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Light quark electroweak couplings poorly constrained  
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 precision has vastly improved in past 3 decades…αS
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…but it remains the most poorly known fundamental 
force constant
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• Limiting factor in precision tests of 
Standard Model, BSM searches 

• 2-4% uncertainty in Higgs 
production cross sections, partial 
decay widths 

• Leading uncertainty in electroweak 
pseudo-observables 
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What inclusive observables can constrain these couplings? 

Can the EIC improve/go beyond existing measurement of these observables? 

What technical challenges are associated with these measurements?
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Neutral current DIS

dσ±
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Cross section difference in polarized DIS
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Charged-current structure functions

FW−

2 = 2x(u + d + s + c . . . )
FW−

3 = 2(u − d − s + c . . . )

gW−

1 = (Δu + Δd + Δs + Δc . . . )
gW−

5 = (−Δu + Δd + Δs − Δc . . . )

• Structure functions for  exchange:  

• Unique combinations of PDFs  flavor separation

W+ u ↔ d, s ↔ c

→
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σ+
r,CC ≈ [xu + (1 − y)2xd]

σ−
r,CC ≈ [xu + (1 − y)2xd ]

At fixed , x y ∝ Q2

EPJC 75, 580 (2015)
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• Limitations: smaller COM energy, no positrons (yet…) 

• Advantages: larger luminosity, full polarization, nuclei

How can inclusive physics at the EIC contribute?
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• Limitations: smaller COM energy, no positrons (yet…) 

• Advantages: larger luminosity, full polarization, nuclei

How can inclusive physics at the EIC contribute?

4 D. M. South, M. Turcato: Review of Searches for Rare Processes and BSM Physics at HERA

periment [15,16] was located, the other in the South Hall
where the ZEUS experiment [17] could be found. The
HERMES experiment [18] in the East Hall studied the
spin structure of the nucleon using collisions of the lepton
beam on an internal polarised gas target. The HERA-B
experiment [19,20] in the West Hall was built to use colli-
sions of the proton beam halo with a wire target in order
to produce B-mesons for the study of CP violation in the
B− B̄ system. The layout of the HERA ring and the sys-
tem of pre-accelerators at DESY is illustrated in the lower
half of figure 3.

The proton beam began as negative hydrogen ions
(H−) accelerated in a linear accelerator to 50 MeV. The
electrons were then stripped off the H− ions to obtain
protons, which were injected into the proton synchrotron
DESY III, accelerated up to 7.5 GeV, and transferred to
the PETRA ring, where they were accelerated to 40 GeV.
The protons were then finally injected in three shots into
the HERA proton storage ring, which is made up of su-
perconducting magnets with a maximum field of 4.65 T,
where they were then accelerated to the nominal beam
energy of 920 GeV.

The electron (positron) pre-acceleration chain began in
a linear accelerator, LINAC I (LINAC II), where the lep-
tons were accelerated up to 450 MeV. The leptons were
then injected into the electron synchrotron DESY II, ac-
celerated to 7 GeV and, similarly to the protons, trans-
ferred to the PETRA ring, where they reached an energy
of 14 GeV. Injection transfer into the HERA ring followed,
where they were accelerated to the nominal lepton-beam
energy of 27.6 GeV using conventional magnets with a
maximum field of 0.165 T.

Up to 210 bunches of leptons and protons were accel-
erated in the HERA ring, spaced at 96 ns intervals. Only
175 bunches were typically used for collisions, where the
remainder were used as pilot bunches to study background
rates arising from interactions of the beams with residual
gas in the beam-pipe. When the proton bunches were com-
pressed by HERA during acceleration, small secondary or
satellite bunches were formed, separated from the main
bunch by up to 8 ns.

The data taking at HERA may be divided into two dis-
tinct periods: HERA I, which was from 1994 until 2000,
and HERA II, from 2003 until 2007. A luminosity upgrade
[21] of the machine took place between the two data taking
periods and brought an observed increase in the luminos-
ity delivered to the experiments from 1.5 × 1031 cm−2 s−1

in the HERA I phase up to a peak value of 5.0 × 1031

cm−2 s−1, achieved during HERA II e−p running. The in-
tegrated luminosity delivered by the HERA accelerator is
shown in figure 4.

The integrated luminosity collected for analysis by H1
and ZEUS amounts to about 0.5 fb−1 per experiment.
This is less than the delivered integrated luminosity, as
quality conditions are applied to the data used for anal-
ysis, such as requirements on the high voltage status of
the various detector subsystems (see section 4). The lumi-
nosity is measured by both experiments from the rate of
the well understood QED Bethe-Heitler process ep → epγ.
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Fig. 4. A summary of the integrated luminosity delivered
by the HERA collider during the HERA I (1992-2000) and
HERA II (2003-2007) phases. The different electron and
positron running periods are indicated, as well as the data
taken at lower proton beam energies in 2007.

As the photon is emitted almost collinear to the incom-
ing electron, it is detected using devices located close to
the beam line beyond the main detectors. A photon de-
tector [22,23,24] is employed by H1 and the ZEUS exper-
iment uses two independent systems, a photon calorime-
ter [25,26,27] and a magnetic spectrometer [28]. A recent
analysis [29] of Compton scattering events provided an
alternative and improved measurement of the luminosity
recorded by the H1 experiment. The integrated luminosi-
ties of the data sets4 are detailed in table 1.

Another feature of the HERA II upgrade was the use
of a longitudinally polarised lepton beam. As the lep-
ton beam circulated in HERA it naturally became trans-
versely polarised via the Sokolov-Ternov effect [30,31].
The typical polarisation build-up time for the HERA ac-
celerator was approximately 40 minutes. At HERA II, spin
rotators installed on either side of the H1 and ZEUS de-
tectors changed the transverse polarisation of the beam
into longitudinal polarisation and back again. The lepton
beam polarisation was measured using two independent
polarimeters, the transverse polarimeter (TPOL) [32] and
the longitudinal polarimeter (LPOL) [33]. Both devices
exploited the spin-dependent cross section for Compton

4 Note that for some analyses presented in this review the
integrated luminosity may vary from this table. For example,
some searches do not require a good polarisation measurement
and this results in a higher luminosity yield from HERA II. In
such cases, the integrated luminosity of the analysed datasets
is given in the text.
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• Limitations: smaller COM energy, no positrons (yet…) 

• Advantages: larger luminosity, full polarization, nuclei

How can inclusive physics at the EIC contribute?

• Neutral current cross sections 

• Charge-current cross sections 

• Double-spin asymmetries 

• Parity-violating asymmetries  
(see Mike’s talk tomorrow)
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Inclusive observables:
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Unpolarized NC cross sections
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Unpolarized NC cross section precision
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CC at EIC
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Light quark couplings at future facilities
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PoS EPS-HEP2021 (2022) 485

• FCC-eh, LHeC: high , ab-1 luminosity, positrons… 

• EIC can’t compete, but it is much closer to being realized… 
can it contribute to existing constraints from HERA?

s
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Origin of proton spin

ΔΣ/2 + ΔG + Lq + Lg =
1
2
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Origin of proton spin
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Origin of proton spin
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A1 =
A∥

D(1 + ηξ)
−

ηA⊥

d(1 + ηξ)

Spin structure functions from double-spin asymmetries

  and  A∥ =
σ⇆ − σ⇉

σ⇆ + σ⇉
A⊥ =

σ→↑ − σ→↓

σ→↑ + σ→↓

≈ g1/F1

• Access  directly from  

• Access  from helium-3 

• Traditional method: measure ,  and apply nuclear corrections 

• Possible EIC method: “tag” neutron scattering with two spectator 
protons in far-forward detector

gp
1 Ap

1

gn
1

Ap
1 A3He

1
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EIC will make major contribution to  at low-ΔG x
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22Projected  from ep collision: Ap
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W
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Projected  from eHe3 collision: An
1

Kinematic cuts:
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* epic_craterlake 

24.06.0 campaign

0.01 ≤ y ≤ 0.95
Q2 ≥ 2 W2 ≥ 4

Kinematic cuts:




, 

* Small set of 

BeAGLE data

0.01 ≤ y ≤ 0.95
Q2 ≥ 2 W2 ≥ 4
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Impact of EIC measurements

From Yellow report…. 
working towards ePIC-
specific impact plots
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Fig. 4 Projected total
uncertainties on the strong
coupling constant αs(M2

Z )
estimated using HERA and
simulated EIC data, compared
with extractions using other data
sets and methods [6,7,32–37],
with the world average
according to the PDG [3] and
with an average from lattice
QCD calculations [31]. Scale
uncertainties are not yet
included in the treatment of
inclusive DIS data for any of the
results shown. The plotting style
follows [32]
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3.4.2 Missing higher order uncertainty

Analyses that are sensitive to strong interactions commonly
include estimates of the missing higher order uncertainty
(MHOU) in the perturbative QCD framework through the
variation of the renormalisation and factorisation scales
(often referred to as a ‘scale uncertainty’). As in many other
dedicated and global analyses, the approach used for the jet
data included here is to obtain a scale uncertainty by varying
the scales by factors of two. However, in the global QCD
fits to extract PDFs [43–46], MHOUs have routinely not
been included in the treatment of inclusive DIS data, since
they are expected to be relatively small in comparison with
other PDF uncertainties. Since the present analysis adopts
a perturbative QCD treatment at NNLO, it is reasonable to
assume that it also has relatively small MHOUs, and the sit-
uation is expected to improve further as the state-of-the-art
moves towards N3LO [47]. Nevertheless, the MHOU asso-
ciated with inclusive data must clearly be finite and can-
not be ignored completely at the very high level of preci-
sion suggested in the present analysis. First studies of their
influence on PDFs have been performed by the NNPDF col-
laboration [30], though the impact on the strong coupling
was not included. There is as yet no consensus how to esti-
mate MHOUs for inclusive DIS. Some discussion of possible
methods is supplied in the following.

In a previous analysis at NLO accuracy [48], the H1
collaboration made a combined fit of inclusive-only DIS
data from HERA and from the fixed target BCDMS experi-
ment. The strong coupling was found to be well-constrained,
with the BCDMS data playing a similar role to the EIC
pseuododata here. A MHOU was obtained by varying the
factorisation and renormalisation scales in the usual way,

resulting in a large uncertainty at the level of 4%. However, as
shown in the context of PDF uncertainties in [49] (Appendix
B), applying this method in an NLO analysis results in an esti-
mate of the MHOU that is larger than the difference between
NLO and NNLO results by a factor as large as 20–50.
A similarly conservative approach might be to fit pseudo-
data simulated using QCD evolution at NNLO using an NLO
framework and vice versa, taking the MHOU on αs(M2

Z ) to
be the deviation of the extracted αs(M2

Z ) from the input.
Applying this method to the present analysis also results in
an uncertainty of around 4%, but is also likely to be a very
significant over-estimate.

A potentially promising approach is suggested by the
NNPDF group [49]. First a theory covariance matrix is com-
puted, typically using scale variations to include missing
higher order uncertainties. Including the covariance matrix
explicitly in the PDF fit ensures that the theory uncertainties
propagate properly, including those associated with αs(M2

Z )

if it is a fit parameter. However, until a consensus around a
well-developed method for including inclusive data such as
this emerges, the MHOU in the present αs(M2

Z ) extraction
remains to be evaluated.

4 Conclusions and outlook

This work shows that the strong coupling can be determined
with potentially world-leading precision in a simultaneous fit
of PDFs and αs(M2

Z ) at NNLO in perturbative QCD, using
only inclusive DIS data from HERA and simulated data from
the EIC. The estimated uncertainty on the strong coupling
when including one year’s data at each of the five expected
EIC

√
s values is better than 0.4%, substantially improving

123

EPJC 83, 1011 (2023)

PRD 110, 074004 (2024)

Unpolarized cross sections Bjorken sum rule



24

Eur. Phys. J. C (2023) 83 :1011 Page 7 of 9 1011

Fig. 4 Projected total
uncertainties on the strong
coupling constant αs(M2

Z )
estimated using HERA and
simulated EIC data, compared
with extractions using other data
sets and methods [6,7,32–37],
with the world average
according to the PDG [3] and
with an average from lattice
QCD calculations [31]. Scale
uncertainties are not yet
included in the treatment of
inclusive DIS data for any of the
results shown. The plotting style
follows [32]

0.115 0.12 0.125 0.13
)

Z
2(Msα

Hadron Colliders
Category Averages PDG 2022
HERA Data
Lattice Average FLAG 2021
World Average PDG 2022
HERA and EIC Data

 0.0004±
 0.0007±
 0.0009±0.1179
 0.0008±0.1184
 0.0031±0.1156
 0.0030±0.1166
 0.0018±0.1142
 0.0028±0.1208
 0.0031±0.1171
 0.0020±0.1162
 0.0037±0.1181
 0.0018±0.1178
 0.0034±0.1177
 0.0016±0.1188
 0.0016±0.1166
 0.0021±0.1185

HERA and EIC Inclusive Data
HERA Incl + Jet and EIC Incl Data
World Average
Lattice Average
H1 and ZEUS Inclusive + Jet Data
H1 Inclusive Jet/Dijet Data 
ZEUS Inclusive Jet/Dijet Data
Electroweak Fit

 Jets and Shapes- e+e
PDF Fits

 Bound StatesQQ
 Decaysτ
 Inclusivett

W, Z Inclusive
CMS Jets
ATLAS ATEEC

3.4.2 Missing higher order uncertainty

Analyses that are sensitive to strong interactions commonly
include estimates of the missing higher order uncertainty
(MHOU) in the perturbative QCD framework through the
variation of the renormalisation and factorisation scales
(often referred to as a ‘scale uncertainty’). As in many other
dedicated and global analyses, the approach used for the jet
data included here is to obtain a scale uncertainty by varying
the scales by factors of two. However, in the global QCD
fits to extract PDFs [43–46], MHOUs have routinely not
been included in the treatment of inclusive DIS data, since
they are expected to be relatively small in comparison with
other PDF uncertainties. Since the present analysis adopts
a perturbative QCD treatment at NNLO, it is reasonable to
assume that it also has relatively small MHOUs, and the sit-
uation is expected to improve further as the state-of-the-art
moves towards N3LO [47]. Nevertheless, the MHOU asso-
ciated with inclusive data must clearly be finite and can-
not be ignored completely at the very high level of preci-
sion suggested in the present analysis. First studies of their
influence on PDFs have been performed by the NNPDF col-
laboration [30], though the impact on the strong coupling
was not included. There is as yet no consensus how to esti-
mate MHOUs for inclusive DIS. Some discussion of possible
methods is supplied in the following.

In a previous analysis at NLO accuracy [48], the H1
collaboration made a combined fit of inclusive-only DIS
data from HERA and from the fixed target BCDMS experi-
ment. The strong coupling was found to be well-constrained,
with the BCDMS data playing a similar role to the EIC
pseuododata here. A MHOU was obtained by varying the
factorisation and renormalisation scales in the usual way,

resulting in a large uncertainty at the level of 4%. However, as
shown in the context of PDF uncertainties in [49] (Appendix
B), applying this method in an NLO analysis results in an esti-
mate of the MHOU that is larger than the difference between
NLO and NNLO results by a factor as large as 20–50.
A similarly conservative approach might be to fit pseudo-
data simulated using QCD evolution at NNLO using an NLO
framework and vice versa, taking the MHOU on αs(M2

Z ) to
be the deviation of the extracted αs(M2

Z ) from the input.
Applying this method to the present analysis also results in
an uncertainty of around 4%, but is also likely to be a very
significant over-estimate.

A potentially promising approach is suggested by the
NNPDF group [49]. First a theory covariance matrix is com-
puted, typically using scale variations to include missing
higher order uncertainties. Including the covariance matrix
explicitly in the PDF fit ensures that the theory uncertainties
propagate properly, including those associated with αs(M2

Z )

if it is a fit parameter. However, until a consensus around a
well-developed method for including inclusive data such as
this emerges, the MHOU in the present αs(M2

Z ) extraction
remains to be evaluated.

4 Conclusions and outlook

This work shows that the strong coupling can be determined
with potentially world-leading precision in a simultaneous fit
of PDFs and αs(M2

Z ) at NNLO in perturbative QCD, using
only inclusive DIS data from HERA and simulated data from
the EIC. The estimated uncertainty on the strong coupling
when including one year’s data at each of the five expected
EIC

√
s values is better than 0.4%, substantially improving
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Unpolarized cross sections Bjorken sum rule

Global fit of unpolarized, polarized observables?  (Win Lin, SBU)
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Requirements for high-precision cross sections  
and asymmetries

• Kinematic reconstruction 

• Electron identification  

• Luminosity monitoring



26

caloResFit
Entries  993098
Mean   0.9862
Std Dev    0.04509

0.75 0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2 1.250

20

40

60

80

100

120
310×

 < -2.20ηCalorimetry, -2.60 < 
caloResFit

Entries  2007999
Mean   0.9796
Std Dev    0.02883

 < -2.20ηCalorimetry, -2.60 < 
trackResFit

Entries  993098
Mean   0.9921
Std Dev    0.07322

0.75 0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2 1.250

10000

20000

30000

40000

50000

60000

70000

 < -2.20ηTracking, -2.60 < 
trackResFit

Entries  2007999
Mean    0.992
Std Dev    0.0448

 < -2.20ηTracking, -2.60 < 

Electron momentum resolutions

Calorimeter resolution 
better in endcap

ePIC 
ep 18x275 GeV 
Pythia8 NC DIS



26

caloResFit
Entries  993098
Mean   0.9862
Std Dev    0.04509

0.75 0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2 1.250

20

40

60

80

100

120
310×

 < -2.20ηCalorimetry, -2.60 < 
caloResFit

Entries  2007999
Mean   0.9796
Std Dev    0.02883

 < -2.20ηCalorimetry, -2.60 < 
trackResFit

Entries  993098
Mean   0.9921
Std Dev    0.07322

0.75 0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2 1.250

10000

20000

30000

40000

50000

60000

70000

 < -2.20ηTracking, -2.60 < 
trackResFit

Entries  2007999
Mean    0.992
Std Dev    0.0448

 < -2.20ηTracking, -2.60 < 

Electron momentum resolutions

Calorimeter resolution 
better in endcap

ePIC 
ep 18x275 GeV 
Pythia8 NC DIS

caloResFit
Entries  3026389
Mean    0.937
Std Dev    0.05476

0.75 0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2 1.250

20

40

60

80

100

310×

 < -0.20ηCalorimetry, -0.95 < 
caloResFit

Entries  2503533
Mean   0.9569
Std Dev    0.03631

 < -0.20ηCalorimetry, -0.95 < 
trackResFit

Entries  3026389
Mean    0.987
Std Dev    0.04469

0.75 0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2 1.250

20

40

60

80

100

120

140

160

180

200

220
310×

 < -0.20ηTracking, -0.95 < 
trackResFit

Entries  2503533
Mean   0.9908
Std Dev    0.04166

 < -0.20ηTracking, -0.95 < 

pgen/prec pgen/prec

Tracking resolution 
better in barrel



27

Traditional reconstruction methods use subset of 
lepton, hadron quantities
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Traditional reconstruction methods use subset of 
lepton, hadron quantities

• Electron 
, Q2 (E′ e, θe) y (E′ e, θe)

• Jacquet-Blondel 
,  Q2 (δh, pT,h) y (δh, pT,h)
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Traditional reconstruction methods use subset of 
lepton, hadron quantities

Le
pt

on

, E′ e θe

H
ad

ro
n

δh = ∑i (Ei − pz,i)

pT,h = (∑i
px,i)

2
+ (∑i

py,i)
2

cos γh =
p2

T,h − δ2
h

p2
T,h + δ2

h

• Neutral-current analyses can leverage 
over-constrained kinematics to 
optimize resolution 

• Jacquet-Blondel only option for 
charged-current analyses
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More advanced reconstruction methods



29

More advanced reconstruction methods

• Kinematic fitting: reconstruct  from  using 
likelihood function (Stephen Maple, et al.)

λ = {xB, y, Eγ} D = {E′ e, θ′ e, δh, pT,h}

Proof of 
concept:  
Smeared 
DJANGOH 
events with 
ISR

15

Electron method e-Σ method Kinematic Fit

0 < x < 0.02 0.02 < x < 0.2 0.2 < x < 0.45

0 < y < 0.2 0.2 < y < 0.5 0.5 < y < 1

Comparison to to conventional methods – All Channels

ISR present!
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More advanced reconstruction methods

• Kinematic fitting: reconstruct  from  using 
likelihood function (Stephen Maple, et al.)

λ = {xB, y, Eγ} D = {E′ e, θ′ e, δh, pT,h}

• Machine learning: use simulation to train neural network 
(M. Diefenthaler, A. Farhat, A. Verbytskyi and Y. Xu)
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More advanced reconstruction methods

• Kinematic fitting: reconstruct  from  using 
likelihood function (Stephen Maple, et al.)

λ = {xB, y, Eγ} D = {E′ e, θ′ e, δh, pT,h}

• Machine learning: use simulation to train neural network 
(M. Diefenthaler, A. Farhat, A. Verbytskyi and Y. Xu)

• Particle-flow: optimize combination of all detector information (Derek 
Anderson, et al.)

https://protect.checkpoint.com/v2/___https://arxiv.org/abs/2108.11638___.YzJ1OnN0b255YnJvb2s6YzpnOjBiZjJjYTZjOWVmN2FjZGU3MmY0MjIxMzkxYzFiNTllOjY6OWQzMDo4MGRhNmQyNjU4OTdhNDlmZTU0ODMyMTFhN2Q3NzhkOGZiMWVlMjg0OWUxODY0OGI5YWY1MTlhMzFmNWE4NWE4OnA6VDpO
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Impact of pion contamination on observables

Cross sections 
(correct contamination): 

(
Δ (σr,NC)

σr,NC )
π−

= Δfπ/e

=
=
≈ 0.1 × fπ/e

• Pions passing all electron ID cuts give contamination  
• Contamination can be corrected or treated as dilution

fπ/e
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Impact of pion contamination on observables

Cross sections 
(correct contamination): 

(
Δ (σr,NC)

σr,NC )
π−

= Δfπ/e

=
=
≈ 0.1 × fπ/e

Asymmetries 
(treat as dilution factor): 

( σAe

Ae )
π−

= (Δfπ/e)2 + (fπ/e
|Aπ | + ΔAπ

Ae )
2

=
=
=
≈ 0.1 × fπ/e . . .1 × fπ/e

• Pions passing all electron ID cuts give contamination  
• Contamination can be corrected or treated as dilution

fπ/e

Large ,  
nonzero

Ae

|Aπ | < Ae
Small ,  Ae

|Aπ | ≈ 0
Two regimes:
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Electron to pion ratios
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• Signal  from DJANGOH DIS 
• Background  from DJANGOH DIS, Pythia6 photoproduction  (  < 2 GeV2)
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Pion suppression cuts
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• Effective veto of photoproduction, ISR 
• PID (hpDIRC, pfRICH, dRICH, ToF) 

• Critical rejection at low momentum 
• Shower shape 

• Imaging barrel calorimeter

E/p ≈ 1

δ = ∑
i

(Ei − pz,i) = 2Ee
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Required suppression for 90% purity
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•  cut can reduce required 
suppression by up to 20x   

• Tightness of cut depends on 
resolution of hadronic final state 
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HERA demonstrated luminosity measurement with 
bremsstrahlung
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HERA demonstrated luminosity measurement with 
bremsstrahlung

• Pure QED process with large, precisely calculable 
cross section

• Precision:
• 1% at HERA-I, 1.7% at HERA-II
• EIC goal:  1% (abs.), 10-4 (rel. bunch-to-bunch)≤
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Luminosity measurement by bremsstrahlung photons

Large cross section driven by QED, photons in a narrow angular cone along electron beam
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HERA demonstrated luminosity measurement with 
bremsstrahlung

• Pure QED process with large, precisely calculable 
cross section

• Precision:
• 1% at HERA-I, 1.7% at HERA-II
• EIC goal:  1% (abs.), 10-4 (rel. bunch-to-bunch)≤

Challenges at EIC:
• Event pileup, even worse for heavy ions ( )σBrem ∝ Z2

• Increased synchrotron radiation background 
• Large integrated doses
• High bunch rate requires fast timing/readout 
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Address challenges with two-detector luminosity monitor

Pair spectrometer: 
detect  pairs 

produced in exit 
window

e±
Direct photon 

detector: detect 
bremsstrahlung 

photons
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Address challenges with two-detector luminosity monitor

Pair spectrometer: 
detect  pairs 

produced in exit 
window

e±
Direct photon 

detector: detect 
bremsstrahlung 

photons

• Both systems to use tungsten/fiber-array calorimeters  
• Fibers read out with silicon photomultipliers (SiPM) 
• Mesh design allows shower profile reconstruction 

 better disentangle multi-hit events→
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Theory systematics 

• Bin-centering  
• Radiative corrections  

• Efforts to unify QED radiative effects with QCD radiation 
Liu, Melnitchouk, Qiu, Sato [PRD 104, 094033 (2021)] 
Cammarota, Qiu, Watanabe, Zhang [arXiv:2505.23487] 

• Electroweak radiation… 
• Binned unfolding of experiment vs. event-by-event folding of theory

Δ

experiment

theory
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https://protect.checkpoint.com/v2/___https://journals.aps.org/prd/abstract/10.1103/PhysRevD.104.094033___.YzJ1OnN0b255YnJvb2s6YzpnOjBiZjJjYTZjOWVmN2FjZGU3MmY0MjIxMzkxYzFiNTllOjY6MTc4OTozNGQwMTgxMjY1ZTlmNzUzMThlNGNhNTA2YzY3NjA0ZDU0YmJhNDhiNGYxOGY4ZGE1Y2ViNTJiYmQxYmQ5ZDk0OnA6VDpO
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Summary

• Inclusive reactions are the “bread and butter” of the EIC 

• Beyond core EIC science, inclusive physics can contribute to EW and BSM 
physics searches  

• High-precision extractions of  can be performed with EIC measurements 

• Polarized and charged-current measurement at the EIC are sensitive to EW 
couplings, but sensitivity studies are needed

αS


