe�cients [58], namely Ĉ(1,3)
Hl

, Ĉ(1,3)
Hq

, ĈHe, ĈHu, ĈHd, and Ĉll. As mentioned in Section 3.1, the
hat-notation is used to identify the linear combinations that cannot be separated using EWPO
alone:

Ĉ(3)
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= C(3)
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+
cw
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CHWB +
c2w
4s2w
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Ĉ(1)
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HF

�
YF
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2
CHD , (6.1)

for F = {l, q} and f = {u, d, e} and YF,f denotes the corresponding weak hypercharge. We
follow [40] and define
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Ĉ(3)
Hq

� Ĉ(3)
Hl

+ Ĉll

i
, (6.2)

where Ĉll = [Cll]1221. Defining C� will be useful, as it is the linear combination of Wilson
coe�cients that appears in the EWPO that contributes to deviations from CKM unitarity.
Therefore, we will use this relation to trade Ĉll for C�. The SMEFT corrections to the W mass
can be expressed in terms of these operators as [59, 86]
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Ĉ(3)
Hl

+ Ĉ(3)
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◆
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The expression of sw in terms of the input parameters GF , mZ , and ↵em is given in Eq. (A.7).
Finally, under the assumption of U(3)5 flavor symmetry, the violation of CKM unitarity is
described by

�CKM = |Ṽud|
2 + |Ṽus|

2
� 1 = v2

⇣
C� � 2C(3)

lq

⌘
. (6.4)

Here, Ṽij are the e↵ective CKM elements that are probed in low-energy measurements of � and
K decays, while Ṽub can be neglected at the current level of precision. C� entirely captures the

contribution to �CKM of the operators that enter EWPO, whereas C(3)
lq

does not play a role in
EWPO and is therefore traditionally not included.
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boson mass anomaly. These statements are illustrated in Fig. 1, which shows the values of
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operator scenarios and the global analysis involving all operators.
Another way to proceed is to effectively decouple the CKM unitarity constraint from EWPO

by letting C(3)
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Wilson coefficient Ĉll for the linear combination

C� = 2
h
C(3)
Hq

� C(3)
Hl

+ Ĉll
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Figure 2. The 1� constraints from EWPO in green, a global (single-coupling) analysis of LHC measure-
ments in (dashed) red, and low-energy beta decays in blue.

on: C(1)
lq

, C(3)
lq

, Cqe, Clu, Cld, Ceu, and Ced.
The resulting constraints from EWPO, �CKM, and the LHC are shown in Fig. 2. As men-

tioned above, a simultaneous explanation of mW and �CKM requires a nonzero value of C(3)
lq

,
which implies effects in collider processes. The single-coupling bound from pp ! ll in Eq. (3.7) is
already close to excluding the overlap of the EWPO and �CKM regions, while a global fit allows
for somewhat more room. Nevertheless, should the current discrepancy in the EWPO fit hold,
the preference for a nonzero C(3)

lq
could be tested by existing 13 TeV pp ! ll [45] and pp ! l⌫

data [46], and, in the future, at the HL-LHC.

4 Conclusion

In this note we have pointed out that global analyses of EWPO (beyond oblique parameters)
in the general SMEFT framework, while explaining the W -boson mass anomaly tend to predict
a large, % level, violation of Cabibbo universality, parameterized by �CKM. This result is not
consistent with precision beta decay and meson decay phenomenology and calls for the inclusion
of first-row CKM unitarity test in the set of EWPO, which is not commonly done. The inclusion
of �CKM also requires adding O(3)

lq
to the set of SMEFT operators usually adopted in EWPO

analyses. We have illustrated this and shown that in this case Cabibbo universality can be
recovered at the 0.1% level while still explaining the W mass anomaly. This extended scenario
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Eqs. (5.1), (5.2), and (5.3). This is due to the fact that only the fit to low-energy data involves
free parameters in the form of �, matrix elements, and parameters that describe theoretical
uncertainties, while the EWPO and collider data are, to a good approximation, independent of
these variables.

6 SMEFT analysis with U(3)5 flavor assumption

We start by considering a BSM scenario in which we impose a U(3)5 flavor symmetry on the
SMEFT coe�cients. Ref. [61] investigated the impact of the measurement of the CDF W mass
on the EWPO fit under these assumptions. The EWPO depend on eight combinations of Wilson

coe�cients [58], namely Ĉ(1,3)
Hl

, Ĉ(1,3)
Hq

, ĈHe, ĈHu, ĈHd, and Ĉll. As mentioned in Section 3.1, the
hat-notation is used to identify the linear combinations that cannot be separated using EWPO
alone:

Ĉ(3)
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= C(3)
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+
cw
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CHWB +
c2w
4s2w

CHD ,

Ĉ(1)
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= C(1)
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�
YF
2
CHD ,

ĈHf = CHf �
Yf
2
CHD , (6.1)

for F = {l, q} and f = {u, d, e} and YF,f denotes the corresponding weak hypercharge. We
follow [40] and define

C� = 2
h
Ĉ(3)
Hq

� Ĉ(3)
Hl

+ Ĉll

i
, (6.2)

where Ĉll = [Cll]1221. Defining C� will be useful, as it is the linear combination of Wilson
coe�cients that appears in the EWPO that contributes to deviations from CKM unitarity.
Therefore, we will use this relation to trade Ĉll for C�. The SMEFT corrections to the W mass
can be expressed in terms of these operators as [59, 86]
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The expression of sw in terms of the input parameters GF , mZ , and ↵em is given in Eq. (A.7).
Finally, under the assumption of U(3)5 flavor symmetry, the violation of CKM unitarity is
described by

�CKM = |Ṽud|
2 + |Ṽus|

2
� 1 = v2

⇣
C� � 2C(3)

lq

⌘
. (6.4)

Here, Ṽij are the e↵ective CKM elements that are probed in low-energy measurements of � and
K decays, while Ṽub can be neglected at the current level of precision. C� entirely captures the

contribution to �CKM of the operators that enter EWPO, whereas C(3)
lq

does not play a role in
EWPO and is therefore traditionally not included.

21

ΔCKM and EW precision fits (2)



44

VC, Dekens, deVries, Mereghetti, Tong 2204.08440,  2311.00021

U(3)l ⇥U(3)e flavor symmetry. In addition, we slightly change the operator basis and trade the
Wilson coefficient Ĉll for the linear combination

C� = 2
h
C(3)
Hq

� C(3)
Hl

+ Ĉll

i
. (3.1)

We then refit the Wilson coefficients to the EWPO and obtain the results in the second column
of Table 2. In particular, we obtain

C� = � (0.19± 0.09) TeV�2 . (3.2)

This combination of Wilson coefficients contributes to the violation of unitarity in the first
row of the CKM matrix tracked by �CKM ⌘ |Vud|

2 + |Vus|
2
� 1, where we neglected the tiny

|Vub|
2 corrections. Within the MFV assumption, we can write [29]

�CKM = v2
h
C� � 2C(3)

lq

i
. (3.3)

The C(3)
lq

operator that appears here does not affect EWPO and does not play a role in the fit
of Ref. [12]. If one assumes this coefficient to be zero, Eq. (3.2) causes a shift

�EWfit
CKM = �(0.012± 0.005) , (3.4)

implying large, percent-level, deviations from CKM unitarity.
Based on up-to-date theoretical predictions for 0+ ! 0+ transitions and Kaon decays [30–

36], the PDG average indicates that unitarity is indeed violated by a bit more than two standard
deviations [37]

�CKM = �0.0015(7) , (3.5)

but in much smaller amounts than predicted by Eq. (3.4). This exercise shows that global fits
to EWPO and the W mass anomaly that include BSM physics beyond the oblique parameters
S and T, such as the one of Ref. [12], are severely disfavored by �-decay data. While we did
not repeat the fits of Refs. [14, 17], the central values of their Wilson coefficients also indicate a
negative percent-level shift to �CKM, consistent with Eq. (3.4).

Indeed, combining the EWPO with �CKM, we find that the minimum �2 increases by 3.3

and Wilson coefficients are shifted, as shown in Tab. 2. Again this shows that the Cabibbo
universality test has a significant impact and should be included in EWPO analyses of the W -
boson mass anomaly. These statements are illustrated in Fig. 1, which shows the values of
�mW = mW � mSM

W
obtained by fitting EWPO alone or EWPO and �CKM for two single-

operator scenarios and the global analysis involving all operators.
Another way to proceed is to effectively decouple the CKM unitarity constraint from EWPO

by letting C(3)
lq

6= 0, which is consistent with the MFV approach. The �CKM observable is then
accounted for by a nonzero value

C(3)
lq

= �(0.082± 0.045)TeV�2 , (3.6)
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Figure 2. The 1� constraints from EWPO in green, a global (single-coupling) analysis of LHC measure-
ments in (dashed) red, and low-energy beta decays in blue.
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The resulting constraints from EWPO, �CKM, and the LHC are shown in Fig. 2. As men-

tioned above, a simultaneous explanation of mW and �CKM requires a nonzero value of C(3)
lq

,
which implies effects in collider processes. The single-coupling bound from pp ! ll in Eq. (3.7) is
already close to excluding the overlap of the EWPO and �CKM regions, while a global fit allows
for somewhat more room. Nevertheless, should the current discrepancy in the EWPO fit hold,
the preference for a nonzero C(3)

lq
could be tested by existing 13 TeV pp ! ll [45] and pp ! l⌫

data [46], and, in the future, at the HL-LHC.

4 Conclusion

In this note we have pointed out that global analyses of EWPO (beyond oblique parameters)
in the general SMEFT framework, while explaining the W -boson mass anomaly tend to predict
a large, % level, violation of Cabibbo universality, parameterized by �CKM. This result is not
consistent with precision beta decay and meson decay phenomenology and calls for the inclusion
of first-row CKM unitarity test in the set of EWPO, which is not commonly done. The inclusion
of �CKM also requires adding O(3)

lq
to the set of SMEFT operators usually adopted in EWPO

analyses. We have illustrated this and shown that in this case Cabibbo universality can be
recovered at the 0.1% level while still explaining the W mass anomaly. This extended scenario
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CHD ,

ĈHf = CHf �
Yf
2
CHD , (6.1)

for F = {l, q} and f = {u, d, e} and YF,f denotes the corresponding weak hypercharge. We
follow [40] and define

C� = 2
h
Ĉ(3)
Hq

� Ĉ(3)
Hl

+ Ĉll

i
, (6.2)

where Ĉll = [Cll]1221. Defining C� will be useful, as it is the linear combination of Wilson
coe�cients that appears in the EWPO that contributes to deviations from CKM unitarity.
Therefore, we will use this relation to trade Ĉll for C�. The SMEFT corrections to the W mass
can be expressed in terms of these operators as [59, 86]

�m2
W

m2
W

= v2
swcw

s2w � c2w


2CHWB +

cw
2sw

CHD +
sw
cw

⇣
2C(3)

Hl
� Ĉll

⌘�

= v2
s2w

s2w � c2w

⇣
2 Ĉ(3)

Hl
� Ĉll

⌘
= v2

s2w
s2w � c2w

✓
Ĉ(3)
Hl

+ Ĉ(3)
Hq

�
1

2
C�

◆
. (6.3)

The expression of sw in terms of the input parameters GF , mZ , and ↵em is given in Eq. (A.7).
Finally, under the assumption of U(3)5 flavor symmetry, the violation of CKM unitarity is
described by

�CKM = |Ṽud|
2 + |Ṽus|

2
� 1 = v2

⇣
C� � 2C(3)

lq

⌘
. (6.4)

Here, Ṽij are the e↵ective CKM elements that are probed in low-energy measurements of � and
K decays, while Ṽub can be neglected at the current level of precision. C� entirely captures the

contribution to �CKM of the operators that enter EWPO, whereas C(3)
lq

does not play a role in
EWPO and is therefore traditionally not included.
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ΔCKM and EW precision fits (3)

Figure 8. Planes of pairs of coefficients of operators that can affect mW and �CKM , showing
the constraints from direct mW measurements before (blue) and after (red) the recent CDF update,
Z-pole data (purple), diboson and Higgs data (beige), and �CKM (green). The combined constraints
are given by solid and dashed dotted lines for a 2- and 5-parameter fit respectively.

EWPO, H Previous Combined �CKM Parameter Ndof �
2
/dof p-value

diboson mW mW Count
X X 20 183 0.94 0.71
X X X 20 186 0.93 0.74
X X X 20 186 0.98 0.56
X X 4 199 0.93 0.74
X X X 4 202 0.93 0.75
X X X 4 202 0.97 0.62

Table 7. As Table 6, but including also the �CKM constraint.

C
(3)
H`

and C``, in which case all four of the operator coefficients in (A.1) must be considered
together.

– 17 –

ΔCKM is at the same level of 
the strongest constraints 



with uncertainty entirely dominated by experiment [22]. A
competitive determination requires a dedicated experimental
campaign, as planned at the PIONEER experiment [26].

The best information on Vus comes from kaon decays, K`2 =
K ! `⌫` and K`3 = K ! ⇡`⌫`. The former is typically ana-
lyzed by normalizing to ⇡`2 decays [27], leading to a constraint
on Vus/Vud, while K`3 decays give direct access to Vus when the
corresponding form factor is provided from lattice QCD [28].
Details of the global fit to kaon decays, as well as the input
for decay constants, form factors, and radiative corrections, are
discussed in Sec. 2, leading to

Vus

Vud

�����
K`2/⇡`2

= 0.23108(23)exp(42)FK/F⇡ (16)IB[51]total,

VK`3
us = 0.22330(35)exp(39) f+ (8)IB[53]total, (7)

where the errors refer to experiment, lattice input for the matrix
elements, and isospin-breaking corrections, respectively. To-
gether with the constraints on Vud, these bands give rise to the
situation depicted in Fig. 1: on the one hand, there is a ten-
sion between the best fit and CKM unitarity, but another ten-
sion, arising entirely from meson decays, is due to the fact that
the K`2 and K`3 constraints intersect away from the unitarity
circle. Additional information on Vus can be derived from ⌧
decays [29, 30], but given the larger errors [31, 32] we will
continue to focus on the kaon sector.

The main point of this Letter is that given the various ten-
sions in the Vud–Vus plane, there is urgent need for additional
information on the compatibility of K`2 and K`3 data, especially
when it comes to interpreting either of the tensions (CKM uni-
tarity and K`2 versus K`3) in terms of physics beyond the SM
(BSM). In particular, the data base for K`2 is completely dom-
inated by a single experiment [33], and at the same time the
global fit to all kaon data displays a relatively poor fit quality.
All these points could be scrutinized by a new measurement of
the Kµ3/Kµ2 branching fraction at the level of a few permil, as
possible at the NA62 experiment. Further, once the experimen-
tal situation is clarified, more robust interpretations of the en-
suing tensions will be possible, especially regarding the role of
right-handed currents both in the strange and non-strange sec-
tor. To make the case for the proposed measurement of the
Kµ3/Kµ2 branching fraction, we first discuss in detail its impact
on the global fit to kaon data and the implications for CKM uni-
tarity in Sec. 2. The consequences for physics beyond the SM
are addressed in Sec. 3, before we conclude in Sec. 4.

2. Global fit to kaon data and implications for CKM uni-
tarity

The current values for Vus and Vus/Vud given in Eq. (7) are
obtained from a global fit to kaon decays [34–37], updated
to include the latest measurements, radiative corrections, and
hadronic matrix elements. In particular, the fit includes data on
KS decays from Refs. [38–44], on KL decays from Refs. [45–
56], and on charged-kaon decays from Refs. [33, 57–70]. Since
we focus on the impact of a new Kµ3/Kµ2 measurement, e.g.,
at NA62, we reproduce the details of the charged kaon fit in
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Figure 1: Constraints in the Vud–Vus plane. The partially overlapping vertical
bands correspond to V0+!0+

ud (leftmost, red) and Vn, best
ud (rightmost, violet). The

horizontal band (green) corresponds to VK`3
us . The diagonal band (blue) corre-

sponds to (Vus/Vud)K`2/⇡`2 . The unitarity circle is denoted by the black solid
line. The 68% C.L. ellipse from a fit to all four constraints is depicted in yel-
low (Vud = 0.97378(26), Vus = 0.22422(36), �2/dof = 6.4/2, p-value 4.1%),
it deviates from the unitarity line by 2.8�. Note that the significance tends to
increase in case ⌧ decays are included.

Table 1, where, however, the value for Vus from K`3 decays in-
cludes all charge channels, accounting for correlations among
them. The extraction of Vus from K`3 decays requires further in-
put on the respective form factors, which are taken in the disper-
sive parameterization from Ref. [71], constrained by data from
Refs. [72–78]. This leaves form-factor normalizations, decay
constants, and isospin-breaking corrections in both K`2 and K`3
decays.

For K`2 we follow the established convention to consider the
ratio to ⇡`2 decays [27] (pion lifetime [62, 79–83] and branch-
ing fraction [84–87] are taken from Ref. [12]), since in this ratio
certain structure-dependent radiative corrections [88, 89] cancel
and only the ratio of decay constants FK/F⇡ needs to be pro-
vided. We use the isospin-breaking corrections from Ref. [90]
together with the Nf = 2 + 1 + 1 isospin-limit ratio of de-
cay constants FK/F⇡ = 1.1978(22) [91–94], where this aver-
age accounts for statistical and systematic correlations between
the results, some of which make use of the same lattice en-
sembles. For K`3 decays we use the radiative corrections from
Refs. [95–97] (in line with the earlier calculations [98, 99]), the
strong isospin-breaking correction �SU(2) = 0.0252(11) from
Refs. [98, 100] evaluated with the Nf = 2 + 1 + 1 quark-mass
double ratio Q = 22.5(5) and ratio ms/mud = 27.23(10), both
from Ref. [28] (the value of Q is consistent with Q = 22.1(7)
from ⌘ ! 3⇡ [101] and Q = 22.4(3) from the Cottingham
approach [102]), and the form-factor normalization f+(0) =
0.9698(17) [103, 104]. This global fit then defines the cur-
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with uncertainty entirely dominated by experiment [22]. A
competitive determination requires a dedicated experimental
campaign, as planned at the PIONEER experiment [26].

The best information on Vus comes from kaon decays, K`2 =
K ! `⌫` and K`3 = K ! ⇡`⌫`. The former is typically ana-
lyzed by normalizing to ⇡`2 decays [27], leading to a constraint
on Vus/Vud, while K`3 decays give direct access to Vus when the
corresponding form factor is provided from lattice QCD [28].
Details of the global fit to kaon decays, as well as the input
for decay constants, form factors, and radiative corrections, are
discussed in Sec. 2, leading to

Vus

Vud

�����
K`2/⇡`2

= 0.23108(23)exp(42)FK/F⇡ (16)IB[51]total,

VK`3
us = 0.22330(35)exp(39) f+ (8)IB[53]total, (7)

where the errors refer to experiment, lattice input for the matrix
elements, and isospin-breaking corrections, respectively. To-
gether with the constraints on Vud, these bands give rise to the
situation depicted in Fig. 1: on the one hand, there is a ten-
sion between the best fit and CKM unitarity, but another ten-
sion, arising entirely from meson decays, is due to the fact that
the K`2 and K`3 constraints intersect away from the unitarity
circle. Additional information on Vus can be derived from ⌧
decays [29, 30], but given the larger errors [31, 32] we will
continue to focus on the kaon sector.

The main point of this Letter is that given the various ten-
sions in the Vud–Vus plane, there is urgent need for additional
information on the compatibility of K`2 and K`3 data, especially
when it comes to interpreting either of the tensions (CKM uni-
tarity and K`2 versus K`3) in terms of physics beyond the SM
(BSM). In particular, the data base for K`2 is completely dom-
inated by a single experiment [33], and at the same time the
global fit to all kaon data displays a relatively poor fit quality.
All these points could be scrutinized by a new measurement of
the Kµ3/Kµ2 branching fraction at the level of a few permil, as
possible at the NA62 experiment. Further, once the experimen-
tal situation is clarified, more robust interpretations of the en-
suing tensions will be possible, especially regarding the role of
right-handed currents both in the strange and non-strange sec-
tor. To make the case for the proposed measurement of the
Kµ3/Kµ2 branching fraction, we first discuss in detail its impact
on the global fit to kaon data and the implications for CKM uni-
tarity in Sec. 2. The consequences for physics beyond the SM
are addressed in Sec. 3, before we conclude in Sec. 4.

2. Global fit to kaon data and implications for CKM uni-
tarity

The current values for Vus and Vus/Vud given in Eq. (7) are
obtained from a global fit to kaon decays [34–37], updated
to include the latest measurements, radiative corrections, and
hadronic matrix elements. In particular, the fit includes data on
KS decays from Refs. [38–44], on KL decays from Refs. [45–
56], and on charged-kaon decays from Refs. [33, 57–70]. Since
we focus on the impact of a new Kµ3/Kµ2 measurement, e.g.,
at NA62, we reproduce the details of the charged kaon fit in
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Figure 1: Constraints in the Vud–Vus plane. The partially overlapping vertical
bands correspond to V0+!0+

ud (leftmost, red) and Vn, best
ud (rightmost, violet). The

horizontal band (green) corresponds to VK`3
us . The diagonal band (blue) corre-

sponds to (Vus/Vud)K`2/⇡`2 . The unitarity circle is denoted by the black solid
line. The 68% C.L. ellipse from a fit to all four constraints is depicted in yel-
low (Vud = 0.97378(26), Vus = 0.22422(36), �2/dof = 6.4/2, p-value 4.1%),
it deviates from the unitarity line by 2.8�. Note that the significance tends to
increase in case ⌧ decays are included.

Table 1, where, however, the value for Vus from K`3 decays in-
cludes all charge channels, accounting for correlations among
them. The extraction of Vus from K`3 decays requires further in-
put on the respective form factors, which are taken in the disper-
sive parameterization from Ref. [71], constrained by data from
Refs. [72–78]. This leaves form-factor normalizations, decay
constants, and isospin-breaking corrections in both K`2 and K`3
decays.

For K`2 we follow the established convention to consider the
ratio to ⇡`2 decays [27] (pion lifetime [62, 79–83] and branch-
ing fraction [84–87] are taken from Ref. [12]), since in this ratio
certain structure-dependent radiative corrections [88, 89] cancel
and only the ratio of decay constants FK/F⇡ needs to be pro-
vided. We use the isospin-breaking corrections from Ref. [90]
together with the Nf = 2 + 1 + 1 isospin-limit ratio of de-
cay constants FK/F⇡ = 1.1978(22) [91–94], where this aver-
age accounts for statistical and systematic correlations between
the results, some of which make use of the same lattice en-
sembles. For K`3 decays we use the radiative corrections from
Refs. [95–97] (in line with the earlier calculations [98, 99]), the
strong isospin-breaking correction �SU(2) = 0.0252(11) from
Refs. [98, 100] evaluated with the Nf = 2 + 1 + 1 quark-mass
double ratio Q = 22.5(5) and ratio ms/mud = 27.23(10), both
from Ref. [28] (the value of Q is consistent with Q = 22.1(7)
from ⌘ ! 3⇡ [101] and Q = 22.4(3) from the Cottingham
approach [102]), and the form-factor normalization f+(0) =
0.9698(17) [103, 104]. This global fit then defines the cur-
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with uncertainty entirely dominated by experiment [22]. A
competitive determination requires a dedicated experimental
campaign, as planned at the PIONEER experiment [26].

The best information on Vus comes from kaon decays, K`2 =
K ! `⌫` and K`3 = K ! ⇡`⌫`. The former is typically ana-
lyzed by normalizing to ⇡`2 decays [27], leading to a constraint
on Vus/Vud, while K`3 decays give direct access to Vus when the
corresponding form factor is provided from lattice QCD [28].
Details of the global fit to kaon decays, as well as the input
for decay constants, form factors, and radiative corrections, are
discussed in Sec. 2, leading to

Vus

Vud

�����
K`2/⇡`2

= 0.23108(23)exp(42)FK/F⇡ (16)IB[51]total,

VK`3
us = 0.22330(35)exp(39) f+ (8)IB[53]total, (7)

where the errors refer to experiment, lattice input for the matrix
elements, and isospin-breaking corrections, respectively. To-
gether with the constraints on Vud, these bands give rise to the
situation depicted in Fig. 1: on the one hand, there is a ten-
sion between the best fit and CKM unitarity, but another ten-
sion, arising entirely from meson decays, is due to the fact that
the K`2 and K`3 constraints intersect away from the unitarity
circle. Additional information on Vus can be derived from ⌧
decays [29, 30], but given the larger errors [31, 32] we will
continue to focus on the kaon sector.

The main point of this Letter is that given the various ten-
sions in the Vud–Vus plane, there is urgent need for additional
information on the compatibility of K`2 and K`3 data, especially
when it comes to interpreting either of the tensions (CKM uni-
tarity and K`2 versus K`3) in terms of physics beyond the SM
(BSM). In particular, the data base for K`2 is completely dom-
inated by a single experiment [33], and at the same time the
global fit to all kaon data displays a relatively poor fit quality.
All these points could be scrutinized by a new measurement of
the Kµ3/Kµ2 branching fraction at the level of a few permil, as
possible at the NA62 experiment. Further, once the experimen-
tal situation is clarified, more robust interpretations of the en-
suing tensions will be possible, especially regarding the role of
right-handed currents both in the strange and non-strange sec-
tor. To make the case for the proposed measurement of the
Kµ3/Kµ2 branching fraction, we first discuss in detail its impact
on the global fit to kaon data and the implications for CKM uni-
tarity in Sec. 2. The consequences for physics beyond the SM
are addressed in Sec. 3, before we conclude in Sec. 4.

2. Global fit to kaon data and implications for CKM uni-
tarity

The current values for Vus and Vus/Vud given in Eq. (7) are
obtained from a global fit to kaon decays [34–37], updated
to include the latest measurements, radiative corrections, and
hadronic matrix elements. In particular, the fit includes data on
KS decays from Refs. [38–44], on KL decays from Refs. [45–
56], and on charged-kaon decays from Refs. [33, 57–70]. Since
we focus on the impact of a new Kµ3/Kµ2 measurement, e.g.,
at NA62, we reproduce the details of the charged kaon fit in
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Figure 1: Constraints in the Vud–Vus plane. The partially overlapping vertical
bands correspond to V0+!0+

ud (leftmost, red) and Vn, best
ud (rightmost, violet). The

horizontal band (green) corresponds to VK`3
us . The diagonal band (blue) corre-

sponds to (Vus/Vud)K`2/⇡`2 . The unitarity circle is denoted by the black solid
line. The 68% C.L. ellipse from a fit to all four constraints is depicted in yel-
low (Vud = 0.97378(26), Vus = 0.22422(36), �2/dof = 6.4/2, p-value 4.1%),
it deviates from the unitarity line by 2.8�. Note that the significance tends to
increase in case ⌧ decays are included.

Table 1, where, however, the value for Vus from K`3 decays in-
cludes all charge channels, accounting for correlations among
them. The extraction of Vus from K`3 decays requires further in-
put on the respective form factors, which are taken in the disper-
sive parameterization from Ref. [71], constrained by data from
Refs. [72–78]. This leaves form-factor normalizations, decay
constants, and isospin-breaking corrections in both K`2 and K`3
decays.

For K`2 we follow the established convention to consider the
ratio to ⇡`2 decays [27] (pion lifetime [62, 79–83] and branch-
ing fraction [84–87] are taken from Ref. [12]), since in this ratio
certain structure-dependent radiative corrections [88, 89] cancel
and only the ratio of decay constants FK/F⇡ needs to be pro-
vided. We use the isospin-breaking corrections from Ref. [90]
together with the Nf = 2 + 1 + 1 isospin-limit ratio of de-
cay constants FK/F⇡ = 1.1978(22) [91–94], where this aver-
age accounts for statistical and systematic correlations between
the results, some of which make use of the same lattice en-
sembles. For K`3 decays we use the radiative corrections from
Refs. [95–97] (in line with the earlier calculations [98, 99]), the
strong isospin-breaking correction �SU(2) = 0.0252(11) from
Refs. [98, 100] evaluated with the Nf = 2 + 1 + 1 quark-mass
double ratio Q = 22.5(5) and ratio ms/mud = 27.23(10), both
from Ref. [28] (the value of Q is consistent with Q = 22.1(7)
from ⌘ ! 3⇡ [101] and Q = 22.4(3) from the Cottingham
approach [102]), and the form-factor normalization f+(0) =
0.9698(17) [103, 104]. This global fit then defines the cur-
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with uncertainty entirely dominated by experiment [22]. A
competitive determination requires a dedicated experimental
campaign, as planned at the PIONEER experiment [26].

The best information on Vus comes from kaon decays, K`2 =
K ! `⌫` and K`3 = K ! ⇡`⌫`. The former is typically ana-
lyzed by normalizing to ⇡`2 decays [27], leading to a constraint
on Vus/Vud, while K`3 decays give direct access to Vus when the
corresponding form factor is provided from lattice QCD [28].
Details of the global fit to kaon decays, as well as the input
for decay constants, form factors, and radiative corrections, are
discussed in Sec. 2, leading to

Vus

Vud

�����
K`2/⇡`2

= 0.23108(23)exp(42)FK/F⇡ (16)IB[51]total,

VK`3
us = 0.22330(35)exp(39) f+ (8)IB[53]total, (7)

where the errors refer to experiment, lattice input for the matrix
elements, and isospin-breaking corrections, respectively. To-
gether with the constraints on Vud, these bands give rise to the
situation depicted in Fig. 1: on the one hand, there is a ten-
sion between the best fit and CKM unitarity, but another ten-
sion, arising entirely from meson decays, is due to the fact that
the K`2 and K`3 constraints intersect away from the unitarity
circle. Additional information on Vus can be derived from ⌧
decays [29, 30], but given the larger errors [31, 32] we will
continue to focus on the kaon sector.

The main point of this Letter is that given the various ten-
sions in the Vud–Vus plane, there is urgent need for additional
information on the compatibility of K`2 and K`3 data, especially
when it comes to interpreting either of the tensions (CKM uni-
tarity and K`2 versus K`3) in terms of physics beyond the SM
(BSM). In particular, the data base for K`2 is completely dom-
inated by a single experiment [33], and at the same time the
global fit to all kaon data displays a relatively poor fit quality.
All these points could be scrutinized by a new measurement of
the Kµ3/Kµ2 branching fraction at the level of a few permil, as
possible at the NA62 experiment. Further, once the experimen-
tal situation is clarified, more robust interpretations of the en-
suing tensions will be possible, especially regarding the role of
right-handed currents both in the strange and non-strange sec-
tor. To make the case for the proposed measurement of the
Kµ3/Kµ2 branching fraction, we first discuss in detail its impact
on the global fit to kaon data and the implications for CKM uni-
tarity in Sec. 2. The consequences for physics beyond the SM
are addressed in Sec. 3, before we conclude in Sec. 4.

2. Global fit to kaon data and implications for CKM uni-
tarity

The current values for Vus and Vus/Vud given in Eq. (7) are
obtained from a global fit to kaon decays [34–37], updated
to include the latest measurements, radiative corrections, and
hadronic matrix elements. In particular, the fit includes data on
KS decays from Refs. [38–44], on KL decays from Refs. [45–
56], and on charged-kaon decays from Refs. [33, 57–70]. Since
we focus on the impact of a new Kµ3/Kµ2 measurement, e.g.,
at NA62, we reproduce the details of the charged kaon fit in
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Figure 1: Constraints in the Vud–Vus plane. The partially overlapping vertical
bands correspond to V0+!0+

ud (leftmost, red) and Vn, best
ud (rightmost, violet). The

horizontal band (green) corresponds to VK`3
us . The diagonal band (blue) corre-

sponds to (Vus/Vud)K`2/⇡`2 . The unitarity circle is denoted by the black solid
line. The 68% C.L. ellipse from a fit to all four constraints is depicted in yel-
low (Vud = 0.97378(26), Vus = 0.22422(36), �2/dof = 6.4/2, p-value 4.1%),
it deviates from the unitarity line by 2.8�. Note that the significance tends to
increase in case ⌧ decays are included.

Table 1, where, however, the value for Vus from K`3 decays in-
cludes all charge channels, accounting for correlations among
them. The extraction of Vus from K`3 decays requires further in-
put on the respective form factors, which are taken in the disper-
sive parameterization from Ref. [71], constrained by data from
Refs. [72–78]. This leaves form-factor normalizations, decay
constants, and isospin-breaking corrections in both K`2 and K`3
decays.

For K`2 we follow the established convention to consider the
ratio to ⇡`2 decays [27] (pion lifetime [62, 79–83] and branch-
ing fraction [84–87] are taken from Ref. [12]), since in this ratio
certain structure-dependent radiative corrections [88, 89] cancel
and only the ratio of decay constants FK/F⇡ needs to be pro-
vided. We use the isospin-breaking corrections from Ref. [90]
together with the Nf = 2 + 1 + 1 isospin-limit ratio of de-
cay constants FK/F⇡ = 1.1978(22) [91–94], where this aver-
age accounts for statistical and systematic correlations between
the results, some of which make use of the same lattice en-
sembles. For K`3 decays we use the radiative corrections from
Refs. [95–97] (in line with the earlier calculations [98, 99]), the
strong isospin-breaking correction �SU(2) = 0.0252(11) from
Refs. [98, 100] evaluated with the Nf = 2 + 1 + 1 quark-mass
double ratio Q = 22.5(5) and ratio ms/mud = 27.23(10), both
from Ref. [28] (the value of Q is consistent with Q = 22.1(7)
from ⌘ ! 3⇡ [101] and Q = 22.4(3) from the Cottingham
approach [102]), and the form-factor normalization f+(0) =
0.9698(17) [103, 104]. This global fit then defines the cur-
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Figure 3: HBChPT diagrams contributing to the anomalous dimension of gV and to �̃RC at two loop.
Only the first two diagrams give rise to terms in the �̃1 enhanced by ⇡

2 [100]. These diagrams also give
rise to the leading ↵

2
⇡
2
/�

2 behavior captured by the nonrelativistic Fermi function.

We thus arrive to our final form for the di↵erential decay rate:

d�n

dEe

=
G

2
F
|Vud|

2

(2⇡)5
�
1 + 3�2

�
peEe(E0�Ee)

2 [gV (µ�)]
2
FNR(�)

✓
1+�RC(Ee, µ�)

◆✓
1+�recoil(Ee)

◆
. (104)

Compared to state-of-the-art analyses of neutron decay in the literature (see e.g. Ref. [38]), our result (104)
amounts to replacing the relativistic Fermi function [53, 109–111, 124–127] with the nonrelativistic one,
F0 ! FNR. While we arrived at this result by constructing the relevant terms of the amplitude in the
EFT framework, one could also argue for this replacement along the following lines. First, recall that
the leading corrections to the phase space coming from the distortion of the electron wavefunction in the
Coulomb field of the proton is usually captured by the function [53]

F0(�) =
2

1 + �
F (�) = 4(2Ee�R)2(��1)

e
⇡y

|�(� + iy)|2

(�(1 + 2�))2
, y =

↵

�
, � =

p
1� ↵2. (105)

This form is obtained by solving the Dirac equation for an electron moving in the charge distribution
of a uniformly charged sphere of radius R [53], but corresponds to a rescaling of the solution of the
Dirac equation for a point-like proton, F (�), evaluated not at the origin, where the wavefunction diverges
logarithmically, but at the “nucleon radius” R. R corresponds to a mass scale much larger than me, and
e↵ectively acts as a UV regulator. So we see that while F0(�) coincides with FNR(�) at one-loop level, F0

includes a dependence on the UV regulator via the logarithms of R that first appear at O(↵2). Expanding
F0 in series of ↵, one obtains

F0(�) = FNR (�)
⇥
1� ↵

2 (�E � 3 + ln(2EeR�)) +O(↵4)
⇤
. (106)

The dependence on the UV regulator R ⇠ 1/µ does not match the µ-dependence of gV (µ) in the MS�
scheme presented so far. In dimensional regularization, indeed, the lnR term in Eq. (106) corresponds to
a UV singularity that appears in the first two diagrams in Fig. 3, when we consider only the contribution
arising from picking the two nucleon poles. This is only one piece of the full anomalous dimension �̃1. In
order not to double-count large logarithms, one should set the logarithmic term in F0 to zero when using
the RGEs to evaluate the large logarithms as we do here. The remaining O(↵2) terms in Eq. (106) are
incomplete and beyond the accuracy of our calculation, which allows us to drop them and replace the
relativistic Fermi function F0 by its nonrelativistic counterpart FNR.
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FIG. 1: Diagrams contributing to the matching between �PT and /⇡EFT at O(✏0�) (upper panel) and O(✏�) (lower panel).
Single, double, wavy, and dashed lines denote, respectively, leptons, nucleons, photons, and pions. Dots refer to interactions

from the lowest-order chiral Lagrangians L
p2
⇡ and L

p
⇡N , while diamonds represent insertions of L

e2p0
⇡ . Circled dots denote

interactions from the NLO chiral Lagrangian L
p2

⇡N .

only considered the asymptotic and elastic contributions
to Eq. (11), i.e. inserting a complete set of states in
between every current and retaining only the nucleon.
Assuming isospin symmetry then leads to a vanishing
contribution for the three-point function [15]. Recogniz-
ing diagrams i1, j1, a2, . . . in Fig. 1 to correspond to an
explicit treatment of these vertex corrections, the results
presented here expand upon the simplified approach of
Ref. [15] to find much larger than anticipated isospin-
breaking corrections.

Numerical impact — We now estimate the numerical
impact of the various corrections, starting with our main
new finding, i.e., the electromagnetic shift to � = gA/gV .
Including BSM contributions, the relation between the
experimentally extracted � and the (isosymmetric) QCD
axial charge is given by [9]

� = g
QCD

A

⇣
1 + �

(�)
RC

� 2Re(✏R)
⌘
, (12)

where ✏R ⇠ (246GeV/⇤BSM)2 is a BSM right-handed
current contribution appearing at an energy scale ⇤BSM

[9, 10]. To the order we are working the radiative correc-
tion is

�
(�)
RC

=
↵

2⇡

⇣
�(0)

A,em +�(1)

A,em ��(0)

V em

⌘
. (13)

For the numerical evaluation of the loop contributions to

�(0),(1)
A,em we use Z⇡ = 0.81 (obtained from the physical

pion mass di↵erence and F⇡ = 92.4 MeV) and the av-
erage nucleon mass mN = 938.9 MeV. In the loops we

set g
(0)

A = gA ⇡ 1.27 [6], as the di↵erence formally con-
tributes to higher chiral order. Existing lattice data in-
deed indicate that gA has a mild m⇡ dependence [11, 42].
The NLO LECs c3 and c4 have been extracted from pion-
nucleon scattering [43, 44]. They show a sizable depen-
dence on the chiral order at which the fit to ⇡-N data is
carried out, with a big change between NLO and N2LO,
stabilizing between N2LO and N3LO. For the corrections
we find

�(0)

A�V,em 2 {2.4, 5.7} , �(1)

A,em = {10.0, 14.5, 15.9}, (14)

where the range in �(0)

A�V,em is obtained by setting

ĈA(µ)� ĈV = 0 and varying µ between 0.5 and 1 GeV,

while the three values of �(1)

A,em are obtained by using

c3,4 extracted to NLO, N2LO, and N3LO [44]. While the
NLO correction is somewhat larger than the LO one, we
stress that we do not know the full LO correction because
we have set the counter term contribution ĈA � ĈV to
zero. In addition, in an EFT without explicit � degrees
of freedom, c3 and c4 are dominated by � contributions
and thus anomalously large. Combining the corrections,
we estimate a correction to � at the percent level,

�
(�)
RC

2 {1.4, 2.6} · 10�2
. (15)

This shift has no impact on the current first-row CKM
discrepancy because the most accurate determination
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FIG. 1: Diagrams contributing to the matching between �PT and /⇡EFT at O(✏0�). Single, double, wavy and dashed lines
denote, respectively, leptons, nucleons, photons and pions. Dots denote interactions from the lowest order chiral Lagrangians

L
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⇡ and L
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⇡N , while diamonds on a pion line represent insertions of Le2p0
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FIG. 2: Diagrams contributing to the matching between �PT and /⇡EFT at O(✏�). Circled dots denote interactions from the

NLO chiral Lagrangian L
p2

⇡N , while diamonds on a nucleon line represent insertions of Le2p0

⇡N . All other notation is as in Fig. 1.

Numerical impact — We now estimate the numerical

impact of the various corrections beginning with �(0,1)
em .

Existing lattice data indicate that gA has a mild m⇡ de-

pendence [10], and we set g
(0)

A = gA = 1.27. Using the
physical masses of charged and neutral pions, the average
nucleon mass mN = 938.9 MeV, and F⇡ = 92.4 MeV, we
obtain Z⇡ = 0.81. The NLO LECs c3 and c4 have been
extracted from pion-nucleon scattering [31, 32]. They
show a sizable dependence on the chiral order at which
the fit to ⇡-N data is carried out (stabilizing between
N2LO and N3LO). In an EFT without explicit � degrees
of freedom, they are dominated by virtual � contribu-
tions and thus anomalously large. We then obtain

c3|NLO
= �3.61(5)GeV�1

, c4|NLO
= 2.17(3)GeV�1

c3|N2LO
= �5.39(5)GeV�1

, c4|N2LO
= 3, 62(3)GeV�1

.

c3|N3LO
= �5.67(6)GeV�1

, c4|N3LO
= 4.35(4)GeV�1

.

(12)

With this input, we obtain
↵

2⇡
�(0)

em
2 {0.25, 0.65} · 10�2

, (13)

↵

2⇡
�(1)

em
2 {1.15, 1.85} · 10�2

, (14)

↵

2⇡
�(1)

em
= {1.15, 1, 70, 1.85} · 10�2

, (15)

where the range in �(0)

em is obtained by setting Ĉ⇡(µ) = 0
and varying µ between mN/2 and mN . The range in

�(1)

em by taking NLO or N3LO extractions of c3,4 [32] (the
N2LO results would give 1.7 · 10�2). While the NLO
correction is somewhat larger than the LO correction,
we stress that this is not the full correction because of
the counter term contribution Ĉ⇡. Combining LO and
NLO corrections, we estimate a correction to gA at the
percent level

�gA/g
(0)

A =
↵

2⇡
�(0+1)

em
2 {1.4, 2.5} · 10�2

. (16)

This shift due to isospin breaking has no impact on the
current first-row CKM discrepancy as the most accurate
determination of gA is extracted from experiments, where
these corrections are automatically included. comment
on future work on isospin-breaking nuclear corrections?
The correction does have a big impact on first-principle
lattice-QCD computations of neutron � decay. Present

n p

eν
γ

<p|V|n> with QED:  ChPT + LECs estimated with dispersive 
methods and  LQCD  

𝜏n and <p|A|n> form experiment (use most precise results) 

Matching and running:  VC-Dekens-Mereghetti-Tomalak 2306.03138 
Input from dispersive theory and LQCD
[Seng et al. 1807.10197,   2308.16755]

Corrections to neutron decay
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• Convenient starting point for decay rate calculation is an effective theory with nucleons,  leptons and photons

Figure 2: Diagrams that contribute to �VW in HBChPT are shown. Single lines denote electrons and
neutrinos. The remaining notations are the same as in Fig. 1. In this case, the sources inject zero
momentum. The first two diagrams originate from the LO ⇡N Lagrangian L

p

⇡N
, the last diagram denotes

contributions from L
e
2
p

⇡N`
. Diagrams with the sources coupling to pions do not contribute at this order.

To highlight the UV structure of Eq. (47), we add and subtract the high-energy limit of the hadronic
tensor provided by the operator product expansion (OPE)

gµ⌫T
µ⌫

V V
(q, v)

��
OPE

=
iv · q

q2 � µ2
0

⇣
2� d+ 2

↵s

⇡

⌘
, (49)

where for the OPE of the relevant currents we use results from Refs. [83, 84], adapted to include the
appropriate color factors [35]. Since our calculation is only accurate at leading logarithm in O(↵↵s),
the O(↵s) correction to the OPE is computed in d = 4. Note that in Eq. (49) we have introduced an
arbitrary scale µ0 to regulate infrared divergences that appear when evaluating the convolution integrals
with TOPE. Performing the relevant integrations, we obtain

�V V |
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!
, (50)

where T denotes the subtracted hadronic tensor, T = T � TOPE. T depends on µ0 in such a way that the
final results are µ0-independent. Finally, note that we are dropping terms of O(↵↵s) that appear without
logarithmic enhancements, because they are beyond the accuracy of our calculation.

Equating Eqs. (45) and (46), we obtain a representation for g9:
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Alternatively, to control the infrared region and see a cancellation of the infrared divergences, we can
introduce the combination T̃ = T �TIR, where TIR is the leading infrared contribution gµ⌫T

µ⌫

IR = i/ (v · q)
and obtain

g
r

9(µ�, µ) =

ˆ
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4.3 Electroweak coupling constants

We follow the same strategy for the determination of the electroweak coupling constants. In this case, the
operators V1 and V2 receive contributions from the isovector component of the electromagnetic charges,
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with uncertainty entirely dominated by experiment [22]. A
competitive determination requires a dedicated experimental
campaign, as planned at the PIONEER experiment [26].

The best information on Vus comes from kaon decays, K`2 =
K ! `⌫` and K`3 = K ! ⇡`⌫`. The former is typically ana-
lyzed by normalizing to ⇡`2 decays [27], leading to a constraint
on Vus/Vud, while K`3 decays give direct access to Vus when the
corresponding form factor is provided from lattice QCD [28].
Details of the global fit to kaon decays, as well as the input
for decay constants, form factors, and radiative corrections, are
discussed in Sec. 2, leading to

Vus

Vud

�����
K`2/⇡`2

= 0.23108(23)exp(42)FK/F⇡ (16)IB[51]total,

VK`3
us = 0.22330(35)exp(39) f+ (8)IB[53]total, (7)

where the errors refer to experiment, lattice input for the matrix
elements, and isospin-breaking corrections, respectively. To-
gether with the constraints on Vud, these bands give rise to the
situation depicted in Fig. 1: on the one hand, there is a ten-
sion between the best fit and CKM unitarity, but another ten-
sion, arising entirely from meson decays, is due to the fact that
the K`2 and K`3 constraints intersect away from the unitarity
circle. Additional information on Vus can be derived from ⌧
decays [29, 30], but given the larger errors [31, 32] we will
continue to focus on the kaon sector.

The main point of this Letter is that given the various ten-
sions in the Vud–Vus plane, there is urgent need for additional
information on the compatibility of K`2 and K`3 data, especially
when it comes to interpreting either of the tensions (CKM uni-
tarity and K`2 versus K`3) in terms of physics beyond the SM
(BSM). In particular, the data base for K`2 is completely dom-
inated by a single experiment [33], and at the same time the
global fit to all kaon data displays a relatively poor fit quality.
All these points could be scrutinized by a new measurement of
the Kµ3/Kµ2 branching fraction at the level of a few permil, as
possible at the NA62 experiment. Further, once the experimen-
tal situation is clarified, more robust interpretations of the en-
suing tensions will be possible, especially regarding the role of
right-handed currents both in the strange and non-strange sec-
tor. To make the case for the proposed measurement of the
Kµ3/Kµ2 branching fraction, we first discuss in detail its impact
on the global fit to kaon data and the implications for CKM uni-
tarity in Sec. 2. The consequences for physics beyond the SM
are addressed in Sec. 3, before we conclude in Sec. 4.

2. Global fit to kaon data and implications for CKM uni-
tarity

The current values for Vus and Vus/Vud given in Eq. (7) are
obtained from a global fit to kaon decays [34–37], updated
to include the latest measurements, radiative corrections, and
hadronic matrix elements. In particular, the fit includes data on
KS decays from Refs. [38–44], on KL decays from Refs. [45–
56], and on charged-kaon decays from Refs. [33, 57–70]. Since
we focus on the impact of a new Kµ3/Kµ2 measurement, e.g.,
at NA62, we reproduce the details of the charged kaon fit in
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0.220

0.222
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0.226
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V

us

Figure 1: Constraints in the Vud–Vus plane. The partially overlapping vertical
bands correspond to V0+!0+

ud (leftmost, red) and Vn, best
ud (rightmost, violet). The

horizontal band (green) corresponds to VK`3
us . The diagonal band (blue) corre-

sponds to (Vus/Vud)K`2/⇡`2 . The unitarity circle is denoted by the black solid
line. The 68% C.L. ellipse from a fit to all four constraints is depicted in yel-
low (Vud = 0.97378(26), Vus = 0.22422(36), �2/dof = 6.4/2, p-value 4.1%),
it deviates from the unitarity line by 2.8�. Note that the significance tends to
increase in case ⌧ decays are included.

Table 1, where, however, the value for Vus from K`3 decays in-
cludes all charge channels, accounting for correlations among
them. The extraction of Vus from K`3 decays requires further in-
put on the respective form factors, which are taken in the disper-
sive parameterization from Ref. [71], constrained by data from
Refs. [72–78]. This leaves form-factor normalizations, decay
constants, and isospin-breaking corrections in both K`2 and K`3
decays.

For K`2 we follow the established convention to consider the
ratio to ⇡`2 decays [27] (pion lifetime [62, 79–83] and branch-
ing fraction [84–87] are taken from Ref. [12]), since in this ratio
certain structure-dependent radiative corrections [88, 89] cancel
and only the ratio of decay constants FK/F⇡ needs to be pro-
vided. We use the isospin-breaking corrections from Ref. [90]
together with the Nf = 2 + 1 + 1 isospin-limit ratio of de-
cay constants FK/F⇡ = 1.1978(22) [91–94], where this aver-
age accounts for statistical and systematic correlations between
the results, some of which make use of the same lattice en-
sembles. For K`3 decays we use the radiative corrections from
Refs. [95–97] (in line with the earlier calculations [98, 99]), the
strong isospin-breaking correction �SU(2) = 0.0252(11) from
Refs. [98, 100] evaluated with the Nf = 2 + 1 + 1 quark-mass
double ratio Q = 22.5(5) and ratio ms/mud = 27.23(10), both
from Ref. [28] (the value of Q is consistent with Q = 22.1(7)
from ⌘ ! 3⇡ [101] and Q = 22.4(3) from the Cottingham
approach [102]), and the form-factor normalization f+(0) =
0.9698(17) [103, 104]. This global fit then defines the cur-
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Figure 2: Representative diagrams contributing to radiative corrections to nuclear b decays. Double solid lines
represent nucleons, single solid lines represent leptons, single (double) wavy lines represent photons (W bosons),
dashed lines represent pions. The quark-W vertex is proportional to Vud . The blue ellipse represents the strong
interaction among nucleons and the red and green ellipses represent the infinite diagrams contributing to the nuclear
wavefunction. In terms of the corrections introduced in Eq. (1), the left topology contributes (in various regimes) to
DV

R and d 0
R, the two middle ones to dNS, and the right one to dC.

and weak interaction eigenstates of quarks. CKM unitarity implies DCKM ⌘ |Vud |2 + |Vus|2 + |Vub|2 �1 = 0,
where Vud , Vus, Vub represent the mixing of up with down, strange, and beauty quarks, respectively. In prac-
tice |Vub|2 < 10�5 can be neglected and CKM unitarity reduces to the original Cabibbo universality, with
the identifications Vud = cosqC and Vus = sinqC, where qC is the Cabibbo angle [2]. Measurements of the b
decay of the neutron and of nuclei, with precision between 0.1% and 0.01%, are very competitive probes of
BSM physics, sensitive to both CKM unitarity and to “non V-A” BSM interactions.

The CKM mixing parameters VuD (D = d,s) are determined from various hadronic and nuclear weak
decays hi ! h f `n` (` = e,µ). Currently, the most precise determination of Vud is obtained by nuclear
0+ ! 0+ decays through the relation [4]

log2
f t

=
G2

Fm5
e |Vud |2

p3 (1+DV
R +d 0

R +dNS �dC) (1)

where t is the measured partial half life, f is a dimensionless phase space factor determined by the measured
Q value, GF is the Fermi constant extracted from muon decay, and DV

R , dNS, d 0
R, and dC are theoretical

corrections of % size. DV
R denotes the so-called “inner radiative corrections” and does not depend on the

particular transition considered: it can be calculated at the single-nucleon level and its nucleon-structure
dependence arises from the so-called g�W box diagrams [5–7] (see top part of left panel in Fig. 2), in which
a virtual photon is exchanged between the electron and the charged hadrons. d 0

R and dNS parameterize the
transition-dependent part of the electromagnetic radiative corrections. d 0

R is the “outer radiative correction”
and depends only on the electron’s energy and the Z of the decay product [8–11] (left panel in Fig. 2). dNS
depends on the nuclear structure details and arises form generalized g �W box diagrams in which a virtual
photon is exchanged between the electron and a proton that is not interacting with the W boson [12–15]
(middle panel in Fig. 2). Finally, dC is a correction arising from isospin breaking effects in the nuclear
wavefunctions, due to the fact that isobaric analog nuclei participating in superallowed transitions are not
pure isospin states in presence of Coulomb (right panel in Fig. 2) and other isospin-breaking nucleon-level
interactions [11, 16–19]. The most recent survey [4] of experimental and theoretical input leads to Vud =
0.97373(31). This incorporates a reduction in the uncertainty in DV

R [5, 7] and an increase in uncertainty due
to nuclear-structure dependent effects with input from Refs. [6, 14, 15]. Currently, the theoretical uncertainty
on the nuclear-structure dependent electromagnetic corrections dNS �dC dominates the error on Vud .

Thanks to higher precision measurements of the lifetime [20] and beta asymmetry [21] (see Ref. [22]
for a recent review), neutron decay is becoming competitive with superallowed beta decays on the precision
of Vud . Following the PDG analysis [23] one finds Vud = 0.97338(33)t(32)gA(10)RC = 0.97338(47), with
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Figure 2: Representative diagrams contributing to radiative corrections to nuclear b decays. Double solid lines
represent nucleons, single solid lines represent leptons, single (double) wavy lines represent photons (W bosons),
dashed lines represent pions. The quark-W vertex is proportional to Vud . The blue ellipse represents the strong
interaction among nucleons and the red and green ellipses represent the infinite diagrams contributing to the nuclear
wavefunction. In terms of the corrections introduced in Eq. (1), the left topology contributes (in various regimes) to
DV

R and d 0
R, the two middle ones to dNS, and the right one to dC.

and weak interaction eigenstates of quarks. CKM unitarity implies DCKM ⌘ |Vud |2 + |Vus|2 + |Vub|2 �1 = 0,
where Vud , Vus, Vub represent the mixing of up with down, strange, and beauty quarks, respectively. In prac-
tice |Vub|2 < 10�5 can be neglected and CKM unitarity reduces to the original Cabibbo universality, with
the identifications Vud = cosqC and Vus = sinqC, where qC is the Cabibbo angle [2]. Measurements of the b
decay of the neutron and of nuclei, with precision between 0.1% and 0.01%, are very competitive probes of
BSM physics, sensitive to both CKM unitarity and to “non V-A” BSM interactions.

The CKM mixing parameters VuD (D = d,s) are determined from various hadronic and nuclear weak
decays hi ! h f `n` (` = e,µ). Currently, the most precise determination of Vud is obtained by nuclear
0+ ! 0+ decays through the relation [4]
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where t is the measured partial half life, f is a dimensionless phase space factor determined by the measured
Q value, GF is the Fermi constant extracted from muon decay, and DV

R , dNS, d 0
R, and dC are theoretical

corrections of % size. DV
R denotes the so-called “inner radiative corrections” and does not depend on the

particular transition considered: it can be calculated at the single-nucleon level and its nucleon-structure
dependence arises from the so-called g�W box diagrams [5–7] (see top part of left panel in Fig. 2), in which
a virtual photon is exchanged between the electron and the charged hadrons. d 0

R and dNS parameterize the
transition-dependent part of the electromagnetic radiative corrections. d 0

R is the “outer radiative correction”
and depends only on the electron’s energy and the Z of the decay product [8–11] (left panel in Fig. 2). dNS
depends on the nuclear structure details and arises form generalized g �W box diagrams in which a virtual
photon is exchanged between the electron and a proton that is not interacting with the W boson [12–15]
(middle panel in Fig. 2). Finally, dC is a correction arising from isospin breaking effects in the nuclear
wavefunctions, due to the fact that isobaric analog nuclei participating in superallowed transitions are not
pure isospin states in presence of Coulomb (right panel in Fig. 2) and other isospin-breaking nucleon-level
interactions [11, 16–19]. The most recent survey [4] of experimental and theoretical input leads to Vud =
0.97373(31). This incorporates a reduction in the uncertainty in DV

R [5, 7] and an increase in uncertainty due
to nuclear-structure dependent effects with input from Refs. [6, 14, 15]. Currently, the theoretical uncertainty
on the nuclear-structure dependent electromagnetic corrections dNS �dC dominates the error on Vud .
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decay of the neutron and of nuclei, with precision between 0.1% and 0.01%, are very competitive probes of
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R is the “outer radiative correction”
and depends only on the electron’s energy and the Z of the decay product [8–11] (left panel in Fig. 2). dNS
depends on the nuclear structure details and arises form generalized g �W box diagrams in which a virtual
photon is exchanged between the electron and a proton that is not interacting with the W boson [12–15]
(middle panel in Fig. 2). Finally, dC is a correction arising from isospin breaking effects in the nuclear
wavefunctions, due to the fact that isobaric analog nuclei participating in superallowed transitions are not
pure isospin states in presence of Coulomb (right panel in Fig. 2) and other isospin-breaking nucleon-level
interactions [11, 16–19]. The most recent survey [4] of experimental and theoretical input leads to Vud =
0.97373(31). This incorporates a reduction in the uncertainty in DV

R [5, 7] and an increase in uncertainty due
to nuclear-structure dependent effects with input from Refs. [6, 14, 15]. Currently, the theoretical uncertainty
on the nuclear-structure dependent electromagnetic corrections dNS �dC dominates the error on Vud .

Thanks to higher precision measurements of the lifetime [20] and beta asymmetry [21] (see Ref. [22]
for a recent review), neutron decay is becoming competitive with superallowed beta decays on the precision
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1 Introduction

1.1 General View

The basic starting point for any serious phenomenology of weak decays of hadrons is the

effective weak Hamiltonian which has the following generic structure

Heff =
GF√

2

∑

i

V i
CKMCi(µ)Qi . (1.1)

Here GF is the Fermi constant and Qi are the relevant local operators which govern the

decays in question. The Cabibbo-Kobayashi-Maskawa factors V i
CKM [1, 2] and the Wilson

Coefficients Ci [3, 4] describe the strength with which a given operator enters the Hamiltonian.

In the simplest case of the β-decay, Heff takes the familiar form

H(β)
eff =

GF√
2

cos θc[ūγµ(1 − γ5)d ⊗ ēγµ(1 − γ5)νe] , (1.2)

where Vud has been expressed in terms of the Cabibbo angle. In this particular case the Wilson

Coefficient is equal unity and the local operator, the object between the square brackets, is

given by a product of two V −A currents. This local operator is represented by the diagram

(b) in fig. 1. Equation (1.2) represents the Fermi theory for β-decays as formulated by

W

d u

ν e

(a)

d u

ν e

(b)

Figure 1: β-decay at the quark level in the full (a) and effective (b) theory.

Sudarshan and Marshak [5] and Feynman and Gell-Mann [6] forty years ago, except that

in (1.2) the quark language has been used and following Cabibbo a small departure of Vud

from unity has been incorporated. In this context the basic formula (1.1) can be regarded

as a generalization of the Fermi Theory to include all known quarks and leptons as well as

their strong and electroweak interactions as summarized by the Standard Model. It should

be stressed that the formulation of weak decays in terms of effective Hamiltonians is very

suitable for the inclusion of new physics effects. We will discuss this issue briefly in these

lectures.
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e1)
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FIG. 1: Diagrams contributing to the matching between �PT and /⇡EFT at O(✏0�) (upper panel) and O(✏�) (lower panel).
Single, double, wavy, and dashed lines denote, respectively, leptons, nucleons, photons, and pions. Dots refer to interactions

from the lowest-order chiral Lagrangians L
p2
⇡ and L

p
⇡N , while diamonds represent insertions of L

e2p0
⇡ . Circled dots denote

interactions from the NLO chiral Lagrangian L
p2

⇡N .

only considered the asymptotic and elastic contributions
to Eq. (11), i.e. inserting a complete set of states in
between every current and retaining only the nucleon.
Assuming isospin symmetry then leads to a vanishing
contribution for the three-point function [15]. Recogniz-
ing diagrams i1, j1, a2, . . . in Fig. 1 to correspond to an
explicit treatment of these vertex corrections, the results
presented here expand upon the simplified approach of
Ref. [15] to find much larger than anticipated isospin-
breaking corrections.

Numerical impact — We now estimate the numerical
impact of the various corrections, starting with our main
new finding, i.e., the electromagnetic shift to � = gA/gV .
Including BSM contributions, the relation between the
experimentally extracted � and the (isosymmetric) QCD
axial charge is given by [9]

� = g
QCD

A

⇣
1 + �

(�)
RC

� 2Re(✏R)
⌘
, (12)

where ✏R ⇠ (246GeV/⇤BSM)2 is a BSM right-handed
current contribution appearing at an energy scale ⇤BSM

[9, 10]. To the order we are working the radiative correc-
tion is

�
(�)
RC

=
↵

2⇡

⇣
�(0)

A,em +�(1)

A,em ��(0)

V em

⌘
. (13)

For the numerical evaluation of the loop contributions to

�(0),(1)
A,em we use Z⇡ = 0.81 (obtained from the physical

pion mass di↵erence and F⇡ = 92.4 MeV) and the av-
erage nucleon mass mN = 938.9 MeV. In the loops we

set g
(0)

A = gA ⇡ 1.27 [6], as the di↵erence formally con-
tributes to higher chiral order. Existing lattice data in-
deed indicate that gA has a mild m⇡ dependence [11, 42].
The NLO LECs c3 and c4 have been extracted from pion-
nucleon scattering [43, 44]. They show a sizable depen-
dence on the chiral order at which the fit to ⇡-N data is
carried out, with a big change between NLO and N2LO,
stabilizing between N2LO and N3LO. For the corrections
we find

�(0)

A�V,em 2 {2.4, 5.7} , �(1)

A,em = {10.0, 14.5, 15.9}, (14)

where the range in �(0)

A�V,em is obtained by setting

ĈA(µ)� ĈV = 0 and varying µ between 0.5 and 1 GeV,

while the three values of �(1)

A,em are obtained by using

c3,4 extracted to NLO, N2LO, and N3LO [44]. While the
NLO correction is somewhat larger than the LO one, we
stress that we do not know the full LO correction because
we have set the counter term contribution ĈA � ĈV to
zero. In addition, in an EFT without explicit � degrees
of freedom, c3 and c4 are dominated by � contributions
and thus anomalously large. Combining the corrections,
we estimate a correction to � at the percent level,

�
(�)
RC

2 {1.4, 2.6} · 10�2
. (15)

This shift has no impact on the current first-row CKM
discrepancy because the most accurate determination

qext, me
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Here GF is the Fermi constant and Qi are the relevant local operators which govern the

decays in question. The Cabibbo-Kobayashi-Maskawa factors V i
CKM [1, 2] and the Wilson

Coefficients Ci [3, 4] describe the strength with which a given operator enters the Hamiltonian.
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H(β)
eff =
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where Vud has been expressed in terms of the Cabibbo angle. In this particular case the Wilson

Coefficient is equal unity and the local operator, the object between the square brackets, is

given by a product of two V −A currents. This local operator is represented by the diagram

(b) in fig. 1. Equation (1.2) represents the Fermi theory for β-decays as formulated by
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Figure 1: β-decay at the quark level in the full (a) and effective (b) theory.

Sudarshan and Marshak [5] and Feynman and Gell-Mann [6] forty years ago, except that

in (1.2) the quark language has been used and following Cabibbo a small departure of Vud

from unity has been incorporated. In this context the basic formula (1.1) can be regarded

as a generalization of the Fermi Theory to include all known quarks and leptons as well as

their strong and electroweak interactions as summarized by the Standard Model. It should

be stressed that the formulation of weak decays in terms of effective Hamiltonians is very

suitable for the inclusion of new physics effects. We will discuss this issue briefly in these

lectures.
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freedom. In the case at hand the effective theory is constructed by integrating out the W field

only. The matching procedure which gives the values of C1 and C2 proceeds in three steps

[61]. The explicit three steps presented below are sufficient for the subsequent summation of

the leading logarithms or equvalently for the leading term of the RG improved perturbation

theory. We will generalize these steps in the next section in order to be able to include also

the NLO term in this expansion.

Here we go:

Step 1: Calculation of Afull

The current-current diagrams of fig. 15 (a)–(c) and their symmetric counterparts, give for

the full amplitude Afull to O(αs) (mi = 0, p2 < 0):

Afull =
GF√

2
V ∗

csVud

[(

1 + 2CF
αs

4π
(
1

ε
+ ln

µ2

−p2
)

)

S2 +
3

N

αs

4π
ln

M2
W

−p2
S2

−3
αs

4π
ln

M2
W

−p2
S1

]
(5.23)

Here:

S1 ≡ ⟨Q1⟩tree = (s̄αcβ)V −A(ūβdα)V −A (5.24)

S2 ≡ ⟨Q2⟩tree = (s̄αcα)V −A(ūβdβ)V −A (5.25)

are just the tree level matrix elements of Q1 and Q2. A few comments should be made.

• We use the term “amplitude” in the meaning of an “amputated Green function” (multi-

plied by ”i”). Correspondingly operator matrix elements are amputated Green functions

with operator insertion. Thus gluonic self energy corrections on external legs are not

included.

W

g

(a)

Wg

(b)

W g

(c)

Figure 15: One-loop current-current diagrams in the full theory.

• For simplicity we have chosen all external momenta p to be equal and set all quark

masses to zero. As we will see below this choice has no impact on the coefficients Ci.

56

γW

1 Introduction

1.1 General View

The basic starting point for any serious phenomenology of weak decays of hadrons is the

effective weak Hamiltonian which has the following generic structure

Heff =
GF√

2

∑

i

V i
CKMCi(µ)Qi . (1.1)

Here GF is the Fermi constant and Qi are the relevant local operators which govern the

decays in question. The Cabibbo-Kobayashi-Maskawa factors V i
CKM [1, 2] and the Wilson

Coefficients Ci [3, 4] describe the strength with which a given operator enters the Hamiltonian.

In the simplest case of the β-decay, Heff takes the familiar form

H(β)
eff =

GF√
2
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Figure 2: Representative diagrams contributing to radiative corrections to nuclear b decays. Double solid lines
represent nucleons, single solid lines represent leptons, single (double) wavy lines represent photons (W bosons),
dashed lines represent pions. The quark-W vertex is proportional to Vud . The blue ellipse represents the strong
interaction among nucleons and the red and green ellipses represent the infinite diagrams contributing to the nuclear
wavefunction. In terms of the corrections introduced in Eq. (1), the left topology contributes (in various regimes) to
DV

R and d 0
R, the two middle ones to dNS, and the right one to dC.

and weak interaction eigenstates of quarks. CKM unitarity implies DCKM ⌘ |Vud |2 + |Vus|2 + |Vub|2 �1 = 0,
where Vud , Vus, Vub represent the mixing of up with down, strange, and beauty quarks, respectively. In prac-
tice |Vub|2 < 10�5 can be neglected and CKM unitarity reduces to the original Cabibbo universality, with
the identifications Vud = cosqC and Vus = sinqC, where qC is the Cabibbo angle [2]. Measurements of the b
decay of the neutron and of nuclei, with precision between 0.1% and 0.01%, are very competitive probes of
BSM physics, sensitive to both CKM unitarity and to “non V-A” BSM interactions.

The CKM mixing parameters VuD (D = d,s) are determined from various hadronic and nuclear weak
decays hi ! h f `n` (` = e,µ). Currently, the most precise determination of Vud is obtained by nuclear
0+ ! 0+ decays through the relation [4]

log2
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=
G2

Fm5
e |Vud |2

p3 (1+DV
R +d 0

R +dNS �dC) (1)

where t is the measured partial half life, f is a dimensionless phase space factor determined by the measured
Q value, GF is the Fermi constant extracted from muon decay, and DV

R , dNS, d 0
R, and dC are theoretical

corrections of % size. DV
R denotes the so-called “inner radiative corrections” and does not depend on the

particular transition considered: it can be calculated at the single-nucleon level and its nucleon-structure
dependence arises from the so-called g�W box diagrams [5–7] (see top part of left panel in Fig. 2), in which
a virtual photon is exchanged between the electron and the charged hadrons. d 0

R and dNS parameterize the
transition-dependent part of the electromagnetic radiative corrections. d 0

R is the “outer radiative correction”
and depends only on the electron’s energy and the Z of the decay product [8–11] (left panel in Fig. 2). dNS
depends on the nuclear structure details and arises form generalized g �W box diagrams in which a virtual
photon is exchanged between the electron and a proton that is not interacting with the W boson [12–15]
(middle panel in Fig. 2). Finally, dC is a correction arising from isospin breaking effects in the nuclear
wavefunctions, due to the fact that isobaric analog nuclei participating in superallowed transitions are not
pure isospin states in presence of Coulomb (right panel in Fig. 2) and other isospin-breaking nucleon-level
interactions [11, 16–19]. The most recent survey [4] of experimental and theoretical input leads to Vud =
0.97373(31). This incorporates a reduction in the uncertainty in DV

R [5, 7] and an increase in uncertainty due
to nuclear-structure dependent effects with input from Refs. [6, 14, 15]. Currently, the theoretical uncertainty
on the nuclear-structure dependent electromagnetic corrections dNS �dC dominates the error on Vud .

Thanks to higher precision measurements of the lifetime [20] and beta asymmetry [21] (see Ref. [22]
for a recent review), neutron decay is becoming competitive with superallowed beta decays on the precision
of Vud . Following the PDG analysis [23] one finds Vud = 0.97338(33)t(32)gA(10)RC = 0.97338(47), with

3

e
n

e
n

e
n

(a) (b) (c)

V
ud

V
ud

V
ud

e
n

V
ud

(d)
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represent nucleons, single solid lines represent leptons, single (double) wavy lines represent photons (W bosons),
dashed lines represent pions. The quark-W vertex is proportional to Vud . The blue ellipse represents the strong
interaction among nucleons and the red and green ellipses represent the infinite diagrams contributing to the nuclear
wavefunction. In terms of the corrections introduced in Eq. (1), the left topology contributes (in various regimes) to
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R, the two middle ones to dNS, and the right one to dC.

and weak interaction eigenstates of quarks. CKM unitarity implies DCKM ⌘ |Vud |2 + |Vus|2 + |Vub|2 �1 = 0,
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decay of the neutron and of nuclei, with precision between 0.1% and 0.01%, are very competitive probes of
BSM physics, sensitive to both CKM unitarity and to “non V-A” BSM interactions.

The CKM mixing parameters VuD (D = d,s) are determined from various hadronic and nuclear weak
decays hi ! h f `n` (` = e,µ). Currently, the most precise determination of Vud is obtained by nuclear
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particular transition considered: it can be calculated at the single-nucleon level and its nucleon-structure
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depends on the nuclear structure details and arises form generalized g �W box diagrams in which a virtual
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interactions [11, 16–19]. The most recent survey [4] of experimental and theoretical input leads to Vud =
0.97373(31). This incorporates a reduction in the uncertainty in DV
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for a recent review), neutron decay is becoming competitive with superallowed beta decays on the precision
of Vud . Following the PDG analysis [23] one finds Vud = 0.97338(33)t(32)gA(10)RC = 0.97338(47), with
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with uncertainty entirely dominated by experiment [22]. A
competitive determination requires a dedicated experimental
campaign, as planned at the PIONEER experiment [26].

The best information on Vus comes from kaon decays, K`2 =
K ! `⌫` and K`3 = K ! ⇡`⌫`. The former is typically ana-
lyzed by normalizing to ⇡`2 decays [27], leading to a constraint
on Vus/Vud, while K`3 decays give direct access to Vus when the
corresponding form factor is provided from lattice QCD [28].
Details of the global fit to kaon decays, as well as the input
for decay constants, form factors, and radiative corrections, are
discussed in Sec. 2, leading to

Vus

Vud

�����
K`2/⇡`2

= 0.23108(23)exp(42)FK/F⇡ (16)IB[51]total,

VK`3
us = 0.22330(35)exp(39) f+ (8)IB[53]total, (7)

where the errors refer to experiment, lattice input for the matrix
elements, and isospin-breaking corrections, respectively. To-
gether with the constraints on Vud, these bands give rise to the
situation depicted in Fig. 1: on the one hand, there is a ten-
sion between the best fit and CKM unitarity, but another ten-
sion, arising entirely from meson decays, is due to the fact that
the K`2 and K`3 constraints intersect away from the unitarity
circle. Additional information on Vus can be derived from ⌧
decays [29, 30], but given the larger errors [31, 32] we will
continue to focus on the kaon sector.

The main point of this Letter is that given the various ten-
sions in the Vud–Vus plane, there is urgent need for additional
information on the compatibility of K`2 and K`3 data, especially
when it comes to interpreting either of the tensions (CKM uni-
tarity and K`2 versus K`3) in terms of physics beyond the SM
(BSM). In particular, the data base for K`2 is completely dom-
inated by a single experiment [33], and at the same time the
global fit to all kaon data displays a relatively poor fit quality.
All these points could be scrutinized by a new measurement of
the Kµ3/Kµ2 branching fraction at the level of a few permil, as
possible at the NA62 experiment. Further, once the experimen-
tal situation is clarified, more robust interpretations of the en-
suing tensions will be possible, especially regarding the role of
right-handed currents both in the strange and non-strange sec-
tor. To make the case for the proposed measurement of the
Kµ3/Kµ2 branching fraction, we first discuss in detail its impact
on the global fit to kaon data and the implications for CKM uni-
tarity in Sec. 2. The consequences for physics beyond the SM
are addressed in Sec. 3, before we conclude in Sec. 4.

2. Global fit to kaon data and implications for CKM uni-
tarity

The current values for Vus and Vus/Vud given in Eq. (7) are
obtained from a global fit to kaon decays [34–37], updated
to include the latest measurements, radiative corrections, and
hadronic matrix elements. In particular, the fit includes data on
KS decays from Refs. [38–44], on KL decays from Refs. [45–
56], and on charged-kaon decays from Refs. [33, 57–70]. Since
we focus on the impact of a new Kµ3/Kµ2 measurement, e.g.,
at NA62, we reproduce the details of the charged kaon fit in

Figure 1: Constraints in the Vud–Vus plane. The partially overlapping vertical
bands correspond to V0+!0+

ud (leftmost, red) and Vn, best
ud (rightmost, violet). The

horizontal band (green) corresponds to VK`3
us . The diagonal band (blue) corre-

sponds to (Vus/Vud)K`2/⇡`2 . The unitarity circle is denoted by the black solid
line. The 68% C.L. ellipse from a fit to all four constraints is depicted in yel-
low (Vud = 0.97378(26), Vus = 0.22422(36), �2/dof = 6.4/2, p-value 4.1%),
it deviates from the unitarity line by 2.8�. Note that the significance tends to
increase in case ⌧ decays are included.

Table 1, where, however, the value for Vus from K`3 decays in-
cludes all charge channels, accounting for correlations among
them. The extraction of Vus from K`3 decays requires further in-
put on the respective form factors, which are taken in the disper-
sive parameterization from Ref. [71], constrained by data from
Refs. [72–78]. This leaves form-factor normalizations, decay
constants, and isospin-breaking corrections in both K`2 and K`3
decays.

For K`2 we follow the established convention to consider the
ratio to ⇡`2 decays [27] (pion lifetime [62, 79–83] and branch-
ing fraction [84–87] are taken from Ref. [12]), since in this ratio
certain structure-dependent radiative corrections [88, 89] cancel
and only the ratio of decay constants FK/F⇡ needs to be pro-
vided. We use the isospin-breaking corrections from Ref. [90]
together with the Nf = 2 + 1 + 1 isospin-limit ratio of de-
cay constants FK/F⇡ = 1.1978(22) [91–94], where this aver-
age accounts for statistical and systematic correlations between
the results, some of which make use of the same lattice en-
sembles. For K`3 decays we use the radiative corrections from
Refs. [95–97] (in line with the earlier calculations [98, 99]), the
strong isospin-breaking correction �SU(2) = 0.0252(11) from
Refs. [98, 100] evaluated with the Nf = 2 + 1 + 1 quark-mass
double ratio Q = 22.5(5) and ratio ms/mud = 27.23(10), both
from Ref. [28] (the value of Q is consistent with Q = 22.1(7)
from ⌘ ! 3⇡ [101] and Q = 22.4(3) from the Cottingham
approach [102]), and the form-factor normalization f+(0) =
0.9698(17) [103, 104]. This global fit then defines the cur-

2

Vus

Vud

 K→
 μν 

/ π→
 μν 

 

(0.22%)

K→ πlν (0.25%)

unitarity0+ → 0+ (0.031%)
Neutron (0.043%)

• Two tantalizing ‘anomalies’

• At face value point toward vertex 
corrections with ΛBSM~10 TeV (hard to 
probe even at the HI-LUMI LHC)

ΔCKM = |Vud|2 + |Vus|2  + |Vub|2 − 1 = - 15(5)⨉10-4with uncertainty entirely dominated by experiment [22]. A
competitive determination requires a dedicated experimental
campaign, as planned at the PIONEER experiment [26].

The best information on Vus comes from kaon decays, K`2 =
K ! `⌫` and K`3 = K ! ⇡`⌫`. The former is typically ana-
lyzed by normalizing to ⇡`2 decays [27], leading to a constraint
on Vus/Vud, while K`3 decays give direct access to Vus when the
corresponding form factor is provided from lattice QCD [28].
Details of the global fit to kaon decays, as well as the input
for decay constants, form factors, and radiative corrections, are
discussed in Sec. 2, leading to

Vus

Vud

�����
K`2/⇡`2

= 0.23108(23)exp(42)FK/F⇡ (16)IB[51]total,

VK`3
us = 0.22330(35)exp(39) f+ (8)IB[53]total, (7)

where the errors refer to experiment, lattice input for the matrix
elements, and isospin-breaking corrections, respectively. To-
gether with the constraints on Vud, these bands give rise to the
situation depicted in Fig. 1: on the one hand, there is a ten-
sion between the best fit and CKM unitarity, but another ten-
sion, arising entirely from meson decays, is due to the fact that
the K`2 and K`3 constraints intersect away from the unitarity
circle. Additional information on Vus can be derived from ⌧
decays [29, 30], but given the larger errors [31, 32] we will
continue to focus on the kaon sector.

The main point of this Letter is that given the various ten-
sions in the Vud–Vus plane, there is urgent need for additional
information on the compatibility of K`2 and K`3 data, especially
when it comes to interpreting either of the tensions (CKM uni-
tarity and K`2 versus K`3) in terms of physics beyond the SM
(BSM). In particular, the data base for K`2 is completely dom-
inated by a single experiment [33], and at the same time the
global fit to all kaon data displays a relatively poor fit quality.
All these points could be scrutinized by a new measurement of
the Kµ3/Kµ2 branching fraction at the level of a few permil, as
possible at the NA62 experiment. Further, once the experimen-
tal situation is clarified, more robust interpretations of the en-
suing tensions will be possible, especially regarding the role of
right-handed currents both in the strange and non-strange sec-
tor. To make the case for the proposed measurement of the
Kµ3/Kµ2 branching fraction, we first discuss in detail its impact
on the global fit to kaon data and the implications for CKM uni-
tarity in Sec. 2. The consequences for physics beyond the SM
are addressed in Sec. 3, before we conclude in Sec. 4.

2. Global fit to kaon data and implications for CKM uni-
tarity

The current values for Vus and Vus/Vud given in Eq. (7) are
obtained from a global fit to kaon decays [34–37], updated
to include the latest measurements, radiative corrections, and
hadronic matrix elements. In particular, the fit includes data on
KS decays from Refs. [38–44], on KL decays from Refs. [45–
56], and on charged-kaon decays from Refs. [33, 57–70]. Since
we focus on the impact of a new Kµ3/Kµ2 measurement, e.g.,
at NA62, we reproduce the details of the charged kaon fit in

Figure 1: Constraints in the Vud–Vus plane. The partially overlapping vertical
bands correspond to V0+!0+

ud (leftmost, red) and Vn, best
ud (rightmost, violet). The

horizontal band (green) corresponds to VK`3
us . The diagonal band (blue) corre-

sponds to (Vus/Vud)K`2/⇡`2 . The unitarity circle is denoted by the black solid
line. The 68% C.L. ellipse from a fit to all four constraints is depicted in yel-
low (Vud = 0.97378(26), Vus = 0.22422(36), �2/dof = 6.4/2, p-value 4.1%),
it deviates from the unitarity line by 2.8�. Note that the significance tends to
increase in case ⌧ decays are included.

Table 1, where, however, the value for Vus from K`3 decays in-
cludes all charge channels, accounting for correlations among
them. The extraction of Vus from K`3 decays requires further in-
put on the respective form factors, which are taken in the disper-
sive parameterization from Ref. [71], constrained by data from
Refs. [72–78]. This leaves form-factor normalizations, decay
constants, and isospin-breaking corrections in both K`2 and K`3
decays.

For K`2 we follow the established convention to consider the
ratio to ⇡`2 decays [27] (pion lifetime [62, 79–83] and branch-
ing fraction [84–87] are taken from Ref. [12]), since in this ratio
certain structure-dependent radiative corrections [88, 89] cancel
and only the ratio of decay constants FK/F⇡ needs to be pro-
vided. We use the isospin-breaking corrections from Ref. [90]
together with the Nf = 2 + 1 + 1 isospin-limit ratio of de-
cay constants FK/F⇡ = 1.1978(22) [91–94], where this aver-
age accounts for statistical and systematic correlations between
the results, some of which make use of the same lattice en-
sembles. For K`3 decays we use the radiative corrections from
Refs. [95–97] (in line with the earlier calculations [98, 99]), the
strong isospin-breaking correction �SU(2) = 0.0252(11) from
Refs. [98, 100] evaluated with the Nf = 2 + 1 + 1 quark-mass
double ratio Q = 22.5(5) and ratio ms/mud = 27.23(10), both
from Ref. [28] (the value of Q is consistent with Q = 22.1(7)
from ⌘ ! 3⇡ [101] and Q = 22.4(3) from the Cottingham
approach [102]), and the form-factor normalization f+(0) =
0.9698(17) [103, 104]. This global fit then defines the cur-

2

Vus

Vud

 K→
 μν 

/ π→
 μν 

 

(0.22%)

K→ πlν (0.25%)

unitarity0+ → 0+ (0.031%)
Neutron (0.043%)

18

VC-Crivellin-Hoferichter-Moulson  2208.11707 
and references therein

β decays and CKM unitarity

• Two ‘anomalies’

• At face value point toward vertex 
corrections with Λ~10 TeV (hard to 
probe even at the HI-LUMI LHC)

dj
uig Vij

g

W e−

νe
_

ΔCKM = |Vud|2 + |Vus|2  + |Vub|2 − 1 = - 15(5)⨉10-4

e
n

V
ud

Figure 2: Representative diagrams contributing to radiative corrections to nuclear b decays. Double solid lines
represent nucleons, single solid lines represent leptons, single (double) wavy lines represent photons (W bosons),
dashed lines represent pions. The quark-W vertex is proportional to Vud . The blue ellipse represents the strong
interaction among nucleons and the red and green ellipses represent the infinite diagrams contributing to the nuclear
wavefunction. In terms of the corrections introduced in Eq. (1), the left topology contributes (in various regimes) to
DV

R and d 0
R, the two middle ones to dNS, and the right one to dC.

and weak interaction eigenstates of quarks. CKM unitarity implies DCKM ⌘ |Vud |2 + |Vus|2 + |Vub|2 �1 = 0,
where Vud , Vus, Vub represent the mixing of up with down, strange, and beauty quarks, respectively. In prac-
tice |Vub|2 < 10�5 can be neglected and CKM unitarity reduces to the original Cabibbo universality, with
the identifications Vud = cosqC and Vus = sinqC, where qC is the Cabibbo angle [2]. Measurements of the b
decay of the neutron and of nuclei, with precision between 0.1% and 0.01%, are very competitive probes of
BSM physics, sensitive to both CKM unitarity and to “non V-A” BSM interactions.

The CKM mixing parameters VuD (D = d,s) are determined from various hadronic and nuclear weak
decays hi ! h f `n` (` = e,µ). Currently, the most precise determination of Vud is obtained by nuclear
0+ ! 0+ decays through the relation [4]
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where t is the measured partial half life, f is a dimensionless phase space factor determined by the measured
Q value, GF is the Fermi constant extracted from muon decay, and DV

R , dNS, d 0
R, and dC are theoretical

corrections of % size. DV
R denotes the so-called “inner radiative corrections” and does not depend on the

particular transition considered: it can be calculated at the single-nucleon level and its nucleon-structure
dependence arises from the so-called g�W box diagrams [5–7] (see top part of left panel in Fig. 2), in which
a virtual photon is exchanged between the electron and the charged hadrons. d 0

R and dNS parameterize the
transition-dependent part of the electromagnetic radiative corrections. d 0

R is the “outer radiative correction”
and depends only on the electron’s energy and the Z of the decay product [8–11] (left panel in Fig. 2). dNS
depends on the nuclear structure details and arises form generalized g �W box diagrams in which a virtual
photon is exchanged between the electron and a proton that is not interacting with the W boson [12–15]
(middle panel in Fig. 2). Finally, dC is a correction arising from isospin breaking effects in the nuclear
wavefunctions, due to the fact that isobaric analog nuclei participating in superallowed transitions are not
pure isospin states in presence of Coulomb (right panel in Fig. 2) and other isospin-breaking nucleon-level
interactions [11, 16–19]. The most recent survey [4] of experimental and theoretical input leads to Vud =
0.97373(31). This incorporates a reduction in the uncertainty in DV

R [5, 7] and an increase in uncertainty due
to nuclear-structure dependent effects with input from Refs. [6, 14, 15]. Currently, the theoretical uncertainty
on the nuclear-structure dependent electromagnetic corrections dNS �dC dominates the error on Vud .

Thanks to higher precision measurements of the lifetime [20] and beta asymmetry [21] (see Ref. [22]
for a recent review), neutron decay is becoming competitive with superallowed beta decays on the precision
of Vud . Following the PDG analysis [23] one finds Vud = 0.97338(33)t(32)gA(10)RC = 0.97338(47), with
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with uncertainty entirely dominated by experiment [22]. A
competitive determination requires a dedicated experimental
campaign, as planned at the PIONEER experiment [26].

The best information on Vus comes from kaon decays, K`2 =
K ! `⌫` and K`3 = K ! ⇡`⌫`. The former is typically ana-
lyzed by normalizing to ⇡`2 decays [27], leading to a constraint
on Vus/Vud, while K`3 decays give direct access to Vus when the
corresponding form factor is provided from lattice QCD [28].
Details of the global fit to kaon decays, as well as the input
for decay constants, form factors, and radiative corrections, are
discussed in Sec. 2, leading to

Vus

Vud

�����
K`2/⇡`2

= 0.23108(23)exp(42)FK/F⇡ (16)IB[51]total,

VK`3
us = 0.22330(35)exp(39) f+ (8)IB[53]total, (7)

where the errors refer to experiment, lattice input for the matrix
elements, and isospin-breaking corrections, respectively. To-
gether with the constraints on Vud, these bands give rise to the
situation depicted in Fig. 1: on the one hand, there is a ten-
sion between the best fit and CKM unitarity, but another ten-
sion, arising entirely from meson decays, is due to the fact that
the K`2 and K`3 constraints intersect away from the unitarity
circle. Additional information on Vus can be derived from ⌧
decays [29, 30], but given the larger errors [31, 32] we will
continue to focus on the kaon sector.

The main point of this Letter is that given the various ten-
sions in the Vud–Vus plane, there is urgent need for additional
information on the compatibility of K`2 and K`3 data, especially
when it comes to interpreting either of the tensions (CKM uni-
tarity and K`2 versus K`3) in terms of physics beyond the SM
(BSM). In particular, the data base for K`2 is completely dom-
inated by a single experiment [33], and at the same time the
global fit to all kaon data displays a relatively poor fit quality.
All these points could be scrutinized by a new measurement of
the Kµ3/Kµ2 branching fraction at the level of a few permil, as
possible at the NA62 experiment. Further, once the experimen-
tal situation is clarified, more robust interpretations of the en-
suing tensions will be possible, especially regarding the role of
right-handed currents both in the strange and non-strange sec-
tor. To make the case for the proposed measurement of the
Kµ3/Kµ2 branching fraction, we first discuss in detail its impact
on the global fit to kaon data and the implications for CKM uni-
tarity in Sec. 2. The consequences for physics beyond the SM
are addressed in Sec. 3, before we conclude in Sec. 4.

2. Global fit to kaon data and implications for CKM uni-
tarity

The current values for Vus and Vus/Vud given in Eq. (7) are
obtained from a global fit to kaon decays [34–37], updated
to include the latest measurements, radiative corrections, and
hadronic matrix elements. In particular, the fit includes data on
KS decays from Refs. [38–44], on KL decays from Refs. [45–
56], and on charged-kaon decays from Refs. [33, 57–70]. Since
we focus on the impact of a new Kµ3/Kµ2 measurement, e.g.,
at NA62, we reproduce the details of the charged kaon fit in

Figure 1: Constraints in the Vud–Vus plane. The partially overlapping vertical
bands correspond to V0+!0+

ud (leftmost, red) and Vn, best
ud (rightmost, violet). The

horizontal band (green) corresponds to VK`3
us . The diagonal band (blue) corre-

sponds to (Vus/Vud)K`2/⇡`2 . The unitarity circle is denoted by the black solid
line. The 68% C.L. ellipse from a fit to all four constraints is depicted in yel-
low (Vud = 0.97378(26), Vus = 0.22422(36), �2/dof = 6.4/2, p-value 4.1%),
it deviates from the unitarity line by 2.8�. Note that the significance tends to
increase in case ⌧ decays are included.

Table 1, where, however, the value for Vus from K`3 decays in-
cludes all charge channels, accounting for correlations among
them. The extraction of Vus from K`3 decays requires further in-
put on the respective form factors, which are taken in the disper-
sive parameterization from Ref. [71], constrained by data from
Refs. [72–78]. This leaves form-factor normalizations, decay
constants, and isospin-breaking corrections in both K`2 and K`3
decays.

For K`2 we follow the established convention to consider the
ratio to ⇡`2 decays [27] (pion lifetime [62, 79–83] and branch-
ing fraction [84–87] are taken from Ref. [12]), since in this ratio
certain structure-dependent radiative corrections [88, 89] cancel
and only the ratio of decay constants FK/F⇡ needs to be pro-
vided. We use the isospin-breaking corrections from Ref. [90]
together with the Nf = 2 + 1 + 1 isospin-limit ratio of de-
cay constants FK/F⇡ = 1.1978(22) [91–94], where this aver-
age accounts for statistical and systematic correlations between
the results, some of which make use of the same lattice en-
sembles. For K`3 decays we use the radiative corrections from
Refs. [95–97] (in line with the earlier calculations [98, 99]), the
strong isospin-breaking correction �SU(2) = 0.0252(11) from
Refs. [98, 100] evaluated with the Nf = 2 + 1 + 1 quark-mass
double ratio Q = 22.5(5) and ratio ms/mud = 27.23(10), both
from Ref. [28] (the value of Q is consistent with Q = 22.1(7)
from ⌘ ! 3⇡ [101] and Q = 22.4(3) from the Cottingham
approach [102]), and the form-factor normalization f+(0) =
0.9698(17) [103, 104]. This global fit then defines the cur-
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Figure 2: Representative diagrams contributing to radiative corrections to nuclear b decays. Double solid lines
represent nucleons, single solid lines represent leptons, single (double) wavy lines represent photons (W bosons),
dashed lines represent pions. The quark-W vertex is proportional to Vud . The blue ellipse represents the strong
interaction among nucleons and the red and green ellipses represent the infinite diagrams contributing to the nuclear
wavefunction. In terms of the corrections introduced in Eq. (1), the left topology contributes (in various regimes) to
DV

R and d 0
R, the two middle ones to dNS, and the right one to dC.

and weak interaction eigenstates of quarks. CKM unitarity implies DCKM ⌘ |Vud |2 + |Vus|2 + |Vub|2 �1 = 0,
where Vud , Vus, Vub represent the mixing of up with down, strange, and beauty quarks, respectively. In prac-
tice |Vub|2 < 10�5 can be neglected and CKM unitarity reduces to the original Cabibbo universality, with
the identifications Vud = cosqC and Vus = sinqC, where qC is the Cabibbo angle [2]. Measurements of the b
decay of the neutron and of nuclei, with precision between 0.1% and 0.01%, are very competitive probes of
BSM physics, sensitive to both CKM unitarity and to “non V-A” BSM interactions.

The CKM mixing parameters VuD (D = d,s) are determined from various hadronic and nuclear weak
decays hi ! h f `n` (` = e,µ). Currently, the most precise determination of Vud is obtained by nuclear
0+ ! 0+ decays through the relation [4]
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where t is the measured partial half life, f is a dimensionless phase space factor determined by the measured
Q value, GF is the Fermi constant extracted from muon decay, and DV
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R, and dC are theoretical

corrections of % size. DV
R denotes the so-called “inner radiative corrections” and does not depend on the

particular transition considered: it can be calculated at the single-nucleon level and its nucleon-structure
dependence arises from the so-called g�W box diagrams [5–7] (see top part of left panel in Fig. 2), in which
a virtual photon is exchanged between the electron and the charged hadrons. d 0

R and dNS parameterize the
transition-dependent part of the electromagnetic radiative corrections. d 0

R is the “outer radiative correction”
and depends only on the electron’s energy and the Z of the decay product [8–11] (left panel in Fig. 2). dNS
depends on the nuclear structure details and arises form generalized g �W box diagrams in which a virtual
photon is exchanged between the electron and a proton that is not interacting with the W boson [12–15]
(middle panel in Fig. 2). Finally, dC is a correction arising from isospin breaking effects in the nuclear
wavefunctions, due to the fact that isobaric analog nuclei participating in superallowed transitions are not
pure isospin states in presence of Coulomb (right panel in Fig. 2) and other isospin-breaking nucleon-level
interactions [11, 16–19]. The most recent survey [4] of experimental and theoretical input leads to Vud =
0.97373(31). This incorporates a reduction in the uncertainty in DV

R [5, 7] and an increase in uncertainty due
to nuclear-structure dependent effects with input from Refs. [6, 14, 15]. Currently, the theoretical uncertainty
on the nuclear-structure dependent electromagnetic corrections dNS �dC dominates the error on Vud .

Thanks to higher precision measurements of the lifetime [20] and beta asymmetry [21] (see Ref. [22]
for a recent review), neutron decay is becoming competitive with superallowed beta decays on the precision
of Vud . Following the PDG analysis [23] one finds Vud = 0.97338(33)t(32)gA(10)RC = 0.97338(47), with
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with uncertainty entirely dominated by experiment [22]. A
competitive determination requires a dedicated experimental
campaign, as planned at the PIONEER experiment [26].

The best information on Vus comes from kaon decays, K`2 =
K ! `⌫` and K`3 = K ! ⇡`⌫`. The former is typically ana-
lyzed by normalizing to ⇡`2 decays [27], leading to a constraint
on Vus/Vud, while K`3 decays give direct access to Vus when the
corresponding form factor is provided from lattice QCD [28].
Details of the global fit to kaon decays, as well as the input
for decay constants, form factors, and radiative corrections, are
discussed in Sec. 2, leading to

Vus

Vud

�����
K`2/⇡`2

= 0.23108(23)exp(42)FK/F⇡ (16)IB[51]total,

VK`3
us = 0.22330(35)exp(39) f+ (8)IB[53]total, (7)

where the errors refer to experiment, lattice input for the matrix
elements, and isospin-breaking corrections, respectively. To-
gether with the constraints on Vud, these bands give rise to the
situation depicted in Fig. 1: on the one hand, there is a ten-
sion between the best fit and CKM unitarity, but another ten-
sion, arising entirely from meson decays, is due to the fact that
the K`2 and K`3 constraints intersect away from the unitarity
circle. Additional information on Vus can be derived from ⌧
decays [29, 30], but given the larger errors [31, 32] we will
continue to focus on the kaon sector.

The main point of this Letter is that given the various ten-
sions in the Vud–Vus plane, there is urgent need for additional
information on the compatibility of K`2 and K`3 data, especially
when it comes to interpreting either of the tensions (CKM uni-
tarity and K`2 versus K`3) in terms of physics beyond the SM
(BSM). In particular, the data base for K`2 is completely dom-
inated by a single experiment [33], and at the same time the
global fit to all kaon data displays a relatively poor fit quality.
All these points could be scrutinized by a new measurement of
the Kµ3/Kµ2 branching fraction at the level of a few permil, as
possible at the NA62 experiment. Further, once the experimen-
tal situation is clarified, more robust interpretations of the en-
suing tensions will be possible, especially regarding the role of
right-handed currents both in the strange and non-strange sec-
tor. To make the case for the proposed measurement of the
Kµ3/Kµ2 branching fraction, we first discuss in detail its impact
on the global fit to kaon data and the implications for CKM uni-
tarity in Sec. 2. The consequences for physics beyond the SM
are addressed in Sec. 3, before we conclude in Sec. 4.

2. Global fit to kaon data and implications for CKM uni-
tarity

The current values for Vus and Vus/Vud given in Eq. (7) are
obtained from a global fit to kaon decays [34–37], updated
to include the latest measurements, radiative corrections, and
hadronic matrix elements. In particular, the fit includes data on
KS decays from Refs. [38–44], on KL decays from Refs. [45–
56], and on charged-kaon decays from Refs. [33, 57–70]. Since
we focus on the impact of a new Kµ3/Kµ2 measurement, e.g.,
at NA62, we reproduce the details of the charged kaon fit in

Figure 1: Constraints in the Vud–Vus plane. The partially overlapping vertical
bands correspond to V0+!0+

ud (leftmost, red) and Vn, best
ud (rightmost, violet). The

horizontal band (green) corresponds to VK`3
us . The diagonal band (blue) corre-

sponds to (Vus/Vud)K`2/⇡`2 . The unitarity circle is denoted by the black solid
line. The 68% C.L. ellipse from a fit to all four constraints is depicted in yel-
low (Vud = 0.97378(26), Vus = 0.22422(36), �2/dof = 6.4/2, p-value 4.1%),
it deviates from the unitarity line by 2.8�. Note that the significance tends to
increase in case ⌧ decays are included.

Table 1, where, however, the value for Vus from K`3 decays in-
cludes all charge channels, accounting for correlations among
them. The extraction of Vus from K`3 decays requires further in-
put on the respective form factors, which are taken in the disper-
sive parameterization from Ref. [71], constrained by data from
Refs. [72–78]. This leaves form-factor normalizations, decay
constants, and isospin-breaking corrections in both K`2 and K`3
decays.

For K`2 we follow the established convention to consider the
ratio to ⇡`2 decays [27] (pion lifetime [62, 79–83] and branch-
ing fraction [84–87] are taken from Ref. [12]), since in this ratio
certain structure-dependent radiative corrections [88, 89] cancel
and only the ratio of decay constants FK/F⇡ needs to be pro-
vided. We use the isospin-breaking corrections from Ref. [90]
together with the Nf = 2 + 1 + 1 isospin-limit ratio of de-
cay constants FK/F⇡ = 1.1978(22) [91–94], where this aver-
age accounts for statistical and systematic correlations between
the results, some of which make use of the same lattice en-
sembles. For K`3 decays we use the radiative corrections from
Refs. [95–97] (in line with the earlier calculations [98, 99]), the
strong isospin-breaking correction �SU(2) = 0.0252(11) from
Refs. [98, 100] evaluated with the Nf = 2 + 1 + 1 quark-mass
double ratio Q = 22.5(5) and ratio ms/mud = 27.23(10), both
from Ref. [28] (the value of Q is consistent with Q = 22.1(7)
from ⌘ ! 3⇡ [101] and Q = 22.4(3) from the Cottingham
approach [102]), and the form-factor normalization f+(0) =
0.9698(17) [103, 104]. This global fit then defines the cur-
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Figure 2: Representative diagrams contributing to radiative corrections to nuclear b decays. Double solid lines
represent nucleons, single solid lines represent leptons, single (double) wavy lines represent photons (W bosons),
dashed lines represent pions. The quark-W vertex is proportional to Vud . The blue ellipse represents the strong
interaction among nucleons and the red and green ellipses represent the infinite diagrams contributing to the nuclear
wavefunction. In terms of the corrections introduced in Eq. (1), the left topology contributes (in various regimes) to
DV

R and d 0
R, the two middle ones to dNS, and the right one to dC.

and weak interaction eigenstates of quarks. CKM unitarity implies DCKM ⌘ |Vud |2 + |Vus|2 + |Vub|2 �1 = 0,
where Vud , Vus, Vub represent the mixing of up with down, strange, and beauty quarks, respectively. In prac-
tice |Vub|2 < 10�5 can be neglected and CKM unitarity reduces to the original Cabibbo universality, with
the identifications Vud = cosqC and Vus = sinqC, where qC is the Cabibbo angle [2]. Measurements of the b
decay of the neutron and of nuclei, with precision between 0.1% and 0.01%, are very competitive probes of
BSM physics, sensitive to both CKM unitarity and to “non V-A” BSM interactions.

The CKM mixing parameters VuD (D = d,s) are determined from various hadronic and nuclear weak
decays hi ! h f `n` (` = e,µ). Currently, the most precise determination of Vud is obtained by nuclear
0+ ! 0+ decays through the relation [4]
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where t is the measured partial half life, f is a dimensionless phase space factor determined by the measured
Q value, GF is the Fermi constant extracted from muon decay, and DV

R , dNS, d 0
R, and dC are theoretical

corrections of % size. DV
R denotes the so-called “inner radiative corrections” and does not depend on the

particular transition considered: it can be calculated at the single-nucleon level and its nucleon-structure
dependence arises from the so-called g�W box diagrams [5–7] (see top part of left panel in Fig. 2), in which
a virtual photon is exchanged between the electron and the charged hadrons. d 0

R and dNS parameterize the
transition-dependent part of the electromagnetic radiative corrections. d 0

R is the “outer radiative correction”
and depends only on the electron’s energy and the Z of the decay product [8–11] (left panel in Fig. 2). dNS
depends on the nuclear structure details and arises form generalized g �W box diagrams in which a virtual
photon is exchanged between the electron and a proton that is not interacting with the W boson [12–15]
(middle panel in Fig. 2). Finally, dC is a correction arising from isospin breaking effects in the nuclear
wavefunctions, due to the fact that isobaric analog nuclei participating in superallowed transitions are not
pure isospin states in presence of Coulomb (right panel in Fig. 2) and other isospin-breaking nucleon-level
interactions [11, 16–19]. The most recent survey [4] of experimental and theoretical input leads to Vud =
0.97373(31). This incorporates a reduction in the uncertainty in DV

R [5, 7] and an increase in uncertainty due
to nuclear-structure dependent effects with input from Refs. [6, 14, 15]. Currently, the theoretical uncertainty
on the nuclear-structure dependent electromagnetic corrections dNS �dC dominates the error on Vud .

Thanks to higher precision measurements of the lifetime [20] and beta asymmetry [21] (see Ref. [22]
for a recent review), neutron decay is becoming competitive with superallowed beta decays on the precision
of Vud . Following the PDG analysis [23] one finds Vud = 0.97338(33)t(32)gA(10)RC = 0.97338(47), with
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FIG. 1: Diagrams contributing to the matching between �PT and /⇡EFT at O(✏0�). Single, double, wavy and dashed lines
denote, respectively, leptons, nucleons, photons and pions. Dots denote interactions from the lowest order chiral Lagrangians
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FIG. 2: Diagrams contributing to the matching between �PT and /⇡EFT at O(✏�). Circled dots denote interactions from the

NLO chiral Lagrangian L
p2

⇡N , while diamonds on a nucleon line represent insertions of Le2p0

⇡N . All other notation is as in Fig. 1.

Numerical impact — We now estimate the numerical

impact of the various corrections beginning with �(0,1)
em .

Existing lattice data indicate that gA has a mild m⇡ de-

pendence [10], and we set g
(0)

A = gA = 1.27. Using the
physical masses of charged and neutral pions, the average
nucleon mass mN = 938.9 MeV, and F⇡ = 92.4 MeV, we
obtain Z⇡ = 0.81. The NLO LECs c3 and c4 have been
extracted from pion-nucleon scattering [31, 32]. They
show a sizable dependence on the chiral order at which
the fit to ⇡-N data is carried out (stabilizing between
N2LO and N3LO). In an EFT without explicit � degrees
of freedom, they are dominated by virtual � contribu-
tions and thus anomalously large. We then obtain
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where the range in �(0)

em is obtained by setting Ĉ⇡(µ) = 0
and varying µ between mN/2 and mN . The range in

�(1)

em by taking NLO or N3LO extractions of c3,4 [32] (the
N2LO results would give 1.7 · 10�2). While the NLO
correction is somewhat larger than the LO correction,
we stress that this is not the full correction because of
the counter term contribution Ĉ⇡. Combining LO and
NLO corrections, we estimate a correction to gA at the
percent level
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This shift due to isospin breaking has no impact on the
current first-row CKM discrepancy as the most accurate
determination of gA is extracted from experiments, where
these corrections are automatically included. comment
on future work on isospin-breaking nuclear corrections?
The correction does have a big impact on first-principle
lattice-QCD computations of neutron � decay. Present
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only considered the asymptotic and elastic contributions
to Eq. (11), i.e. inserting a complete set of states in
between every current and retaining only the nucleon.
Assuming isospin symmetry then leads to a vanishing
contribution for the three-point function [15]. Recogniz-
ing diagrams i1, j1, a2, . . . in Fig. 1 to correspond to an
explicit treatment of these vertex corrections, the results
presented here expand upon the simplified approach of
Ref. [15] to find much larger than anticipated isospin-
breaking corrections.

Numerical impact — We now estimate the numerical
impact of the various corrections, starting with our main
new finding, i.e., the electromagnetic shift to � = gA/gV .
Including BSM contributions, the relation between the
experimentally extracted � and the (isosymmetric) QCD
axial charge is given by [9]

� = g
QCD

A

⇣
1 + �

(�)
RC

� 2Re(✏R)
⌘
, (12)

where ✏R ⇠ (246GeV/⇤BSM)2 is a BSM right-handed
current contribution appearing at an energy scale ⇤BSM

[9, 10]. To the order we are working the radiative correc-
tion is
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For the numerical evaluation of the loop contributions to

�(0),(1)
A,em we use Z⇡ = 0.81 (obtained from the physical

pion mass di↵erence and F⇡ = 92.4 MeV) and the av-
erage nucleon mass mN = 938.9 MeV. In the loops we

set g
(0)

A = gA ⇡ 1.27 [6], as the di↵erence formally con-
tributes to higher chiral order. Existing lattice data in-
deed indicate that gA has a mild m⇡ dependence [11, 42].
The NLO LECs c3 and c4 have been extracted from pion-
nucleon scattering [43, 44]. They show a sizable depen-
dence on the chiral order at which the fit to ⇡-N data is
carried out, with a big change between NLO and N2LO,
stabilizing between N2LO and N3LO. For the corrections
we find
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where the range in �(0)

A�V,em is obtained by setting
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c3,4 extracted to NLO, N2LO, and N3LO [44]. While the
NLO correction is somewhat larger than the LO one, we
stress that we do not know the full LO correction because
we have set the counter term contribution ĈA � ĈV to
zero. In addition, in an EFT without explicit � degrees
of freedom, c3 and c4 are dominated by � contributions
and thus anomalously large. Combining the corrections,
we estimate a correction to � at the percent level,
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Assuming isospin symmetry then leads to a vanishing
contribution for the three-point function [15]. Recogniz-
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explicit treatment of these vertex corrections, the results
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Ref. [15] to find much larger than anticipated isospin-
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freedom. In the case at hand the effective theory is constructed by integrating out the W field

only. The matching procedure which gives the values of C1 and C2 proceeds in three steps

[61]. The explicit three steps presented below are sufficient for the subsequent summation of

the leading logarithms or equvalently for the leading term of the RG improved perturbation

theory. We will generalize these steps in the next section in order to be able to include also

the NLO term in this expansion.

Here we go:

Step 1: Calculation of Afull

The current-current diagrams of fig. 15 (a)–(c) and their symmetric counterparts, give for

the full amplitude Afull to O(αs) (mi = 0, p2 < 0):

Afull =
GF√

2
V ∗

csVud

[(
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4π
(
1

ε
+ ln
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−p2
)

)
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]
(5.23)

Here:

S1 ≡ ⟨Q1⟩tree = (s̄αcβ)V −A(ūβdα)V −A (5.24)

S2 ≡ ⟨Q2⟩tree = (s̄αcα)V −A(ūβdβ)V −A (5.25)

are just the tree level matrix elements of Q1 and Q2. A few comments should be made.

• We use the term “amplitude” in the meaning of an “amputated Green function” (multi-

plied by ”i”). Correspondingly operator matrix elements are amputated Green functions

with operator insertion. Thus gluonic self energy corrections on external legs are not

included.

W

g

(a)

Wg

(b)

W g

(c)

Figure 15: One-loop current-current diagrams in the full theory.

• For simplicity we have chosen all external momenta p to be equal and set all quark

masses to zero. As we will see below this choice has no impact on the coefficients Ci.
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Figure 2: Representative diagrams contributing to radiative corrections to nuclear b decays. Double solid lines
represent nucleons, single solid lines represent leptons, single (double) wavy lines represent photons (W bosons),
dashed lines represent pions. The quark-W vertex is proportional to Vud . The blue ellipse represents the strong
interaction among nucleons and the red and green ellipses represent the infinite diagrams contributing to the nuclear
wavefunction. In terms of the corrections introduced in Eq. (1), the left topology contributes (in various regimes) to
DV

R and d 0
R, the two middle ones to dNS, and the right one to dC.

and weak interaction eigenstates of quarks. CKM unitarity implies DCKM ⌘ |Vud |2 + |Vus|2 + |Vub|2 �1 = 0,
where Vud , Vus, Vub represent the mixing of up with down, strange, and beauty quarks, respectively. In prac-
tice |Vub|2 < 10�5 can be neglected and CKM unitarity reduces to the original Cabibbo universality, with
the identifications Vud = cosqC and Vus = sinqC, where qC is the Cabibbo angle [2]. Measurements of the b
decay of the neutron and of nuclei, with precision between 0.1% and 0.01%, are very competitive probes of
BSM physics, sensitive to both CKM unitarity and to “non V-A” BSM interactions.

The CKM mixing parameters VuD (D = d,s) are determined from various hadronic and nuclear weak
decays hi ! h f `n` (` = e,µ). Currently, the most precise determination of Vud is obtained by nuclear
0+ ! 0+ decays through the relation [4]

log2
f t

=
G2

Fm5
e |Vud |2

p3 (1+DV
R +d 0

R +dNS �dC) (1)

where t is the measured partial half life, f is a dimensionless phase space factor determined by the measured
Q value, GF is the Fermi constant extracted from muon decay, and DV

R , dNS, d 0
R, and dC are theoretical

corrections of % size. DV
R denotes the so-called “inner radiative corrections” and does not depend on the

particular transition considered: it can be calculated at the single-nucleon level and its nucleon-structure
dependence arises from the so-called g�W box diagrams [5–7] (see top part of left panel in Fig. 2), in which
a virtual photon is exchanged between the electron and the charged hadrons. d 0

R and dNS parameterize the
transition-dependent part of the electromagnetic radiative corrections. d 0

R is the “outer radiative correction”
and depends only on the electron’s energy and the Z of the decay product [8–11] (left panel in Fig. 2). dNS
depends on the nuclear structure details and arises form generalized g �W box diagrams in which a virtual
photon is exchanged between the electron and a proton that is not interacting with the W boson [12–15]
(middle panel in Fig. 2). Finally, dC is a correction arising from isospin breaking effects in the nuclear
wavefunctions, due to the fact that isobaric analog nuclei participating in superallowed transitions are not
pure isospin states in presence of Coulomb (right panel in Fig. 2) and other isospin-breaking nucleon-level
interactions [11, 16–19]. The most recent survey [4] of experimental and theoretical input leads to Vud =
0.97373(31). This incorporates a reduction in the uncertainty in DV

R [5, 7] and an increase in uncertainty due
to nuclear-structure dependent effects with input from Refs. [6, 14, 15]. Currently, the theoretical uncertainty
on the nuclear-structure dependent electromagnetic corrections dNS �dC dominates the error on Vud .

Thanks to higher precision measurements of the lifetime [20] and beta asymmetry [21] (see Ref. [22]
for a recent review), neutron decay is becoming competitive with superallowed beta decays on the precision
of Vud . Following the PDG analysis [23] one finds Vud = 0.97338(33)t(32)gA(10)RC = 0.97338(47), with
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where Vud , Vus, Vub represent the mixing of up with down, strange, and beauty quarks, respectively. In prac-
tice |Vub|2 < 10�5 can be neglected and CKM unitarity reduces to the original Cabibbo universality, with
the identifications Vud = cosqC and Vus = sinqC, where qC is the Cabibbo angle [2]. Measurements of the b
decay of the neutron and of nuclei, with precision between 0.1% and 0.01%, are very competitive probes of
BSM physics, sensitive to both CKM unitarity and to “non V-A” BSM interactions.

The CKM mixing parameters VuD (D = d,s) are determined from various hadronic and nuclear weak
decays hi ! h f `n` (` = e,µ). Currently, the most precise determination of Vud is obtained by nuclear
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on the nuclear-structure dependent electromagnetic corrections dNS �dC dominates the error on Vud .
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for a recent review), neutron decay is becoming competitive with superallowed beta decays on the precision
of Vud . Following the PDG analysis [23] one finds Vud = 0.97338(33)t(32)gA(10)RC = 0.97338(47), with
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with uncertainty entirely dominated by experiment [22]. A
competitive determination requires a dedicated experimental
campaign, as planned at the PIONEER experiment [26].

The best information on Vus comes from kaon decays, K`2 =
K ! `⌫` and K`3 = K ! ⇡`⌫`. The former is typically ana-
lyzed by normalizing to ⇡`2 decays [27], leading to a constraint
on Vus/Vud, while K`3 decays give direct access to Vus when the
corresponding form factor is provided from lattice QCD [28].
Details of the global fit to kaon decays, as well as the input
for decay constants, form factors, and radiative corrections, are
discussed in Sec. 2, leading to

Vus

Vud

�����
K`2/⇡`2

= 0.23108(23)exp(42)FK/F⇡ (16)IB[51]total,

VK`3
us = 0.22330(35)exp(39) f+ (8)IB[53]total, (7)

where the errors refer to experiment, lattice input for the matrix
elements, and isospin-breaking corrections, respectively. To-
gether with the constraints on Vud, these bands give rise to the
situation depicted in Fig. 1: on the one hand, there is a ten-
sion between the best fit and CKM unitarity, but another ten-
sion, arising entirely from meson decays, is due to the fact that
the K`2 and K`3 constraints intersect away from the unitarity
circle. Additional information on Vus can be derived from ⌧
decays [29, 30], but given the larger errors [31, 32] we will
continue to focus on the kaon sector.

The main point of this Letter is that given the various ten-
sions in the Vud–Vus plane, there is urgent need for additional
information on the compatibility of K`2 and K`3 data, especially
when it comes to interpreting either of the tensions (CKM uni-
tarity and K`2 versus K`3) in terms of physics beyond the SM
(BSM). In particular, the data base for K`2 is completely dom-
inated by a single experiment [33], and at the same time the
global fit to all kaon data displays a relatively poor fit quality.
All these points could be scrutinized by a new measurement of
the Kµ3/Kµ2 branching fraction at the level of a few permil, as
possible at the NA62 experiment. Further, once the experimen-
tal situation is clarified, more robust interpretations of the en-
suing tensions will be possible, especially regarding the role of
right-handed currents both in the strange and non-strange sec-
tor. To make the case for the proposed measurement of the
Kµ3/Kµ2 branching fraction, we first discuss in detail its impact
on the global fit to kaon data and the implications for CKM uni-
tarity in Sec. 2. The consequences for physics beyond the SM
are addressed in Sec. 3, before we conclude in Sec. 4.

2. Global fit to kaon data and implications for CKM uni-
tarity

The current values for Vus and Vus/Vud given in Eq. (7) are
obtained from a global fit to kaon decays [34–37], updated
to include the latest measurements, radiative corrections, and
hadronic matrix elements. In particular, the fit includes data on
KS decays from Refs. [38–44], on KL decays from Refs. [45–
56], and on charged-kaon decays from Refs. [33, 57–70]. Since
we focus on the impact of a new Kµ3/Kµ2 measurement, e.g.,
at NA62, we reproduce the details of the charged kaon fit in

Figure 1: Constraints in the Vud–Vus plane. The partially overlapping vertical
bands correspond to V0+!0+

ud (leftmost, red) and Vn, best
ud (rightmost, violet). The

horizontal band (green) corresponds to VK`3
us . The diagonal band (blue) corre-

sponds to (Vus/Vud)K`2/⇡`2 . The unitarity circle is denoted by the black solid
line. The 68% C.L. ellipse from a fit to all four constraints is depicted in yel-
low (Vud = 0.97378(26), Vus = 0.22422(36), �2/dof = 6.4/2, p-value 4.1%),
it deviates from the unitarity line by 2.8�. Note that the significance tends to
increase in case ⌧ decays are included.

Table 1, where, however, the value for Vus from K`3 decays in-
cludes all charge channels, accounting for correlations among
them. The extraction of Vus from K`3 decays requires further in-
put on the respective form factors, which are taken in the disper-
sive parameterization from Ref. [71], constrained by data from
Refs. [72–78]. This leaves form-factor normalizations, decay
constants, and isospin-breaking corrections in both K`2 and K`3
decays.

For K`2 we follow the established convention to consider the
ratio to ⇡`2 decays [27] (pion lifetime [62, 79–83] and branch-
ing fraction [84–87] are taken from Ref. [12]), since in this ratio
certain structure-dependent radiative corrections [88, 89] cancel
and only the ratio of decay constants FK/F⇡ needs to be pro-
vided. We use the isospin-breaking corrections from Ref. [90]
together with the Nf = 2 + 1 + 1 isospin-limit ratio of de-
cay constants FK/F⇡ = 1.1978(22) [91–94], where this aver-
age accounts for statistical and systematic correlations between
the results, some of which make use of the same lattice en-
sembles. For K`3 decays we use the radiative corrections from
Refs. [95–97] (in line with the earlier calculations [98, 99]), the
strong isospin-breaking correction �SU(2) = 0.0252(11) from
Refs. [98, 100] evaluated with the Nf = 2 + 1 + 1 quark-mass
double ratio Q = 22.5(5) and ratio ms/mud = 27.23(10), both
from Ref. [28] (the value of Q is consistent with Q = 22.1(7)
from ⌘ ! 3⇡ [101] and Q = 22.4(3) from the Cottingham
approach [102]), and the form-factor normalization f+(0) =
0.9698(17) [103, 104]. This global fit then defines the cur-

2

Vus

Vud

 K→
 μν 

/ π→
 μν 

 

(0.22%)

K→ πlν (0.25%)

unitarity0+ → 0+ (0.031%)
Neutron (0.043%)

• Two tantalizing ‘anomalies’

• At face value point toward vertex 
corrections with ΛBSM~10 TeV (hard to 
probe even at the HI-LUMI LHC)

ΔCKM = |Vud|2 + |Vus|2  + |Vub|2 − 1 = - 15(5)⨉10-4with uncertainty entirely dominated by experiment [22]. A
competitive determination requires a dedicated experimental
campaign, as planned at the PIONEER experiment [26].

The best information on Vus comes from kaon decays, K`2 =
K ! `⌫` and K`3 = K ! ⇡`⌫`. The former is typically ana-
lyzed by normalizing to ⇡`2 decays [27], leading to a constraint
on Vus/Vud, while K`3 decays give direct access to Vus when the
corresponding form factor is provided from lattice QCD [28].
Details of the global fit to kaon decays, as well as the input
for decay constants, form factors, and radiative corrections, are
discussed in Sec. 2, leading to

Vus

Vud

�����
K`2/⇡`2

= 0.23108(23)exp(42)FK/F⇡ (16)IB[51]total,

VK`3
us = 0.22330(35)exp(39) f+ (8)IB[53]total, (7)

where the errors refer to experiment, lattice input for the matrix
elements, and isospin-breaking corrections, respectively. To-
gether with the constraints on Vud, these bands give rise to the
situation depicted in Fig. 1: on the one hand, there is a ten-
sion between the best fit and CKM unitarity, but another ten-
sion, arising entirely from meson decays, is due to the fact that
the K`2 and K`3 constraints intersect away from the unitarity
circle. Additional information on Vus can be derived from ⌧
decays [29, 30], but given the larger errors [31, 32] we will
continue to focus on the kaon sector.

The main point of this Letter is that given the various ten-
sions in the Vud–Vus plane, there is urgent need for additional
information on the compatibility of K`2 and K`3 data, especially
when it comes to interpreting either of the tensions (CKM uni-
tarity and K`2 versus K`3) in terms of physics beyond the SM
(BSM). In particular, the data base for K`2 is completely dom-
inated by a single experiment [33], and at the same time the
global fit to all kaon data displays a relatively poor fit quality.
All these points could be scrutinized by a new measurement of
the Kµ3/Kµ2 branching fraction at the level of a few permil, as
possible at the NA62 experiment. Further, once the experimen-
tal situation is clarified, more robust interpretations of the en-
suing tensions will be possible, especially regarding the role of
right-handed currents both in the strange and non-strange sec-
tor. To make the case for the proposed measurement of the
Kµ3/Kµ2 branching fraction, we first discuss in detail its impact
on the global fit to kaon data and the implications for CKM uni-
tarity in Sec. 2. The consequences for physics beyond the SM
are addressed in Sec. 3, before we conclude in Sec. 4.

2. Global fit to kaon data and implications for CKM uni-
tarity

The current values for Vus and Vus/Vud given in Eq. (7) are
obtained from a global fit to kaon decays [34–37], updated
to include the latest measurements, radiative corrections, and
hadronic matrix elements. In particular, the fit includes data on
KS decays from Refs. [38–44], on KL decays from Refs. [45–
56], and on charged-kaon decays from Refs. [33, 57–70]. Since
we focus on the impact of a new Kµ3/Kµ2 measurement, e.g.,
at NA62, we reproduce the details of the charged kaon fit in

Figure 1: Constraints in the Vud–Vus plane. The partially overlapping vertical
bands correspond to V0+!0+

ud (leftmost, red) and Vn, best
ud (rightmost, violet). The

horizontal band (green) corresponds to VK`3
us . The diagonal band (blue) corre-

sponds to (Vus/Vud)K`2/⇡`2 . The unitarity circle is denoted by the black solid
line. The 68% C.L. ellipse from a fit to all four constraints is depicted in yel-
low (Vud = 0.97378(26), Vus = 0.22422(36), �2/dof = 6.4/2, p-value 4.1%),
it deviates from the unitarity line by 2.8�. Note that the significance tends to
increase in case ⌧ decays are included.

Table 1, where, however, the value for Vus from K`3 decays in-
cludes all charge channels, accounting for correlations among
them. The extraction of Vus from K`3 decays requires further in-
put on the respective form factors, which are taken in the disper-
sive parameterization from Ref. [71], constrained by data from
Refs. [72–78]. This leaves form-factor normalizations, decay
constants, and isospin-breaking corrections in both K`2 and K`3
decays.

For K`2 we follow the established convention to consider the
ratio to ⇡`2 decays [27] (pion lifetime [62, 79–83] and branch-
ing fraction [84–87] are taken from Ref. [12]), since in this ratio
certain structure-dependent radiative corrections [88, 89] cancel
and only the ratio of decay constants FK/F⇡ needs to be pro-
vided. We use the isospin-breaking corrections from Ref. [90]
together with the Nf = 2 + 1 + 1 isospin-limit ratio of de-
cay constants FK/F⇡ = 1.1978(22) [91–94], where this aver-
age accounts for statistical and systematic correlations between
the results, some of which make use of the same lattice en-
sembles. For K`3 decays we use the radiative corrections from
Refs. [95–97] (in line with the earlier calculations [98, 99]), the
strong isospin-breaking correction �SU(2) = 0.0252(11) from
Refs. [98, 100] evaluated with the Nf = 2 + 1 + 1 quark-mass
double ratio Q = 22.5(5) and ratio ms/mud = 27.23(10), both
from Ref. [28] (the value of Q is consistent with Q = 22.1(7)
from ⌘ ! 3⇡ [101] and Q = 22.4(3) from the Cottingham
approach [102]), and the form-factor normalization f+(0) =
0.9698(17) [103, 104]. This global fit then defines the cur-

2

Vus

Vud

 K→
 μν 

/ π→
 μν 

 

(0.22%)

K→ πlν (0.25%)

unitarity0+ → 0+ (0.031%)
Neutron (0.043%)

18

VC-Crivellin-Hoferichter-Moulson  2208.11707 
and references therein

β decays and CKM unitarity

• Two ‘anomalies’

• At face value point toward vertex 
corrections with Λ~10 TeV (hard to 
probe even at the HI-LUMI LHC)

dj
uig Vij

g

W e−

νe
_

ΔCKM = |Vud|2 + |Vus|2  + |Vub|2 − 1 = - 15(5)⨉10-4

e
n

V
ud

Figure 2: Representative diagrams contributing to radiative corrections to nuclear b decays. Double solid lines
represent nucleons, single solid lines represent leptons, single (double) wavy lines represent photons (W bosons),
dashed lines represent pions. The quark-W vertex is proportional to Vud . The blue ellipse represents the strong
interaction among nucleons and the red and green ellipses represent the infinite diagrams contributing to the nuclear
wavefunction. In terms of the corrections introduced in Eq. (1), the left topology contributes (in various regimes) to
DV

R and d 0
R, the two middle ones to dNS, and the right one to dC.

and weak interaction eigenstates of quarks. CKM unitarity implies DCKM ⌘ |Vud |2 + |Vus|2 + |Vub|2 �1 = 0,
where Vud , Vus, Vub represent the mixing of up with down, strange, and beauty quarks, respectively. In prac-
tice |Vub|2 < 10�5 can be neglected and CKM unitarity reduces to the original Cabibbo universality, with
the identifications Vud = cosqC and Vus = sinqC, where qC is the Cabibbo angle [2]. Measurements of the b
decay of the neutron and of nuclei, with precision between 0.1% and 0.01%, are very competitive probes of
BSM physics, sensitive to both CKM unitarity and to “non V-A” BSM interactions.

The CKM mixing parameters VuD (D = d,s) are determined from various hadronic and nuclear weak
decays hi ! h f `n` (` = e,µ). Currently, the most precise determination of Vud is obtained by nuclear
0+ ! 0+ decays through the relation [4]
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where t is the measured partial half life, f is a dimensionless phase space factor determined by the measured
Q value, GF is the Fermi constant extracted from muon decay, and DV

R , dNS, d 0
R, and dC are theoretical

corrections of % size. DV
R denotes the so-called “inner radiative corrections” and does not depend on the

particular transition considered: it can be calculated at the single-nucleon level and its nucleon-structure
dependence arises from the so-called g�W box diagrams [5–7] (see top part of left panel in Fig. 2), in which
a virtual photon is exchanged between the electron and the charged hadrons. d 0

R and dNS parameterize the
transition-dependent part of the electromagnetic radiative corrections. d 0

R is the “outer radiative correction”
and depends only on the electron’s energy and the Z of the decay product [8–11] (left panel in Fig. 2). dNS
depends on the nuclear structure details and arises form generalized g �W box diagrams in which a virtual
photon is exchanged between the electron and a proton that is not interacting with the W boson [12–15]
(middle panel in Fig. 2). Finally, dC is a correction arising from isospin breaking effects in the nuclear
wavefunctions, due to the fact that isobaric analog nuclei participating in superallowed transitions are not
pure isospin states in presence of Coulomb (right panel in Fig. 2) and other isospin-breaking nucleon-level
interactions [11, 16–19]. The most recent survey [4] of experimental and theoretical input leads to Vud =
0.97373(31). This incorporates a reduction in the uncertainty in DV

R [5, 7] and an increase in uncertainty due
to nuclear-structure dependent effects with input from Refs. [6, 14, 15]. Currently, the theoretical uncertainty
on the nuclear-structure dependent electromagnetic corrections dNS �dC dominates the error on Vud .

Thanks to higher precision measurements of the lifetime [20] and beta asymmetry [21] (see Ref. [22]
for a recent review), neutron decay is becoming competitive with superallowed beta decays on the precision
of Vud . Following the PDG analysis [23] one finds Vud = 0.97338(33)t(32)gA(10)RC = 0.97338(47), with
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with uncertainty entirely dominated by experiment [22]. A
competitive determination requires a dedicated experimental
campaign, as planned at the PIONEER experiment [26].

The best information on Vus comes from kaon decays, K`2 =
K ! `⌫` and K`3 = K ! ⇡`⌫`. The former is typically ana-
lyzed by normalizing to ⇡`2 decays [27], leading to a constraint
on Vus/Vud, while K`3 decays give direct access to Vus when the
corresponding form factor is provided from lattice QCD [28].
Details of the global fit to kaon decays, as well as the input
for decay constants, form factors, and radiative corrections, are
discussed in Sec. 2, leading to

Vus

Vud

�����
K`2/⇡`2

= 0.23108(23)exp(42)FK/F⇡ (16)IB[51]total,

VK`3
us = 0.22330(35)exp(39) f+ (8)IB[53]total, (7)

where the errors refer to experiment, lattice input for the matrix
elements, and isospin-breaking corrections, respectively. To-
gether with the constraints on Vud, these bands give rise to the
situation depicted in Fig. 1: on the one hand, there is a ten-
sion between the best fit and CKM unitarity, but another ten-
sion, arising entirely from meson decays, is due to the fact that
the K`2 and K`3 constraints intersect away from the unitarity
circle. Additional information on Vus can be derived from ⌧
decays [29, 30], but given the larger errors [31, 32] we will
continue to focus on the kaon sector.

The main point of this Letter is that given the various ten-
sions in the Vud–Vus plane, there is urgent need for additional
information on the compatibility of K`2 and K`3 data, especially
when it comes to interpreting either of the tensions (CKM uni-
tarity and K`2 versus K`3) in terms of physics beyond the SM
(BSM). In particular, the data base for K`2 is completely dom-
inated by a single experiment [33], and at the same time the
global fit to all kaon data displays a relatively poor fit quality.
All these points could be scrutinized by a new measurement of
the Kµ3/Kµ2 branching fraction at the level of a few permil, as
possible at the NA62 experiment. Further, once the experimen-
tal situation is clarified, more robust interpretations of the en-
suing tensions will be possible, especially regarding the role of
right-handed currents both in the strange and non-strange sec-
tor. To make the case for the proposed measurement of the
Kµ3/Kµ2 branching fraction, we first discuss in detail its impact
on the global fit to kaon data and the implications for CKM uni-
tarity in Sec. 2. The consequences for physics beyond the SM
are addressed in Sec. 3, before we conclude in Sec. 4.

2. Global fit to kaon data and implications for CKM uni-
tarity

The current values for Vus and Vus/Vud given in Eq. (7) are
obtained from a global fit to kaon decays [34–37], updated
to include the latest measurements, radiative corrections, and
hadronic matrix elements. In particular, the fit includes data on
KS decays from Refs. [38–44], on KL decays from Refs. [45–
56], and on charged-kaon decays from Refs. [33, 57–70]. Since
we focus on the impact of a new Kµ3/Kµ2 measurement, e.g.,
at NA62, we reproduce the details of the charged kaon fit in

Figure 1: Constraints in the Vud–Vus plane. The partially overlapping vertical
bands correspond to V0+!0+

ud (leftmost, red) and Vn, best
ud (rightmost, violet). The

horizontal band (green) corresponds to VK`3
us . The diagonal band (blue) corre-

sponds to (Vus/Vud)K`2/⇡`2 . The unitarity circle is denoted by the black solid
line. The 68% C.L. ellipse from a fit to all four constraints is depicted in yel-
low (Vud = 0.97378(26), Vus = 0.22422(36), �2/dof = 6.4/2, p-value 4.1%),
it deviates from the unitarity line by 2.8�. Note that the significance tends to
increase in case ⌧ decays are included.

Table 1, where, however, the value for Vus from K`3 decays in-
cludes all charge channels, accounting for correlations among
them. The extraction of Vus from K`3 decays requires further in-
put on the respective form factors, which are taken in the disper-
sive parameterization from Ref. [71], constrained by data from
Refs. [72–78]. This leaves form-factor normalizations, decay
constants, and isospin-breaking corrections in both K`2 and K`3
decays.

For K`2 we follow the established convention to consider the
ratio to ⇡`2 decays [27] (pion lifetime [62, 79–83] and branch-
ing fraction [84–87] are taken from Ref. [12]), since in this ratio
certain structure-dependent radiative corrections [88, 89] cancel
and only the ratio of decay constants FK/F⇡ needs to be pro-
vided. We use the isospin-breaking corrections from Ref. [90]
together with the Nf = 2 + 1 + 1 isospin-limit ratio of de-
cay constants FK/F⇡ = 1.1978(22) [91–94], where this aver-
age accounts for statistical and systematic correlations between
the results, some of which make use of the same lattice en-
sembles. For K`3 decays we use the radiative corrections from
Refs. [95–97] (in line with the earlier calculations [98, 99]), the
strong isospin-breaking correction �SU(2) = 0.0252(11) from
Refs. [98, 100] evaluated with the Nf = 2 + 1 + 1 quark-mass
double ratio Q = 22.5(5) and ratio ms/mud = 27.23(10), both
from Ref. [28] (the value of Q is consistent with Q = 22.1(7)
from ⌘ ! 3⇡ [101] and Q = 22.4(3) from the Cottingham
approach [102]), and the form-factor normalization f+(0) =
0.9698(17) [103, 104]. This global fit then defines the cur-
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Figure 2: Representative diagrams contributing to radiative corrections to nuclear b decays. Double solid lines
represent nucleons, single solid lines represent leptons, single (double) wavy lines represent photons (W bosons),
dashed lines represent pions. The quark-W vertex is proportional to Vud . The blue ellipse represents the strong
interaction among nucleons and the red and green ellipses represent the infinite diagrams contributing to the nuclear
wavefunction. In terms of the corrections introduced in Eq. (1), the left topology contributes (in various regimes) to
DV

R and d 0
R, the two middle ones to dNS, and the right one to dC.

and weak interaction eigenstates of quarks. CKM unitarity implies DCKM ⌘ |Vud |2 + |Vus|2 + |Vub|2 �1 = 0,
where Vud , Vus, Vub represent the mixing of up with down, strange, and beauty quarks, respectively. In prac-
tice |Vub|2 < 10�5 can be neglected and CKM unitarity reduces to the original Cabibbo universality, with
the identifications Vud = cosqC and Vus = sinqC, where qC is the Cabibbo angle [2]. Measurements of the b
decay of the neutron and of nuclei, with precision between 0.1% and 0.01%, are very competitive probes of
BSM physics, sensitive to both CKM unitarity and to “non V-A” BSM interactions.

The CKM mixing parameters VuD (D = d,s) are determined from various hadronic and nuclear weak
decays hi ! h f `n` (` = e,µ). Currently, the most precise determination of Vud is obtained by nuclear
0+ ! 0+ decays through the relation [4]
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where t is the measured partial half life, f is a dimensionless phase space factor determined by the measured
Q value, GF is the Fermi constant extracted from muon decay, and DV
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R denotes the so-called “inner radiative corrections” and does not depend on the

particular transition considered: it can be calculated at the single-nucleon level and its nucleon-structure
dependence arises from the so-called g�W box diagrams [5–7] (see top part of left panel in Fig. 2), in which
a virtual photon is exchanged between the electron and the charged hadrons. d 0

R and dNS parameterize the
transition-dependent part of the electromagnetic radiative corrections. d 0

R is the “outer radiative correction”
and depends only on the electron’s energy and the Z of the decay product [8–11] (left panel in Fig. 2). dNS
depends on the nuclear structure details and arises form generalized g �W box diagrams in which a virtual
photon is exchanged between the electron and a proton that is not interacting with the W boson [12–15]
(middle panel in Fig. 2). Finally, dC is a correction arising from isospin breaking effects in the nuclear
wavefunctions, due to the fact that isobaric analog nuclei participating in superallowed transitions are not
pure isospin states in presence of Coulomb (right panel in Fig. 2) and other isospin-breaking nucleon-level
interactions [11, 16–19]. The most recent survey [4] of experimental and theoretical input leads to Vud =
0.97373(31). This incorporates a reduction in the uncertainty in DV

R [5, 7] and an increase in uncertainty due
to nuclear-structure dependent effects with input from Refs. [6, 14, 15]. Currently, the theoretical uncertainty
on the nuclear-structure dependent electromagnetic corrections dNS �dC dominates the error on Vud .

Thanks to higher precision measurements of the lifetime [20] and beta asymmetry [21] (see Ref. [22]
for a recent review), neutron decay is becoming competitive with superallowed beta decays on the precision
of Vud . Following the PDG analysis [23] one finds Vud = 0.97338(33)t(32)gA(10)RC = 0.97338(47), with
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with uncertainty entirely dominated by experiment [22]. A
competitive determination requires a dedicated experimental
campaign, as planned at the PIONEER experiment [26].

The best information on Vus comes from kaon decays, K`2 =
K ! `⌫` and K`3 = K ! ⇡`⌫`. The former is typically ana-
lyzed by normalizing to ⇡`2 decays [27], leading to a constraint
on Vus/Vud, while K`3 decays give direct access to Vus when the
corresponding form factor is provided from lattice QCD [28].
Details of the global fit to kaon decays, as well as the input
for decay constants, form factors, and radiative corrections, are
discussed in Sec. 2, leading to

Vus

Vud

�����
K`2/⇡`2

= 0.23108(23)exp(42)FK/F⇡ (16)IB[51]total,

VK`3
us = 0.22330(35)exp(39) f+ (8)IB[53]total, (7)

where the errors refer to experiment, lattice input for the matrix
elements, and isospin-breaking corrections, respectively. To-
gether with the constraints on Vud, these bands give rise to the
situation depicted in Fig. 1: on the one hand, there is a ten-
sion between the best fit and CKM unitarity, but another ten-
sion, arising entirely from meson decays, is due to the fact that
the K`2 and K`3 constraints intersect away from the unitarity
circle. Additional information on Vus can be derived from ⌧
decays [29, 30], but given the larger errors [31, 32] we will
continue to focus on the kaon sector.

The main point of this Letter is that given the various ten-
sions in the Vud–Vus plane, there is urgent need for additional
information on the compatibility of K`2 and K`3 data, especially
when it comes to interpreting either of the tensions (CKM uni-
tarity and K`2 versus K`3) in terms of physics beyond the SM
(BSM). In particular, the data base for K`2 is completely dom-
inated by a single experiment [33], and at the same time the
global fit to all kaon data displays a relatively poor fit quality.
All these points could be scrutinized by a new measurement of
the Kµ3/Kµ2 branching fraction at the level of a few permil, as
possible at the NA62 experiment. Further, once the experimen-
tal situation is clarified, more robust interpretations of the en-
suing tensions will be possible, especially regarding the role of
right-handed currents both in the strange and non-strange sec-
tor. To make the case for the proposed measurement of the
Kµ3/Kµ2 branching fraction, we first discuss in detail its impact
on the global fit to kaon data and the implications for CKM uni-
tarity in Sec. 2. The consequences for physics beyond the SM
are addressed in Sec. 3, before we conclude in Sec. 4.

2. Global fit to kaon data and implications for CKM uni-
tarity

The current values for Vus and Vus/Vud given in Eq. (7) are
obtained from a global fit to kaon decays [34–37], updated
to include the latest measurements, radiative corrections, and
hadronic matrix elements. In particular, the fit includes data on
KS decays from Refs. [38–44], on KL decays from Refs. [45–
56], and on charged-kaon decays from Refs. [33, 57–70]. Since
we focus on the impact of a new Kµ3/Kµ2 measurement, e.g.,
at NA62, we reproduce the details of the charged kaon fit in

Figure 1: Constraints in the Vud–Vus plane. The partially overlapping vertical
bands correspond to V0+!0+

ud (leftmost, red) and Vn, best
ud (rightmost, violet). The

horizontal band (green) corresponds to VK`3
us . The diagonal band (blue) corre-

sponds to (Vus/Vud)K`2/⇡`2 . The unitarity circle is denoted by the black solid
line. The 68% C.L. ellipse from a fit to all four constraints is depicted in yel-
low (Vud = 0.97378(26), Vus = 0.22422(36), �2/dof = 6.4/2, p-value 4.1%),
it deviates from the unitarity line by 2.8�. Note that the significance tends to
increase in case ⌧ decays are included.

Table 1, where, however, the value for Vus from K`3 decays in-
cludes all charge channels, accounting for correlations among
them. The extraction of Vus from K`3 decays requires further in-
put on the respective form factors, which are taken in the disper-
sive parameterization from Ref. [71], constrained by data from
Refs. [72–78]. This leaves form-factor normalizations, decay
constants, and isospin-breaking corrections in both K`2 and K`3
decays.

For K`2 we follow the established convention to consider the
ratio to ⇡`2 decays [27] (pion lifetime [62, 79–83] and branch-
ing fraction [84–87] are taken from Ref. [12]), since in this ratio
certain structure-dependent radiative corrections [88, 89] cancel
and only the ratio of decay constants FK/F⇡ needs to be pro-
vided. We use the isospin-breaking corrections from Ref. [90]
together with the Nf = 2 + 1 + 1 isospin-limit ratio of de-
cay constants FK/F⇡ = 1.1978(22) [91–94], where this aver-
age accounts for statistical and systematic correlations between
the results, some of which make use of the same lattice en-
sembles. For K`3 decays we use the radiative corrections from
Refs. [95–97] (in line with the earlier calculations [98, 99]), the
strong isospin-breaking correction �SU(2) = 0.0252(11) from
Refs. [98, 100] evaluated with the Nf = 2 + 1 + 1 quark-mass
double ratio Q = 22.5(5) and ratio ms/mud = 27.23(10), both
from Ref. [28] (the value of Q is consistent with Q = 22.1(7)
from ⌘ ! 3⇡ [101] and Q = 22.4(3) from the Cottingham
approach [102]), and the form-factor normalization f+(0) =
0.9698(17) [103, 104]. This global fit then defines the cur-
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Figure 2: Representative diagrams contributing to radiative corrections to nuclear b decays. Double solid lines
represent nucleons, single solid lines represent leptons, single (double) wavy lines represent photons (W bosons),
dashed lines represent pions. The quark-W vertex is proportional to Vud . The blue ellipse represents the strong
interaction among nucleons and the red and green ellipses represent the infinite diagrams contributing to the nuclear
wavefunction. In terms of the corrections introduced in Eq. (1), the left topology contributes (in various regimes) to
DV

R and d 0
R, the two middle ones to dNS, and the right one to dC.

and weak interaction eigenstates of quarks. CKM unitarity implies DCKM ⌘ |Vud |2 + |Vus|2 + |Vub|2 �1 = 0,
where Vud , Vus, Vub represent the mixing of up with down, strange, and beauty quarks, respectively. In prac-
tice |Vub|2 < 10�5 can be neglected and CKM unitarity reduces to the original Cabibbo universality, with
the identifications Vud = cosqC and Vus = sinqC, where qC is the Cabibbo angle [2]. Measurements of the b
decay of the neutron and of nuclei, with precision between 0.1% and 0.01%, are very competitive probes of
BSM physics, sensitive to both CKM unitarity and to “non V-A” BSM interactions.

The CKM mixing parameters VuD (D = d,s) are determined from various hadronic and nuclear weak
decays hi ! h f `n` (` = e,µ). Currently, the most precise determination of Vud is obtained by nuclear
0+ ! 0+ decays through the relation [4]

log2
f t

=
G2

Fm5
e |Vud |2

p3 (1+DV
R +d 0

R +dNS �dC) (1)

where t is the measured partial half life, f is a dimensionless phase space factor determined by the measured
Q value, GF is the Fermi constant extracted from muon decay, and DV

R , dNS, d 0
R, and dC are theoretical

corrections of % size. DV
R denotes the so-called “inner radiative corrections” and does not depend on the

particular transition considered: it can be calculated at the single-nucleon level and its nucleon-structure
dependence arises from the so-called g�W box diagrams [5–7] (see top part of left panel in Fig. 2), in which
a virtual photon is exchanged between the electron and the charged hadrons. d 0

R and dNS parameterize the
transition-dependent part of the electromagnetic radiative corrections. d 0

R is the “outer radiative correction”
and depends only on the electron’s energy and the Z of the decay product [8–11] (left panel in Fig. 2). dNS
depends on the nuclear structure details and arises form generalized g �W box diagrams in which a virtual
photon is exchanged between the electron and a proton that is not interacting with the W boson [12–15]
(middle panel in Fig. 2). Finally, dC is a correction arising from isospin breaking effects in the nuclear
wavefunctions, due to the fact that isobaric analog nuclei participating in superallowed transitions are not
pure isospin states in presence of Coulomb (right panel in Fig. 2) and other isospin-breaking nucleon-level
interactions [11, 16–19]. The most recent survey [4] of experimental and theoretical input leads to Vud =
0.97373(31). This incorporates a reduction in the uncertainty in DV

R [5, 7] and an increase in uncertainty due
to nuclear-structure dependent effects with input from Refs. [6, 14, 15]. Currently, the theoretical uncertainty
on the nuclear-structure dependent electromagnetic corrections dNS �dC dominates the error on Vud .

Thanks to higher precision measurements of the lifetime [20] and beta asymmetry [21] (see Ref. [22]
for a recent review), neutron decay is becoming competitive with superallowed beta decays on the precision
of Vud . Following the PDG analysis [23] one finds Vud = 0.97338(33)t(32)gA(10)RC = 0.97338(47), with
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FIG. 1: Diagrams contributing to the matching between �PT and /⇡EFT at O(✏0�). Single, double, wavy and dashed lines
denote, respectively, leptons, nucleons, photons and pions. Dots denote interactions from the lowest order chiral Lagrangians
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FIG. 2: Diagrams contributing to the matching between �PT and /⇡EFT at O(✏�). Circled dots denote interactions from the

NLO chiral Lagrangian L
p2

⇡N , while diamonds on a nucleon line represent insertions of Le2p0

⇡N . All other notation is as in Fig. 1.

Numerical impact — We now estimate the numerical

impact of the various corrections beginning with �(0,1)
em .

Existing lattice data indicate that gA has a mild m⇡ de-

pendence [10], and we set g
(0)

A = gA = 1.27. Using the
physical masses of charged and neutral pions, the average
nucleon mass mN = 938.9 MeV, and F⇡ = 92.4 MeV, we
obtain Z⇡ = 0.81. The NLO LECs c3 and c4 have been
extracted from pion-nucleon scattering [31, 32]. They
show a sizable dependence on the chiral order at which
the fit to ⇡-N data is carried out (stabilizing between
N2LO and N3LO). In an EFT without explicit � degrees
of freedom, they are dominated by virtual � contribu-
tions and thus anomalously large. We then obtain

c3|NLO
= �3.61(5)GeV�1

, c4|NLO
= 2.17(3)GeV�1

c3|N2LO
= �5.39(5)GeV�1

, c4|N2LO
= 3, 62(3)GeV�1

.

c3|N3LO
= �5.67(6)GeV�1

, c4|N3LO
= 4.35(4)GeV�1

.

(12)

With this input, we obtain
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em
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, (13)

↵
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em
2 {1.15, 1.85} · 10�2

, (14)

↵

2⇡
�(1)

em
= {1.15, 1, 70, 1.85} · 10�2

, (15)

where the range in �(0)

em is obtained by setting Ĉ⇡(µ) = 0
and varying µ between mN/2 and mN . The range in

�(1)

em by taking NLO or N3LO extractions of c3,4 [32] (the
N2LO results would give 1.7 · 10�2). While the NLO
correction is somewhat larger than the LO correction,
we stress that this is not the full correction because of
the counter term contribution Ĉ⇡. Combining LO and
NLO corrections, we estimate a correction to gA at the
percent level

�gA/g
(0)

A =
↵

2⇡
�(0+1)

em
2 {1.4, 2.5} · 10�2

. (16)

This shift due to isospin breaking has no impact on the
current first-row CKM discrepancy as the most accurate
determination of gA is extracted from experiments, where
these corrections are automatically included. comment
on future work on isospin-breaking nuclear corrections?
The correction does have a big impact on first-principle
lattice-QCD computations of neutron � decay. Present
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FIG. 1: Diagrams contributing to the matching between �PT and /⇡EFT at O(✏0�) (upper panel) and O(✏�) (lower panel).
Single, double, wavy, and dashed lines denote, respectively, leptons, nucleons, photons, and pions. Dots refer to interactions

from the lowest-order chiral Lagrangians L
p2
⇡ and L

p
⇡N , while diamonds represent insertions of L

e2p0
⇡ . Circled dots denote

interactions from the NLO chiral Lagrangian L
p2

⇡N .

only considered the asymptotic and elastic contributions
to Eq. (11), i.e. inserting a complete set of states in
between every current and retaining only the nucleon.
Assuming isospin symmetry then leads to a vanishing
contribution for the three-point function [15]. Recogniz-
ing diagrams i1, j1, a2, . . . in Fig. 1 to correspond to an
explicit treatment of these vertex corrections, the results
presented here expand upon the simplified approach of
Ref. [15] to find much larger than anticipated isospin-
breaking corrections.

Numerical impact — We now estimate the numerical
impact of the various corrections, starting with our main
new finding, i.e., the electromagnetic shift to � = gA/gV .
Including BSM contributions, the relation between the
experimentally extracted � and the (isosymmetric) QCD
axial charge is given by [9]

� = g
QCD

A

⇣
1 + �

(�)
RC

� 2Re(✏R)
⌘
, (12)

where ✏R ⇠ (246GeV/⇤BSM)2 is a BSM right-handed
current contribution appearing at an energy scale ⇤BSM

[9, 10]. To the order we are working the radiative correc-
tion is

�
(�)
RC

=
↵
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⇣
�(0)

A,em +�(1)

A,em ��(0)

V em

⌘
. (13)

For the numerical evaluation of the loop contributions to

�(0),(1)
A,em we use Z⇡ = 0.81 (obtained from the physical

pion mass di↵erence and F⇡ = 92.4 MeV) and the av-
erage nucleon mass mN = 938.9 MeV. In the loops we

set g
(0)

A = gA ⇡ 1.27 [6], as the di↵erence formally con-
tributes to higher chiral order. Existing lattice data in-
deed indicate that gA has a mild m⇡ dependence [11, 42].
The NLO LECs c3 and c4 have been extracted from pion-
nucleon scattering [43, 44]. They show a sizable depen-
dence on the chiral order at which the fit to ⇡-N data is
carried out, with a big change between NLO and N2LO,
stabilizing between N2LO and N3LO. For the corrections
we find

�(0)

A�V,em 2 {2.4, 5.7} , �(1)

A,em = {10.0, 14.5, 15.9}, (14)

where the range in �(0)

A�V,em is obtained by setting

ĈA(µ)� ĈV = 0 and varying µ between 0.5 and 1 GeV,

while the three values of �(1)

A,em are obtained by using

c3,4 extracted to NLO, N2LO, and N3LO [44]. While the
NLO correction is somewhat larger than the LO one, we
stress that we do not know the full LO correction because
we have set the counter term contribution ĈA � ĈV to
zero. In addition, in an EFT without explicit � degrees
of freedom, c3 and c4 are dominated by � contributions
and thus anomalously large. Combining the corrections,
we estimate a correction to � at the percent level,

�
(�)
RC

2 {1.4, 2.6} · 10�2
. (15)

This shift has no impact on the current first-row CKM
discrepancy because the most accurate determination

1 Introduction

1.1 General View

The basic starting point for any serious phenomenology of weak decays of hadrons is the

effective weak Hamiltonian which has the following generic structure

Heff =
GF√

2

∑

i

V i
CKMCi(µ)Qi . (1.1)

Here GF is the Fermi constant and Qi are the relevant local operators which govern the

decays in question. The Cabibbo-Kobayashi-Maskawa factors V i
CKM [1, 2] and the Wilson

Coefficients Ci [3, 4] describe the strength with which a given operator enters the Hamiltonian.

In the simplest case of the β-decay, Heff takes the familiar form

H(β)
eff =

GF√
2

cos θc[ūγµ(1 − γ5)d ⊗ ēγµ(1 − γ5)νe] , (1.2)

where Vud has been expressed in terms of the Cabibbo angle. In this particular case the Wilson

Coefficient is equal unity and the local operator, the object between the square brackets, is

given by a product of two V −A currents. This local operator is represented by the diagram

(b) in fig. 1. Equation (1.2) represents the Fermi theory for β-decays as formulated by

W

d u

ν e

(a)
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ν e
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Figure 1: β-decay at the quark level in the full (a) and effective (b) theory.

Sudarshan and Marshak [5] and Feynman and Gell-Mann [6] forty years ago, except that

in (1.2) the quark language has been used and following Cabibbo a small departure of Vud

from unity has been incorporated. In this context the basic formula (1.1) can be regarded

as a generalization of the Fermi Theory to include all known quarks and leptons as well as

their strong and electroweak interactions as summarized by the Standard Model. It should

be stressed that the formulation of weak decays in terms of effective Hamiltonians is very

suitable for the inclusion of new physics effects. We will discuss this issue briefly in these

lectures.
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1 Introduction

1.1 General View

The basic starting point for any serious phenomenology of weak decays of hadrons is the

effective weak Hamiltonian which has the following generic structure

Heff =
GF√

2

∑

i

V i
CKMCi(µ)Qi . (1.1)

Here GF is the Fermi constant and Qi are the relevant local operators which govern the

decays in question. The Cabibbo-Kobayashi-Maskawa factors V i
CKM [1, 2] and the Wilson

Coefficients Ci [3, 4] describe the strength with which a given operator enters the Hamiltonian.

In the simplest case of the β-decay, Heff takes the familiar form

H(β)
eff =

GF√
2

cos θc[ūγµ(1 − γ5)d ⊗ ēγµ(1 − γ5)νe] , (1.2)

where Vud has been expressed in terms of the Cabibbo angle. In this particular case the Wilson

Coefficient is equal unity and the local operator, the object between the square brackets, is

given by a product of two V −A currents. This local operator is represented by the diagram

(b) in fig. 1. Equation (1.2) represents the Fermi theory for β-decays as formulated by

W
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Figure 1: β-decay at the quark level in the full (a) and effective (b) theory.

Sudarshan and Marshak [5] and Feynman and Gell-Mann [6] forty years ago, except that

in (1.2) the quark language has been used and following Cabibbo a small departure of Vud

from unity has been incorporated. In this context the basic formula (1.1) can be regarded

as a generalization of the Fermi Theory to include all known quarks and leptons as well as

their strong and electroweak interactions as summarized by the Standard Model. It should

be stressed that the formulation of weak decays in terms of effective Hamiltonians is very

suitable for the inclusion of new physics effects. We will discuss this issue briefly in these

lectures.
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FIG. 1: Diagrams contributing to the matching between �PT and /⇡EFT at O(✏0�) (upper panel) and O(✏�) (lower panel).
Single, double, wavy, and dashed lines denote, respectively, leptons, nucleons, photons, and pions. Dots refer to interactions

from the lowest-order chiral Lagrangians L
p2
⇡ and L

p
⇡N , while diamonds represent insertions of L
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⇡ . Circled dots denote

interactions from the NLO chiral Lagrangian L
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only considered the asymptotic and elastic contributions
to Eq. (11), i.e. inserting a complete set of states in
between every current and retaining only the nucleon.
Assuming isospin symmetry then leads to a vanishing
contribution for the three-point function [15]. Recogniz-
ing diagrams i1, j1, a2, . . . in Fig. 1 to correspond to an
explicit treatment of these vertex corrections, the results
presented here expand upon the simplified approach of
Ref. [15] to find much larger than anticipated isospin-
breaking corrections.

Numerical impact — We now estimate the numerical
impact of the various corrections, starting with our main
new finding, i.e., the electromagnetic shift to � = gA/gV .
Including BSM contributions, the relation between the
experimentally extracted � and the (isosymmetric) QCD
axial charge is given by [9]
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where ✏R ⇠ (246GeV/⇤BSM)2 is a BSM right-handed
current contribution appearing at an energy scale ⇤BSM

[9, 10]. To the order we are working the radiative correc-
tion is
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For the numerical evaluation of the loop contributions to

�(0),(1)
A,em we use Z⇡ = 0.81 (obtained from the physical

pion mass di↵erence and F⇡ = 92.4 MeV) and the av-
erage nucleon mass mN = 938.9 MeV. In the loops we

set g
(0)

A = gA ⇡ 1.27 [6], as the di↵erence formally con-
tributes to higher chiral order. Existing lattice data in-
deed indicate that gA has a mild m⇡ dependence [11, 42].
The NLO LECs c3 and c4 have been extracted from pion-
nucleon scattering [43, 44]. They show a sizable depen-
dence on the chiral order at which the fit to ⇡-N data is
carried out, with a big change between NLO and N2LO,
stabilizing between N2LO and N3LO. For the corrections
we find
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A�V,em 2 {2.4, 5.7} , �(1)

A,em = {10.0, 14.5, 15.9}, (14)

where the range in �(0)

A�V,em is obtained by setting

ĈA(µ)� ĈV = 0 and varying µ between 0.5 and 1 GeV,

while the three values of �(1)

A,em are obtained by using

c3,4 extracted to NLO, N2LO, and N3LO [44]. While the
NLO correction is somewhat larger than the LO one, we
stress that we do not know the full LO correction because
we have set the counter term contribution ĈA � ĈV to
zero. In addition, in an EFT without explicit � degrees
of freedom, c3 and c4 are dominated by � contributions
and thus anomalously large. Combining the corrections,
we estimate a correction to � at the percent level,

�
(�)
RC

2 {1.4, 2.6} · 10�2
. (15)

This shift has no impact on the current first-row CKM
discrepancy because the most accurate determination

qext, me

γ

1 Introduction

1.1 General View

The basic starting point for any serious phenomenology of weak decays of hadrons is the

effective weak Hamiltonian which has the following generic structure

Heff =
GF√

2

∑

i

V i
CKMCi(µ)Qi . (1.1)

Here GF is the Fermi constant and Qi are the relevant local operators which govern the

decays in question. The Cabibbo-Kobayashi-Maskawa factors V i
CKM [1, 2] and the Wilson

Coefficients Ci [3, 4] describe the strength with which a given operator enters the Hamiltonian.

In the simplest case of the β-decay, Heff takes the familiar form

H(β)
eff =

GF√
2

cos θc[ūγµ(1 − γ5)d ⊗ ēγµ(1 − γ5)νe] , (1.2)

where Vud has been expressed in terms of the Cabibbo angle. In this particular case the Wilson

Coefficient is equal unity and the local operator, the object between the square brackets, is

given by a product of two V −A currents. This local operator is represented by the diagram

(b) in fig. 1. Equation (1.2) represents the Fermi theory for β-decays as formulated by

W

d u

ν e

(a)

d u

ν e

(b)

Figure 1: β-decay at the quark level in the full (a) and effective (b) theory.

Sudarshan and Marshak [5] and Feynman and Gell-Mann [6] forty years ago, except that

in (1.2) the quark language has been used and following Cabibbo a small departure of Vud

from unity has been incorporated. In this context the basic formula (1.1) can be regarded

as a generalization of the Fermi Theory to include all known quarks and leptons as well as

their strong and electroweak interactions as summarized by the Standard Model. It should

be stressed that the formulation of weak decays in terms of effective Hamiltonians is very

suitable for the inclusion of new physics effects. We will discuss this issue briefly in these

lectures.
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1

freedom. In the case at hand the effective theory is constructed by integrating out the W field

only. The matching procedure which gives the values of C1 and C2 proceeds in three steps

[61]. The explicit three steps presented below are sufficient for the subsequent summation of

the leading logarithms or equvalently for the leading term of the RG improved perturbation

theory. We will generalize these steps in the next section in order to be able to include also

the NLO term in this expansion.

Here we go:

Step 1: Calculation of Afull

The current-current diagrams of fig. 15 (a)–(c) and their symmetric counterparts, give for

the full amplitude Afull to O(αs) (mi = 0, p2 < 0):

Afull =
GF√

2
V ∗

csVud

[(

1 + 2CF
αs

4π
(
1

ε
+ ln

µ2

−p2
)

)

S2 +
3

N

αs

4π
ln

M2
W

−p2
S2

−3
αs

4π
ln

M2
W

−p2
S1

]
(5.23)

Here:

S1 ≡ ⟨Q1⟩tree = (s̄αcβ)V −A(ūβdα)V −A (5.24)

S2 ≡ ⟨Q2⟩tree = (s̄αcα)V −A(ūβdβ)V −A (5.25)

are just the tree level matrix elements of Q1 and Q2. A few comments should be made.

• We use the term “amplitude” in the meaning of an “amputated Green function” (multi-

plied by ”i”). Correspondingly operator matrix elements are amputated Green functions

with operator insertion. Thus gluonic self energy corrections on external legs are not

included.

W

g

(a)

Wg

(b)

W g

(c)

Figure 15: One-loop current-current diagrams in the full theory.

• For simplicity we have chosen all external momenta p to be equal and set all quark

masses to zero. As we will see below this choice has no impact on the coefficients Ci.
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S2 ≡ ⟨Q2⟩tree = (s̄αcα)V −A(ūβdβ)V −A (5.25)
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Figure 2: Representative diagrams contributing to radiative corrections to nuclear b decays. Double solid lines
represent nucleons, single solid lines represent leptons, single (double) wavy lines represent photons (W bosons),
dashed lines represent pions. The quark-W vertex is proportional to Vud . The blue ellipse represents the strong
interaction among nucleons and the red and green ellipses represent the infinite diagrams contributing to the nuclear
wavefunction. In terms of the corrections introduced in Eq. (1), the left topology contributes (in various regimes) to
DV

R and d 0
R, the two middle ones to dNS, and the right one to dC.

and weak interaction eigenstates of quarks. CKM unitarity implies DCKM ⌘ |Vud |2 + |Vus|2 + |Vub|2 �1 = 0,
where Vud , Vus, Vub represent the mixing of up with down, strange, and beauty quarks, respectively. In prac-
tice |Vub|2 < 10�5 can be neglected and CKM unitarity reduces to the original Cabibbo universality, with
the identifications Vud = cosqC and Vus = sinqC, where qC is the Cabibbo angle [2]. Measurements of the b
decay of the neutron and of nuclei, with precision between 0.1% and 0.01%, are very competitive probes of
BSM physics, sensitive to both CKM unitarity and to “non V-A” BSM interactions.

The CKM mixing parameters VuD (D = d,s) are determined from various hadronic and nuclear weak
decays hi ! h f `n` (` = e,µ). Currently, the most precise determination of Vud is obtained by nuclear
0+ ! 0+ decays through the relation [4]

log2
f t

=
G2

Fm5
e |Vud |2

p3 (1+DV
R +d 0

R +dNS �dC) (1)

where t is the measured partial half life, f is a dimensionless phase space factor determined by the measured
Q value, GF is the Fermi constant extracted from muon decay, and DV

R , dNS, d 0
R, and dC are theoretical

corrections of % size. DV
R denotes the so-called “inner radiative corrections” and does not depend on the

particular transition considered: it can be calculated at the single-nucleon level and its nucleon-structure
dependence arises from the so-called g�W box diagrams [5–7] (see top part of left panel in Fig. 2), in which
a virtual photon is exchanged between the electron and the charged hadrons. d 0

R and dNS parameterize the
transition-dependent part of the electromagnetic radiative corrections. d 0

R is the “outer radiative correction”
and depends only on the electron’s energy and the Z of the decay product [8–11] (left panel in Fig. 2). dNS
depends on the nuclear structure details and arises form generalized g �W box diagrams in which a virtual
photon is exchanged between the electron and a proton that is not interacting with the W boson [12–15]
(middle panel in Fig. 2). Finally, dC is a correction arising from isospin breaking effects in the nuclear
wavefunctions, due to the fact that isobaric analog nuclei participating in superallowed transitions are not
pure isospin states in presence of Coulomb (right panel in Fig. 2) and other isospin-breaking nucleon-level
interactions [11, 16–19]. The most recent survey [4] of experimental and theoretical input leads to Vud =
0.97373(31). This incorporates a reduction in the uncertainty in DV

R [5, 7] and an increase in uncertainty due
to nuclear-structure dependent effects with input from Refs. [6, 14, 15]. Currently, the theoretical uncertainty
on the nuclear-structure dependent electromagnetic corrections dNS �dC dominates the error on Vud .

Thanks to higher precision measurements of the lifetime [20] and beta asymmetry [21] (see Ref. [22]
for a recent review), neutron decay is becoming competitive with superallowed beta decays on the precision
of Vud . Following the PDG analysis [23] one finds Vud = 0.97338(33)t(32)gA(10)RC = 0.97338(47), with
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with uncertainty entirely dominated by experiment [22]. A
competitive determination requires a dedicated experimental
campaign, as planned at the PIONEER experiment [26].

The best information on Vus comes from kaon decays, K`2 =
K ! `⌫` and K`3 = K ! ⇡`⌫`. The former is typically ana-
lyzed by normalizing to ⇡`2 decays [27], leading to a constraint
on Vus/Vud, while K`3 decays give direct access to Vus when the
corresponding form factor is provided from lattice QCD [28].
Details of the global fit to kaon decays, as well as the input
for decay constants, form factors, and radiative corrections, are
discussed in Sec. 2, leading to

Vus

Vud

�����
K`2/⇡`2

= 0.23108(23)exp(42)FK/F⇡ (16)IB[51]total,

VK`3
us = 0.22330(35)exp(39) f+ (8)IB[53]total, (7)

where the errors refer to experiment, lattice input for the matrix
elements, and isospin-breaking corrections, respectively. To-
gether with the constraints on Vud, these bands give rise to the
situation depicted in Fig. 1: on the one hand, there is a ten-
sion between the best fit and CKM unitarity, but another ten-
sion, arising entirely from meson decays, is due to the fact that
the K`2 and K`3 constraints intersect away from the unitarity
circle. Additional information on Vus can be derived from ⌧
decays [29, 30], but given the larger errors [31, 32] we will
continue to focus on the kaon sector.

The main point of this Letter is that given the various ten-
sions in the Vud–Vus plane, there is urgent need for additional
information on the compatibility of K`2 and K`3 data, especially
when it comes to interpreting either of the tensions (CKM uni-
tarity and K`2 versus K`3) in terms of physics beyond the SM
(BSM). In particular, the data base for K`2 is completely dom-
inated by a single experiment [33], and at the same time the
global fit to all kaon data displays a relatively poor fit quality.
All these points could be scrutinized by a new measurement of
the Kµ3/Kµ2 branching fraction at the level of a few permil, as
possible at the NA62 experiment. Further, once the experimen-
tal situation is clarified, more robust interpretations of the en-
suing tensions will be possible, especially regarding the role of
right-handed currents both in the strange and non-strange sec-
tor. To make the case for the proposed measurement of the
Kµ3/Kµ2 branching fraction, we first discuss in detail its impact
on the global fit to kaon data and the implications for CKM uni-
tarity in Sec. 2. The consequences for physics beyond the SM
are addressed in Sec. 3, before we conclude in Sec. 4.

2. Global fit to kaon data and implications for CKM uni-
tarity

The current values for Vus and Vus/Vud given in Eq. (7) are
obtained from a global fit to kaon decays [34–37], updated
to include the latest measurements, radiative corrections, and
hadronic matrix elements. In particular, the fit includes data on
KS decays from Refs. [38–44], on KL decays from Refs. [45–
56], and on charged-kaon decays from Refs. [33, 57–70]. Since
we focus on the impact of a new Kµ3/Kµ2 measurement, e.g.,
at NA62, we reproduce the details of the charged kaon fit in

Figure 1: Constraints in the Vud–Vus plane. The partially overlapping vertical
bands correspond to V0+!0+

ud (leftmost, red) and Vn, best
ud (rightmost, violet). The

horizontal band (green) corresponds to VK`3
us . The diagonal band (blue) corre-

sponds to (Vus/Vud)K`2/⇡`2 . The unitarity circle is denoted by the black solid
line. The 68% C.L. ellipse from a fit to all four constraints is depicted in yel-
low (Vud = 0.97378(26), Vus = 0.22422(36), �2/dof = 6.4/2, p-value 4.1%),
it deviates from the unitarity line by 2.8�. Note that the significance tends to
increase in case ⌧ decays are included.

Table 1, where, however, the value for Vus from K`3 decays in-
cludes all charge channels, accounting for correlations among
them. The extraction of Vus from K`3 decays requires further in-
put on the respective form factors, which are taken in the disper-
sive parameterization from Ref. [71], constrained by data from
Refs. [72–78]. This leaves form-factor normalizations, decay
constants, and isospin-breaking corrections in both K`2 and K`3
decays.

For K`2 we follow the established convention to consider the
ratio to ⇡`2 decays [27] (pion lifetime [62, 79–83] and branch-
ing fraction [84–87] are taken from Ref. [12]), since in this ratio
certain structure-dependent radiative corrections [88, 89] cancel
and only the ratio of decay constants FK/F⇡ needs to be pro-
vided. We use the isospin-breaking corrections from Ref. [90]
together with the Nf = 2 + 1 + 1 isospin-limit ratio of de-
cay constants FK/F⇡ = 1.1978(22) [91–94], where this aver-
age accounts for statistical and systematic correlations between
the results, some of which make use of the same lattice en-
sembles. For K`3 decays we use the radiative corrections from
Refs. [95–97] (in line with the earlier calculations [98, 99]), the
strong isospin-breaking correction �SU(2) = 0.0252(11) from
Refs. [98, 100] evaluated with the Nf = 2 + 1 + 1 quark-mass
double ratio Q = 22.5(5) and ratio ms/mud = 27.23(10), both
from Ref. [28] (the value of Q is consistent with Q = 22.1(7)
from ⌘ ! 3⇡ [101] and Q = 22.4(3) from the Cottingham
approach [102]), and the form-factor normalization f+(0) =
0.9698(17) [103, 104]. This global fit then defines the cur-
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constants, and isospin-breaking corrections in both K`2 and K`3
decays.

For K`2 we follow the established convention to consider the
ratio to ⇡`2 decays [27] (pion lifetime [62, 79–83] and branch-
ing fraction [84–87] are taken from Ref. [12]), since in this ratio
certain structure-dependent radiative corrections [88, 89] cancel
and only the ratio of decay constants FK/F⇡ needs to be pro-
vided. We use the isospin-breaking corrections from Ref. [90]
together with the Nf = 2 + 1 + 1 isospin-limit ratio of de-
cay constants FK/F⇡ = 1.1978(22) [91–94], where this aver-
age accounts for statistical and systematic correlations between
the results, some of which make use of the same lattice en-
sembles. For K`3 decays we use the radiative corrections from
Refs. [95–97] (in line with the earlier calculations [98, 99]), the
strong isospin-breaking correction �SU(2) = 0.0252(11) from
Refs. [98, 100] evaluated with the Nf = 2 + 1 + 1 quark-mass
double ratio Q = 22.5(5) and ratio ms/mud = 27.23(10), both
from Ref. [28] (the value of Q is consistent with Q = 22.1(7)
from ⌘ ! 3⇡ [101] and Q = 22.4(3) from the Cottingham
approach [102]), and the form-factor normalization f+(0) =
0.9698(17) [103, 104]. This global fit then defines the cur-
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represent nucleons, single solid lines represent leptons, single (double) wavy lines represent photons (W bosons),
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wavefunction. In terms of the corrections introduced in Eq. (1), the left topology contributes (in various regimes) to
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and weak interaction eigenstates of quarks. CKM unitarity implies DCKM ⌘ |Vud |2 + |Vus|2 + |Vub|2 �1 = 0,
where Vud , Vus, Vub represent the mixing of up with down, strange, and beauty quarks, respectively. In prac-
tice |Vub|2 < 10�5 can be neglected and CKM unitarity reduces to the original Cabibbo universality, with
the identifications Vud = cosqC and Vus = sinqC, where qC is the Cabibbo angle [2]. Measurements of the b
decay of the neutron and of nuclei, with precision between 0.1% and 0.01%, are very competitive probes of
BSM physics, sensitive to both CKM unitarity and to “non V-A” BSM interactions.

The CKM mixing parameters VuD (D = d,s) are determined from various hadronic and nuclear weak
decays hi ! h f `n` (` = e,µ). Currently, the most precise determination of Vud is obtained by nuclear
0+ ! 0+ decays through the relation [4]
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and depends only on the electron’s energy and the Z of the decay product [8–11] (left panel in Fig. 2). dNS
depends on the nuclear structure details and arises form generalized g �W box diagrams in which a virtual
photon is exchanged between the electron and a proton that is not interacting with the W boson [12–15]
(middle panel in Fig. 2). Finally, dC is a correction arising from isospin breaking effects in the nuclear
wavefunctions, due to the fact that isobaric analog nuclei participating in superallowed transitions are not
pure isospin states in presence of Coulomb (right panel in Fig. 2) and other isospin-breaking nucleon-level
interactions [11, 16–19]. The most recent survey [4] of experimental and theoretical input leads to Vud =
0.97373(31). This incorporates a reduction in the uncertainty in DV

R [5, 7] and an increase in uncertainty due
to nuclear-structure dependent effects with input from Refs. [6, 14, 15]. Currently, the theoretical uncertainty
on the nuclear-structure dependent electromagnetic corrections dNS �dC dominates the error on Vud .

Thanks to higher precision measurements of the lifetime [20] and beta asymmetry [21] (see Ref. [22]
for a recent review), neutron decay is becoming competitive with superallowed beta decays on the precision
of Vud . Following the PDG analysis [23] one finds Vud = 0.97338(33)t(32)gA(10)RC = 0.97338(47), with
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with uncertainty entirely dominated by experiment [22]. A
competitive determination requires a dedicated experimental
campaign, as planned at the PIONEER experiment [26].

The best information on Vus comes from kaon decays, K`2 =
K ! `⌫` and K`3 = K ! ⇡`⌫`. The former is typically ana-
lyzed by normalizing to ⇡`2 decays [27], leading to a constraint
on Vus/Vud, while K`3 decays give direct access to Vus when the
corresponding form factor is provided from lattice QCD [28].
Details of the global fit to kaon decays, as well as the input
for decay constants, form factors, and radiative corrections, are
discussed in Sec. 2, leading to

Vus

Vud

�����
K`2/⇡`2

= 0.23108(23)exp(42)FK/F⇡ (16)IB[51]total,

VK`3
us = 0.22330(35)exp(39) f+ (8)IB[53]total, (7)

where the errors refer to experiment, lattice input for the matrix
elements, and isospin-breaking corrections, respectively. To-
gether with the constraints on Vud, these bands give rise to the
situation depicted in Fig. 1: on the one hand, there is a ten-
sion between the best fit and CKM unitarity, but another ten-
sion, arising entirely from meson decays, is due to the fact that
the K`2 and K`3 constraints intersect away from the unitarity
circle. Additional information on Vus can be derived from ⌧
decays [29, 30], but given the larger errors [31, 32] we will
continue to focus on the kaon sector.

The main point of this Letter is that given the various ten-
sions in the Vud–Vus plane, there is urgent need for additional
information on the compatibility of K`2 and K`3 data, especially
when it comes to interpreting either of the tensions (CKM uni-
tarity and K`2 versus K`3) in terms of physics beyond the SM
(BSM). In particular, the data base for K`2 is completely dom-
inated by a single experiment [33], and at the same time the
global fit to all kaon data displays a relatively poor fit quality.
All these points could be scrutinized by a new measurement of
the Kµ3/Kµ2 branching fraction at the level of a few permil, as
possible at the NA62 experiment. Further, once the experimen-
tal situation is clarified, more robust interpretations of the en-
suing tensions will be possible, especially regarding the role of
right-handed currents both in the strange and non-strange sec-
tor. To make the case for the proposed measurement of the
Kµ3/Kµ2 branching fraction, we first discuss in detail its impact
on the global fit to kaon data and the implications for CKM uni-
tarity in Sec. 2. The consequences for physics beyond the SM
are addressed in Sec. 3, before we conclude in Sec. 4.

2. Global fit to kaon data and implications for CKM uni-
tarity

The current values for Vus and Vus/Vud given in Eq. (7) are
obtained from a global fit to kaon decays [34–37], updated
to include the latest measurements, radiative corrections, and
hadronic matrix elements. In particular, the fit includes data on
KS decays from Refs. [38–44], on KL decays from Refs. [45–
56], and on charged-kaon decays from Refs. [33, 57–70]. Since
we focus on the impact of a new Kµ3/Kµ2 measurement, e.g.,
at NA62, we reproduce the details of the charged kaon fit in

Figure 1: Constraints in the Vud–Vus plane. The partially overlapping vertical
bands correspond to V0+!0+

ud (leftmost, red) and Vn, best
ud (rightmost, violet). The

horizontal band (green) corresponds to VK`3
us . The diagonal band (blue) corre-

sponds to (Vus/Vud)K`2/⇡`2 . The unitarity circle is denoted by the black solid
line. The 68% C.L. ellipse from a fit to all four constraints is depicted in yel-
low (Vud = 0.97378(26), Vus = 0.22422(36), �2/dof = 6.4/2, p-value 4.1%),
it deviates from the unitarity line by 2.8�. Note that the significance tends to
increase in case ⌧ decays are included.

Table 1, where, however, the value for Vus from K`3 decays in-
cludes all charge channels, accounting for correlations among
them. The extraction of Vus from K`3 decays requires further in-
put on the respective form factors, which are taken in the disper-
sive parameterization from Ref. [71], constrained by data from
Refs. [72–78]. This leaves form-factor normalizations, decay
constants, and isospin-breaking corrections in both K`2 and K`3
decays.

For K`2 we follow the established convention to consider the
ratio to ⇡`2 decays [27] (pion lifetime [62, 79–83] and branch-
ing fraction [84–87] are taken from Ref. [12]), since in this ratio
certain structure-dependent radiative corrections [88, 89] cancel
and only the ratio of decay constants FK/F⇡ needs to be pro-
vided. We use the isospin-breaking corrections from Ref. [90]
together with the Nf = 2 + 1 + 1 isospin-limit ratio of de-
cay constants FK/F⇡ = 1.1978(22) [91–94], where this aver-
age accounts for statistical and systematic correlations between
the results, some of which make use of the same lattice en-
sembles. For K`3 decays we use the radiative corrections from
Refs. [95–97] (in line with the earlier calculations [98, 99]), the
strong isospin-breaking correction �SU(2) = 0.0252(11) from
Refs. [98, 100] evaluated with the Nf = 2 + 1 + 1 quark-mass
double ratio Q = 22.5(5) and ratio ms/mud = 27.23(10), both
from Ref. [28] (the value of Q is consistent with Q = 22.1(7)
from ⌘ ! 3⇡ [101] and Q = 22.4(3) from the Cottingham
approach [102]), and the form-factor normalization f+(0) =
0.9698(17) [103, 104]. This global fit then defines the cur-
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Figure 2: Representative diagrams contributing to radiative corrections to nuclear b decays. Double solid lines
represent nucleons, single solid lines represent leptons, single (double) wavy lines represent photons (W bosons),
dashed lines represent pions. The quark-W vertex is proportional to Vud . The blue ellipse represents the strong
interaction among nucleons and the red and green ellipses represent the infinite diagrams contributing to the nuclear
wavefunction. In terms of the corrections introduced in Eq. (1), the left topology contributes (in various regimes) to
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R, the two middle ones to dNS, and the right one to dC.

and weak interaction eigenstates of quarks. CKM unitarity implies DCKM ⌘ |Vud |2 + |Vus|2 + |Vub|2 �1 = 0,
where Vud , Vus, Vub represent the mixing of up with down, strange, and beauty quarks, respectively. In prac-
tice |Vub|2 < 10�5 can be neglected and CKM unitarity reduces to the original Cabibbo universality, with
the identifications Vud = cosqC and Vus = sinqC, where qC is the Cabibbo angle [2]. Measurements of the b
decay of the neutron and of nuclei, with precision between 0.1% and 0.01%, are very competitive probes of
BSM physics, sensitive to both CKM unitarity and to “non V-A” BSM interactions.

The CKM mixing parameters VuD (D = d,s) are determined from various hadronic and nuclear weak
decays hi ! h f `n` (` = e,µ). Currently, the most precise determination of Vud is obtained by nuclear
0+ ! 0+ decays through the relation [4]
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and depends only on the electron’s energy and the Z of the decay product [8–11] (left panel in Fig. 2). dNS
depends on the nuclear structure details and arises form generalized g �W box diagrams in which a virtual
photon is exchanged between the electron and a proton that is not interacting with the W boson [12–15]
(middle panel in Fig. 2). Finally, dC is a correction arising from isospin breaking effects in the nuclear
wavefunctions, due to the fact that isobaric analog nuclei participating in superallowed transitions are not
pure isospin states in presence of Coulomb (right panel in Fig. 2) and other isospin-breaking nucleon-level
interactions [11, 16–19]. The most recent survey [4] of experimental and theoretical input leads to Vud =
0.97373(31). This incorporates a reduction in the uncertainty in DV

R [5, 7] and an increase in uncertainty due
to nuclear-structure dependent effects with input from Refs. [6, 14, 15]. Currently, the theoretical uncertainty
on the nuclear-structure dependent electromagnetic corrections dNS �dC dominates the error on Vud .

Thanks to higher precision measurements of the lifetime [20] and beta asymmetry [21] (see Ref. [22]
for a recent review), neutron decay is becoming competitive with superallowed beta decays on the precision
of Vud . Following the PDG analysis [23] one finds Vud = 0.97338(33)t(32)gA(10)RC = 0.97338(47), with
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with uncertainty entirely dominated by experiment [22]. A
competitive determination requires a dedicated experimental
campaign, as planned at the PIONEER experiment [26].

The best information on Vus comes from kaon decays, K`2 =
K ! `⌫` and K`3 = K ! ⇡`⌫`. The former is typically ana-
lyzed by normalizing to ⇡`2 decays [27], leading to a constraint
on Vus/Vud, while K`3 decays give direct access to Vus when the
corresponding form factor is provided from lattice QCD [28].
Details of the global fit to kaon decays, as well as the input
for decay constants, form factors, and radiative corrections, are
discussed in Sec. 2, leading to

Vus

Vud

�����
K`2/⇡`2

= 0.23108(23)exp(42)FK/F⇡ (16)IB[51]total,

VK`3
us = 0.22330(35)exp(39) f+ (8)IB[53]total, (7)

where the errors refer to experiment, lattice input for the matrix
elements, and isospin-breaking corrections, respectively. To-
gether with the constraints on Vud, these bands give rise to the
situation depicted in Fig. 1: on the one hand, there is a ten-
sion between the best fit and CKM unitarity, but another ten-
sion, arising entirely from meson decays, is due to the fact that
the K`2 and K`3 constraints intersect away from the unitarity
circle. Additional information on Vus can be derived from ⌧
decays [29, 30], but given the larger errors [31, 32] we will
continue to focus on the kaon sector.

The main point of this Letter is that given the various ten-
sions in the Vud–Vus plane, there is urgent need for additional
information on the compatibility of K`2 and K`3 data, especially
when it comes to interpreting either of the tensions (CKM uni-
tarity and K`2 versus K`3) in terms of physics beyond the SM
(BSM). In particular, the data base for K`2 is completely dom-
inated by a single experiment [33], and at the same time the
global fit to all kaon data displays a relatively poor fit quality.
All these points could be scrutinized by a new measurement of
the Kµ3/Kµ2 branching fraction at the level of a few permil, as
possible at the NA62 experiment. Further, once the experimen-
tal situation is clarified, more robust interpretations of the en-
suing tensions will be possible, especially regarding the role of
right-handed currents both in the strange and non-strange sec-
tor. To make the case for the proposed measurement of the
Kµ3/Kµ2 branching fraction, we first discuss in detail its impact
on the global fit to kaon data and the implications for CKM uni-
tarity in Sec. 2. The consequences for physics beyond the SM
are addressed in Sec. 3, before we conclude in Sec. 4.

2. Global fit to kaon data and implications for CKM uni-
tarity

The current values for Vus and Vus/Vud given in Eq. (7) are
obtained from a global fit to kaon decays [34–37], updated
to include the latest measurements, radiative corrections, and
hadronic matrix elements. In particular, the fit includes data on
KS decays from Refs. [38–44], on KL decays from Refs. [45–
56], and on charged-kaon decays from Refs. [33, 57–70]. Since
we focus on the impact of a new Kµ3/Kµ2 measurement, e.g.,
at NA62, we reproduce the details of the charged kaon fit in

Figure 1: Constraints in the Vud–Vus plane. The partially overlapping vertical
bands correspond to V0+!0+

ud (leftmost, red) and Vn, best
ud (rightmost, violet). The

horizontal band (green) corresponds to VK`3
us . The diagonal band (blue) corre-

sponds to (Vus/Vud)K`2/⇡`2 . The unitarity circle is denoted by the black solid
line. The 68% C.L. ellipse from a fit to all four constraints is depicted in yel-
low (Vud = 0.97378(26), Vus = 0.22422(36), �2/dof = 6.4/2, p-value 4.1%),
it deviates from the unitarity line by 2.8�. Note that the significance tends to
increase in case ⌧ decays are included.

Table 1, where, however, the value for Vus from K`3 decays in-
cludes all charge channels, accounting for correlations among
them. The extraction of Vus from K`3 decays requires further in-
put on the respective form factors, which are taken in the disper-
sive parameterization from Ref. [71], constrained by data from
Refs. [72–78]. This leaves form-factor normalizations, decay
constants, and isospin-breaking corrections in both K`2 and K`3
decays.

For K`2 we follow the established convention to consider the
ratio to ⇡`2 decays [27] (pion lifetime [62, 79–83] and branch-
ing fraction [84–87] are taken from Ref. [12]), since in this ratio
certain structure-dependent radiative corrections [88, 89] cancel
and only the ratio of decay constants FK/F⇡ needs to be pro-
vided. We use the isospin-breaking corrections from Ref. [90]
together with the Nf = 2 + 1 + 1 isospin-limit ratio of de-
cay constants FK/F⇡ = 1.1978(22) [91–94], where this aver-
age accounts for statistical and systematic correlations between
the results, some of which make use of the same lattice en-
sembles. For K`3 decays we use the radiative corrections from
Refs. [95–97] (in line with the earlier calculations [98, 99]), the
strong isospin-breaking correction �SU(2) = 0.0252(11) from
Refs. [98, 100] evaluated with the Nf = 2 + 1 + 1 quark-mass
double ratio Q = 22.5(5) and ratio ms/mud = 27.23(10), both
from Ref. [28] (the value of Q is consistent with Q = 22.1(7)
from ⌘ ! 3⇡ [101] and Q = 22.4(3) from the Cottingham
approach [102]), and the form-factor normalization f+(0) =
0.9698(17) [103, 104]. This global fit then defines the cur-
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Figure 2: Representative diagrams contributing to radiative corrections to nuclear b decays. Double solid lines
represent nucleons, single solid lines represent leptons, single (double) wavy lines represent photons (W bosons),
dashed lines represent pions. The quark-W vertex is proportional to Vud . The blue ellipse represents the strong
interaction among nucleons and the red and green ellipses represent the infinite diagrams contributing to the nuclear
wavefunction. In terms of the corrections introduced in Eq. (1), the left topology contributes (in various regimes) to
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and weak interaction eigenstates of quarks. CKM unitarity implies DCKM ⌘ |Vud |2 + |Vus|2 + |Vub|2 �1 = 0,
where Vud , Vus, Vub represent the mixing of up with down, strange, and beauty quarks, respectively. In prac-
tice |Vub|2 < 10�5 can be neglected and CKM unitarity reduces to the original Cabibbo universality, with
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FIG. 1: Diagrams contributing to the matching between �PT and /⇡EFT at O(✏0�). Single, double, wavy and dashed lines
denote, respectively, leptons, nucleons, photons and pions. Dots denote interactions from the lowest order chiral Lagrangians

L
p2
⇡ and L
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⇡N , while diamonds on a pion line represent insertions of Le2p0

⇡ .

FIG. 2: Diagrams contributing to the matching between �PT and /⇡EFT at O(✏�). Circled dots denote interactions from the

NLO chiral Lagrangian L
p2

⇡N , while diamonds on a nucleon line represent insertions of Le2p0

⇡N . All other notation is as in Fig. 1.

Numerical impact — We now estimate the numerical

impact of the various corrections beginning with �(0,1)
em .

Existing lattice data indicate that gA has a mild m⇡ de-

pendence [10], and we set g
(0)

A = gA = 1.27. Using the
physical masses of charged and neutral pions, the average
nucleon mass mN = 938.9 MeV, and F⇡ = 92.4 MeV, we
obtain Z⇡ = 0.81. The NLO LECs c3 and c4 have been
extracted from pion-nucleon scattering [31, 32]. They
show a sizable dependence on the chiral order at which
the fit to ⇡-N data is carried out (stabilizing between
N2LO and N3LO). In an EFT without explicit � degrees
of freedom, they are dominated by virtual � contribu-
tions and thus anomalously large. We then obtain

c3|NLO
= �3.61(5)GeV�1

, c4|NLO
= 2.17(3)GeV�1

c3|N2LO
= �5.39(5)GeV�1

, c4|N2LO
= 3, 62(3)GeV�1

.

c3|N3LO
= �5.67(6)GeV�1

, c4|N3LO
= 4.35(4)GeV�1

.

(12)

With this input, we obtain
↵

2⇡
�(0)

em
2 {0.25, 0.65} · 10�2

, (13)

↵

2⇡
�(1)

em
2 {1.15, 1.85} · 10�2

, (14)

↵

2⇡
�(1)

em
= {1.15, 1, 70, 1.85} · 10�2

, (15)

where the range in �(0)

em is obtained by setting Ĉ⇡(µ) = 0
and varying µ between mN/2 and mN . The range in

�(1)

em by taking NLO or N3LO extractions of c3,4 [32] (the
N2LO results would give 1.7 · 10�2). While the NLO
correction is somewhat larger than the LO correction,
we stress that this is not the full correction because of
the counter term contribution Ĉ⇡. Combining LO and
NLO corrections, we estimate a correction to gA at the
percent level

�gA/g
(0)

A =
↵

2⇡
�(0+1)

em
2 {1.4, 2.5} · 10�2

. (16)

This shift due to isospin breaking has no impact on the
current first-row CKM discrepancy as the most accurate
determination of gA is extracted from experiments, where
these corrections are automatically included. comment
on future work on isospin-breaking nuclear corrections?
The correction does have a big impact on first-principle
lattice-QCD computations of neutron � decay. Present
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FIG. 1: Diagrams contributing to the matching between �PT and /⇡EFT at O(✏0�) (upper panel) and O(✏�) (lower panel).
Single, double, wavy, and dashed lines denote, respectively, leptons, nucleons, photons, and pions. Dots refer to interactions

from the lowest-order chiral Lagrangians L
p2
⇡ and L

p
⇡N , while diamonds represent insertions of L

e2p0
⇡ . Circled dots denote

interactions from the NLO chiral Lagrangian L
p2

⇡N .

only considered the asymptotic and elastic contributions
to Eq. (11), i.e. inserting a complete set of states in
between every current and retaining only the nucleon.
Assuming isospin symmetry then leads to a vanishing
contribution for the three-point function [15]. Recogniz-
ing diagrams i1, j1, a2, . . . in Fig. 1 to correspond to an
explicit treatment of these vertex corrections, the results
presented here expand upon the simplified approach of
Ref. [15] to find much larger than anticipated isospin-
breaking corrections.

Numerical impact — We now estimate the numerical
impact of the various corrections, starting with our main
new finding, i.e., the electromagnetic shift to � = gA/gV .
Including BSM contributions, the relation between the
experimentally extracted � and the (isosymmetric) QCD
axial charge is given by [9]

� = g
QCD

A

⇣
1 + �

(�)
RC

� 2Re(✏R)
⌘
, (12)

where ✏R ⇠ (246GeV/⇤BSM)2 is a BSM right-handed
current contribution appearing at an energy scale ⇤BSM

[9, 10]. To the order we are working the radiative correc-
tion is

�
(�)
RC

=
↵

2⇡

⇣
�(0)

A,em +�(1)

A,em ��(0)

V em

⌘
. (13)

For the numerical evaluation of the loop contributions to

�(0),(1)
A,em we use Z⇡ = 0.81 (obtained from the physical

pion mass di↵erence and F⇡ = 92.4 MeV) and the av-
erage nucleon mass mN = 938.9 MeV. In the loops we

set g
(0)

A = gA ⇡ 1.27 [6], as the di↵erence formally con-
tributes to higher chiral order. Existing lattice data in-
deed indicate that gA has a mild m⇡ dependence [11, 42].
The NLO LECs c3 and c4 have been extracted from pion-
nucleon scattering [43, 44]. They show a sizable depen-
dence on the chiral order at which the fit to ⇡-N data is
carried out, with a big change between NLO and N2LO,
stabilizing between N2LO and N3LO. For the corrections
we find

�(0)

A�V,em 2 {2.4, 5.7} , �(1)

A,em = {10.0, 14.5, 15.9}, (14)

where the range in �(0)

A�V,em is obtained by setting

ĈA(µ)� ĈV = 0 and varying µ between 0.5 and 1 GeV,

while the three values of �(1)

A,em are obtained by using

c3,4 extracted to NLO, N2LO, and N3LO [44]. While the
NLO correction is somewhat larger than the LO one, we
stress that we do not know the full LO correction because
we have set the counter term contribution ĈA � ĈV to
zero. In addition, in an EFT without explicit � degrees
of freedom, c3 and c4 are dominated by � contributions
and thus anomalously large. Combining the corrections,
we estimate a correction to � at the percent level,

�
(�)
RC

2 {1.4, 2.6} · 10�2
. (15)

This shift has no impact on the current first-row CKM
discrepancy because the most accurate determination

1 Introduction

1.1 General View

The basic starting point for any serious phenomenology of weak decays of hadrons is the

effective weak Hamiltonian which has the following generic structure

Heff =
GF√
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∑

i

V i
CKMCi(µ)Qi . (1.1)

Here GF is the Fermi constant and Qi are the relevant local operators which govern the

decays in question. The Cabibbo-Kobayashi-Maskawa factors V i
CKM [1, 2] and the Wilson

Coefficients Ci [3, 4] describe the strength with which a given operator enters the Hamiltonian.

In the simplest case of the β-decay, Heff takes the familiar form

H(β)
eff =

GF√
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cos θc[ūγµ(1 − γ5)d ⊗ ēγµ(1 − γ5)νe] , (1.2)

where Vud has been expressed in terms of the Cabibbo angle. In this particular case the Wilson

Coefficient is equal unity and the local operator, the object between the square brackets, is

given by a product of two V −A currents. This local operator is represented by the diagram

(b) in fig. 1. Equation (1.2) represents the Fermi theory for β-decays as formulated by
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Figure 1: β-decay at the quark level in the full (a) and effective (b) theory.

Sudarshan and Marshak [5] and Feynman and Gell-Mann [6] forty years ago, except that

in (1.2) the quark language has been used and following Cabibbo a small departure of Vud

from unity has been incorporated. In this context the basic formula (1.1) can be regarded

as a generalization of the Fermi Theory to include all known quarks and leptons as well as

their strong and electroweak interactions as summarized by the Standard Model. It should

be stressed that the formulation of weak decays in terms of effective Hamiltonians is very

suitable for the inclusion of new physics effects. We will discuss this issue briefly in these

lectures.
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Figure 3: HBChPT diagrams contributing to the anomalous dimension of gV and to �̃RC at two loop.
Only the first two diagrams give rise to terms in the �̃1 enhanced by ⇡

2 [100]. These diagrams also give
rise to the leading ↵
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2 behavior captured by the nonrelativistic Fermi function.

We thus arrive to our final form for the di↵erential decay rate:

d�n

dEe

=
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F
|Vud|
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�
1 + 3�2

�
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◆
. (104)

Compared to state-of-the-art analyses of neutron decay in the literature (see e.g. Ref. [38]), our result (104)
amounts to replacing the relativistic Fermi function [53, 109–111, 124–127] with the nonrelativistic one,
F0 ! FNR. While we arrived at this result by constructing the relevant terms of the amplitude in the
EFT framework, one could also argue for this replacement along the following lines. First, recall that
the leading corrections to the phase space coming from the distortion of the electron wavefunction in the
Coulomb field of the proton is usually captured by the function [53]

F0(�) =
2

1 + �
F (�) = 4(2Ee�R)2(��1)

e
⇡y

|�(� + iy)|2

(�(1 + 2�))2
, y =

↵

�
, � =

p
1� ↵2. (105)

This form is obtained by solving the Dirac equation for an electron moving in the charge distribution
of a uniformly charged sphere of radius R [53], but corresponds to a rescaling of the solution of the
Dirac equation for a point-like proton, F (�), evaluated not at the origin, where the wavefunction diverges
logarithmically, but at the “nucleon radius” R. R corresponds to a mass scale much larger than me, and
e↵ectively acts as a UV regulator. So we see that while F0(�) coincides with FNR(�) at one-loop level, F0

includes a dependence on the UV regulator via the logarithms of R that first appear at O(↵2). Expanding
F0 in series of ↵, one obtains

F0(�) = FNR (�)
⇥
1� ↵

2 (�E � 3 + ln(2EeR�)) +O(↵4)
⇤
. (106)

The dependence on the UV regulator R ⇠ 1/µ does not match the µ-dependence of gV (µ) in the MS�
scheme presented so far. In dimensional regularization, indeed, the lnR term in Eq. (106) corresponds to
a UV singularity that appears in the first two diagrams in Fig. 3, when we consider only the contribution
arising from picking the two nucleon poles. This is only one piece of the full anomalous dimension �̃1. In
order not to double-count large logarithms, one should set the logarithmic term in F0 to zero when using
the RGEs to evaluate the large logarithms as we do here. The remaining O(↵2) terms in Eq. (106) are
incomplete and beyond the accuracy of our calculation, which allows us to drop them and replace the
relativistic Fermi function F0 by its nonrelativistic counterpart FNR.
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Sudarshan and Marshak [5] and Feynman and Gell-Mann [6] forty years ago, except that

in (1.2) the quark language has been used and following Cabibbo a small departure of Vud

from unity has been incorporated. In this context the basic formula (1.1) can be regarded

as a generalization of the Fermi Theory to include all known quarks and leptons as well as

their strong and electroweak interactions as summarized by the Standard Model. It should

be stressed that the formulation of weak decays in terms of effective Hamiltonians is very
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freedom. In the case at hand the effective theory is constructed by integrating out the W field

only. The matching procedure which gives the values of C1 and C2 proceeds in three steps

[61]. The explicit three steps presented below are sufficient for the subsequent summation of

the leading logarithms or equvalently for the leading term of the RG improved perturbation

theory. We will generalize these steps in the next section in order to be able to include also

the NLO term in this expansion.

Here we go:

Step 1: Calculation of Afull

The current-current diagrams of fig. 15 (a)–(c) and their symmetric counterparts, give for

the full amplitude Afull to O(αs) (mi = 0, p2 < 0):

Afull =
GF√
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(5.23)

Here:

S1 ≡ ⟨Q1⟩tree = (s̄αcβ)V −A(ūβdα)V −A (5.24)

S2 ≡ ⟨Q2⟩tree = (s̄αcα)V −A(ūβdβ)V −A (5.25)

are just the tree level matrix elements of Q1 and Q2. A few comments should be made.

• We use the term “amplitude” in the meaning of an “amputated Green function” (multi-

plied by ”i”). Correspondingly operator matrix elements are amputated Green functions

with operator insertion. Thus gluonic self energy corrections on external legs are not

included.

W

g

(a)

Wg

(b)

W g

(c)

Figure 15: One-loop current-current diagrams in the full theory.

• For simplicity we have chosen all external momenta p to be equal and set all quark

masses to zero. As we will see below this choice has no impact on the coefficients Ci.
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 Two currently unknown LECs! 
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FIG. 3: Lowest-order diagrams contributing to the EW potentials V
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E , Vme , and V
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leptons, nucleons, and pions, respectively. Dots and circled dots refer to interactions from the LO and NLO chiral Lagrangians,
diamonds to isospin-breaking interactions.
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where p = 1.79, n = �1.91 are the proton and neutron
anomalous magnetic moments. The coordinate-space ex-
pression of Eqs. (34) and (35) is given in Sec. VI and
App. B. Vmag
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isospin-one/-two component proportional to (1+p)±n,
respectively. In momentum space this class of poten-
tials scales as O(e2/(k2F⇤�)) and contributes to �NS at
O(↵✏�).

When applied to 1S0 wave functions obtained at LO
in chiral EFT, the Coulomb-like potential in Eq. (34)
gives rise to nuclear matrix elements that are logarith-
mically dependent on the ultraviolet (UV) cuto↵ used in
the solution of the Lippmann–Schwinger or Schrödinger
equation [55, 56]. This signals sensitivity to UV physics,
related to the exchange of hard photons with virtual mo-
menta larger than ⇤�, which can be absorbed by the 2b
short-range operators in Eq. (13). To properly renor-
malize nuclear matrix elements, gNN
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Following essentially the same steps discussed in

Refs. [55, 56] we can derive the cuto↵ dependence of
gNN
V 1,V 2

. First, we introduce the dimensionless couplings

g̃NN
V 1,V 2

as

gNN
V 1,V 2

=
1

mN
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g̃NN
V 1,V 2
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where C1S0
= 3CT � CS is the LO NN contact interac-

tion in the 1S0 channel. At LO in chiral EFT, the RG
equations for g̃NN

V 1,V 2
are the same in dimensional regu-

larization and several cuto↵ schemes [56] and are given
by

dg̃NN
V 1

d logµ
= �gA(1 + p + n) = �1.12,

dg̃NN
V 2

d logµ
= �gA(1 + p � n) = �5.99, (39)

where µ denotes the renormalization scale in the MS or
power-divergence-subtraction schemes, or the UV cuto↵
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tion in the 1S0 channel. At LO in chiral EFT, the RG
equations for g̃NN

V 1,V 2
are the same in dimensional regu-

larization and several cuto↵ schemes [56] and are given
by
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= �gA(1 + p + n) = �1.12,

dg̃NN
V 2

d logµ
= �gA(1 + p � n) = �5.99, (39)

where µ denotes the renormalization scale in the MS or
power-divergence-subtraction schemes, or the UV cuto↵
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µ⌫(1� �5)dj
Oabcd
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lept = ēa�µ(1� �5)⌫b · ⌫̄c�
µ(1� �5)ed

LFermi = �
GF
p
2
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• Loop-level matching for SM operators (QED / QCD loops needed for precision)

SMEFT → LEFT matchingIntegrate out W,Z

• Match onto effective theory of light quarks, leptons, photon, gluon

• Operators in the EFT are invariant under U(1)EM and SU(3)C

• Tree-level matching:  

dj

ui
dj

ui

+ =  ∑ εi ⋅ d
u

Oi

• Wilson coefficients determined  from the matching condition  ASMEFT = ALEFT  

• Tree-level matching for BSM operators determines εL,R,S,P,T

“Full” theory  (higher scale EFT) “Effective theory” (lower scale EFT) 
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#

� = G
2
F ⇥ |Vij|

2
⇥ |Mhad|

2
⇥ (1 +�R)⇥ Fkin

�K!⇡`⌫(�) =
C

2
KG

2
FSEW |Vus|

2
M

5
K

192⇡3
|f

K⇡
+ (0)|2IK`

⇣
1 + 2�EM

K` + 2�IB
K

⌘

|Vus|

|Vud|

fK

f⇡
=

✓
�K!µ⌫(�) m⇡±

�⇡!µ⌫(�) mK±

◆1/2 1�m
2
µ/m

2
⇡±

1�m2
µ/m

2
K±

✓
1�

�K⇡
RC+IB

2

◆

�K⇡
RC+IB = �1.26(14)%

1

Large log @ μ << MZ 
50



• General case

εT(s):  suppressed 
by mlept/mK

εS(s) :  shifts the slope of the scalar form factor,  
at levels well below EXP and TH uncertainties

Corrections to Vud and Vus

51
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Electroweak precision observables
Obs. Expt. Value SM Prediction Obs. Expt. Value SM Prediction

�Z (GeV) 2.4955(23) [53, 113] 2.49414(56) [60] mW (GeV) 80.4335(94) [39] 80.3545(42) [60]

�0
had(nb) 41.480(33) [53, 113] 41.4929(53) [60] �W (GeV) 2.085(42) [3] 2.08782(52) [60]

R0
e 20.804(50) [53, 113] 20.7464(63) [60] RWc 0.49(4) [3] 0.50

R0
µ 20.784(34) [53, 113] R� 0.998(41) [114] 1

R0
⌧ 20.764(45) [53, 113] Br(W ! e⌫) 0.1071(16) [3] 0.108386(24) [60]

A0,e
FB 0.0145(25) [53, 113] 0.016191(70) [60] Br(W ! µ⌫) 0.1063(15) [3] 0.108386(24) [60]

A0,µ
FB 0.0169(13) [53, 113] Br(W ! ⌧⌫) 0.1138(21) [3] 0.108386(24) [60]

A0,⌧
FB 0.0188(17) [53, 113] �(W!µ⌫)

�(W!e⌫) 0.982(24) [3] 1

R0
b 0.21629(66) [53] 0.215880(19) [60] �(W!µ⌫)

�(W!e⌫) 1.020(19) [3]

R0
c 0.1721(30) [53] 0.172198(20) [60] �(W!µ⌫)

�(W!e⌫) 1.003(10) [3]

A0,b
FB 0.0996(16) [53] 0.10300(23) [60] �(W!⌧⌫)

�(W!e⌫) 0.961(61) [3]

A0,c
FB 0.0707(35) [53] 0.07358(18) [60] �(W!⌧⌫)

�(W!µ⌫) 0.992(13) [3]

Ac 0.67(3) [53] 0.66775(14) [60] A4(0� 0.8) 0.0195(15) [115] 0.0144(7) [116]

Ab 0.923(20) [53] 0.934727(25) [60] A4(0.8� 1.6) 0.0448(16) [115] 0.0471(17) [116]

Ae 0.1516(21) [53] 0.14692(32) [60] A4(1.6� 2.5) 0.0923(26) [115] 0.0928(21) [116]

Aµ 0.142(15) [53] A4(2.5� 3.6) 0.1445(46) [115] 0.1464(21) [116]

A⌧ 0.136(15) [53] g(u)
V

0.201(112) [117] 0.192 [118]

A⌧ pol
e 0.1498(49) [53] g(d)

V
-0.351(251) [117] -0.347 [118]

A⌧ pol
⌧ 0.1439(43) [53] g(u)

A
0.50(11) [117] 0.501 [118]

As 0.895(91) [119] 0.935637(26) [60] g(d)
A

-0.497(165) [117] -0.502 [118]

Ruc 0.166(9) [3] 0.172220(20) [60]

Table 11: Input parameters and EWPOs used in the analysis. Each shaded block indicates a
set of correlated observables. Entries without an explicit SM prediction share their SM value
with the observable above.

Finally, ✏µ
L
arises from the SMEFT correction to GF as extracted from muon decay, see Eq. (A.3),

and is given by

✏µ
L

= v2

C(3)
Hl
11

+ C(3)
Hl
22

� C ll
2112

�
. (A.14)

B Experimental and theoretical input to observables

B.1 Electroweak precision observables

The observables used are listed in Table 11. The Table includes ‘traditional’ EWPOs measured at
LEP and SLC in the first column, while the second column involves several observables measured
at hadron colliders. These additional constraints are needed when going beyond flavor-universal
SMEFT scenarios. Observables that may be less familiar are defined by

Ruc =
�(Z ! ūu) + �(Z ! c̄c)P

q
�(Z ! q̄q)

, RWc =
�(W ! cs)

�(W ! ud) + �(W ! cs)
, R2

� =
�t
�SM
t

, (B.1)
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