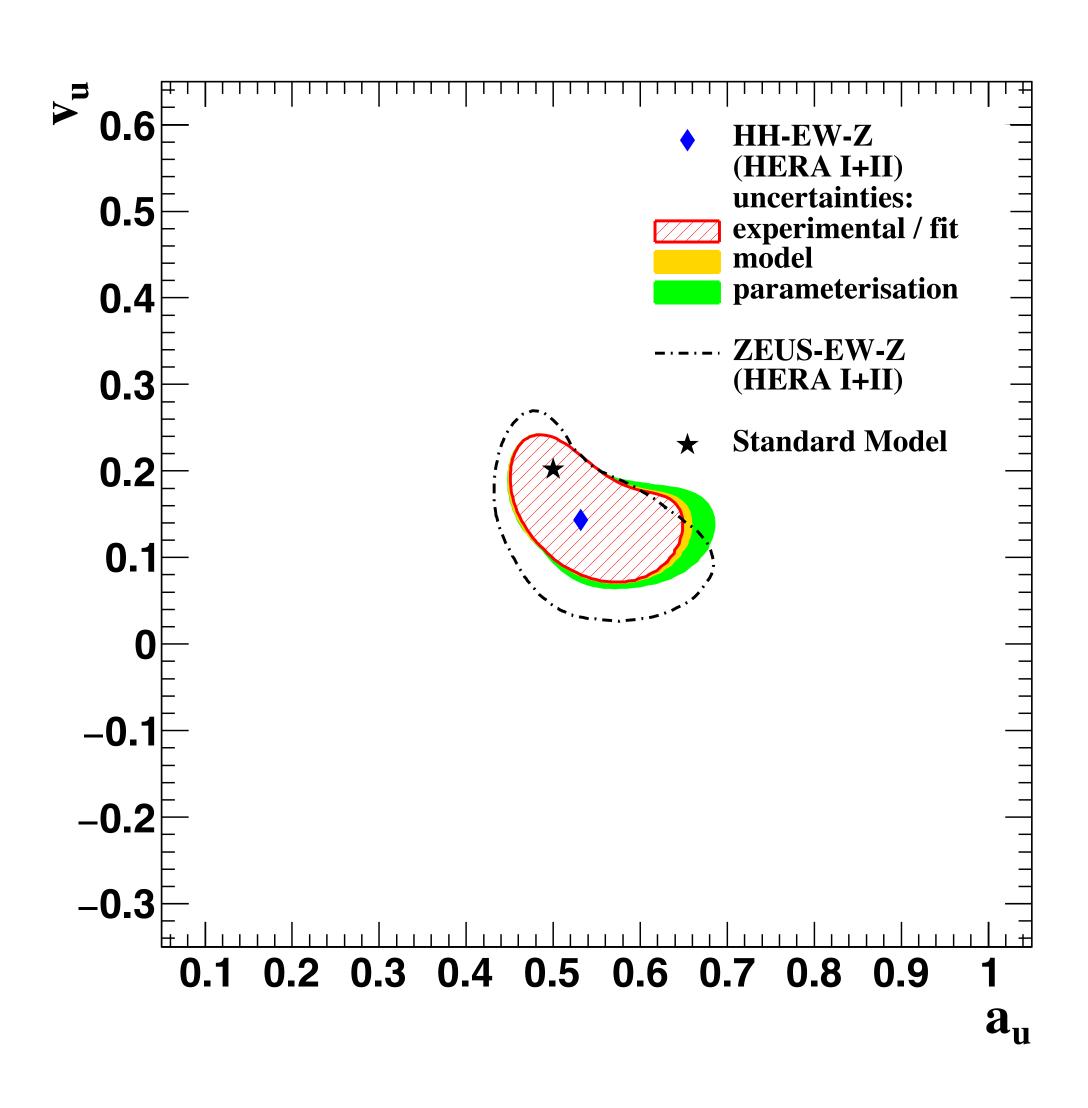
Weak & strong couplings with inclusive observables at the EIC

Tyler Kutz JGU Mainz

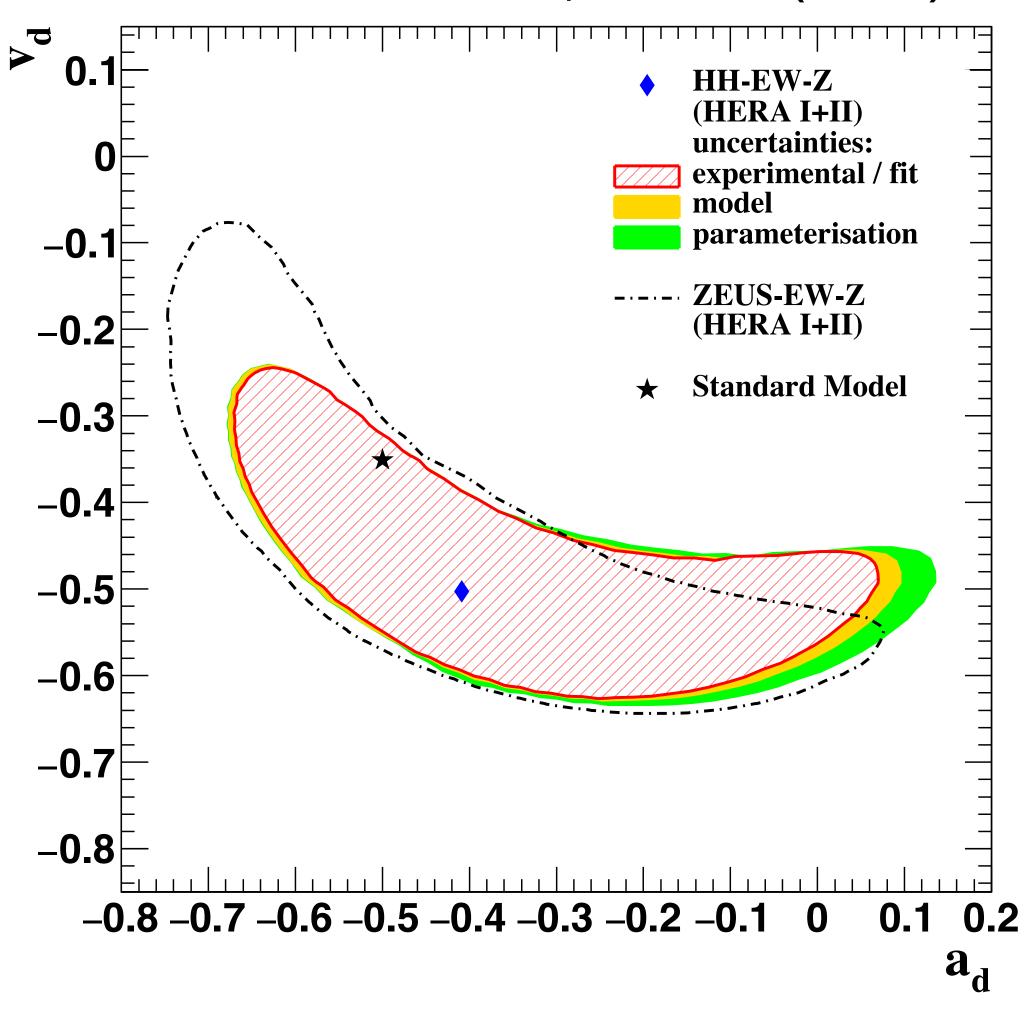
New opportunities for Beyond Standard Model searches at the EIC July 21-24, 2025

Stony Brook University, NY

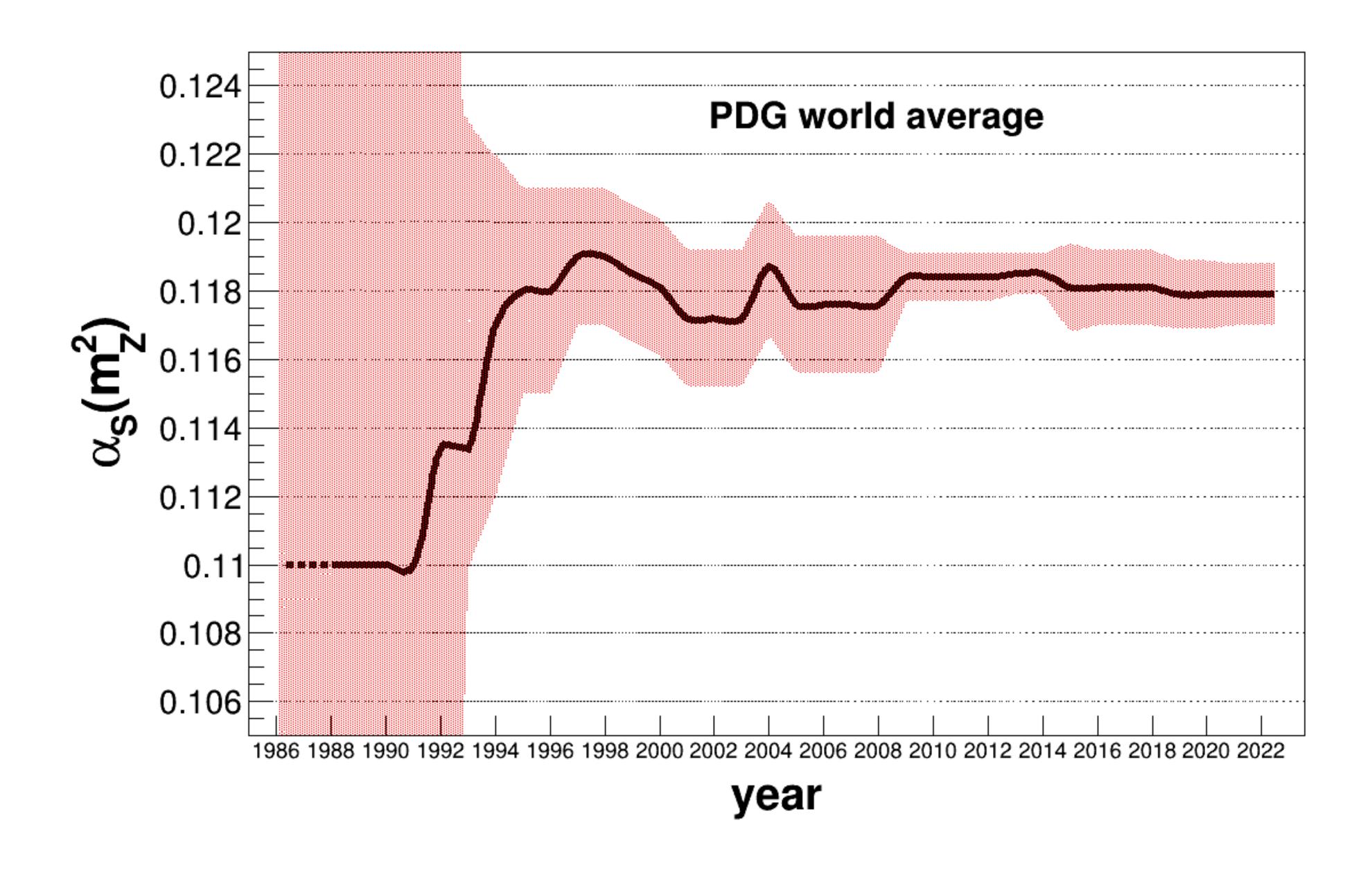
Light quark electroweak couplings poorly constrained



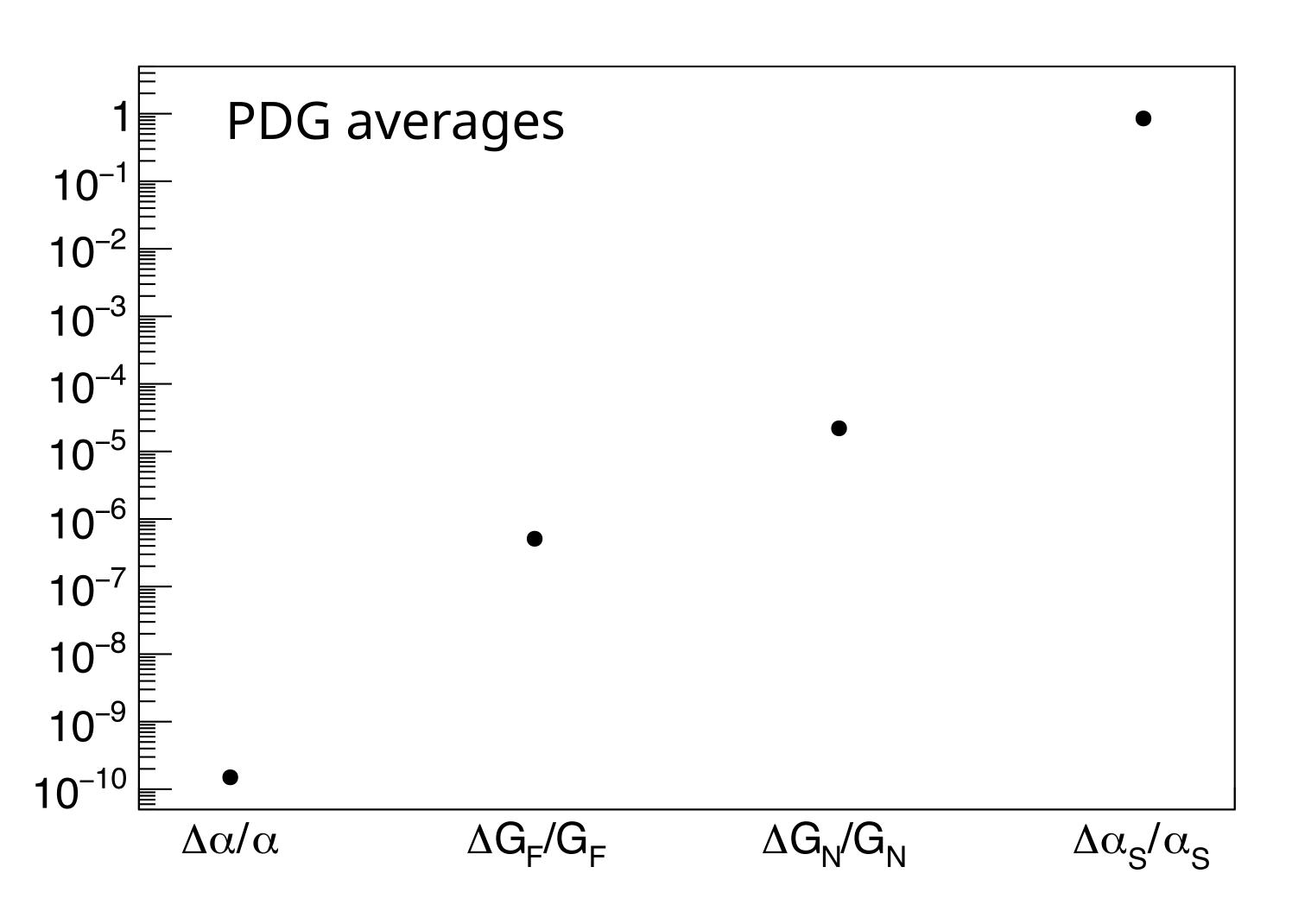
PRD 93, 092002 (2016)



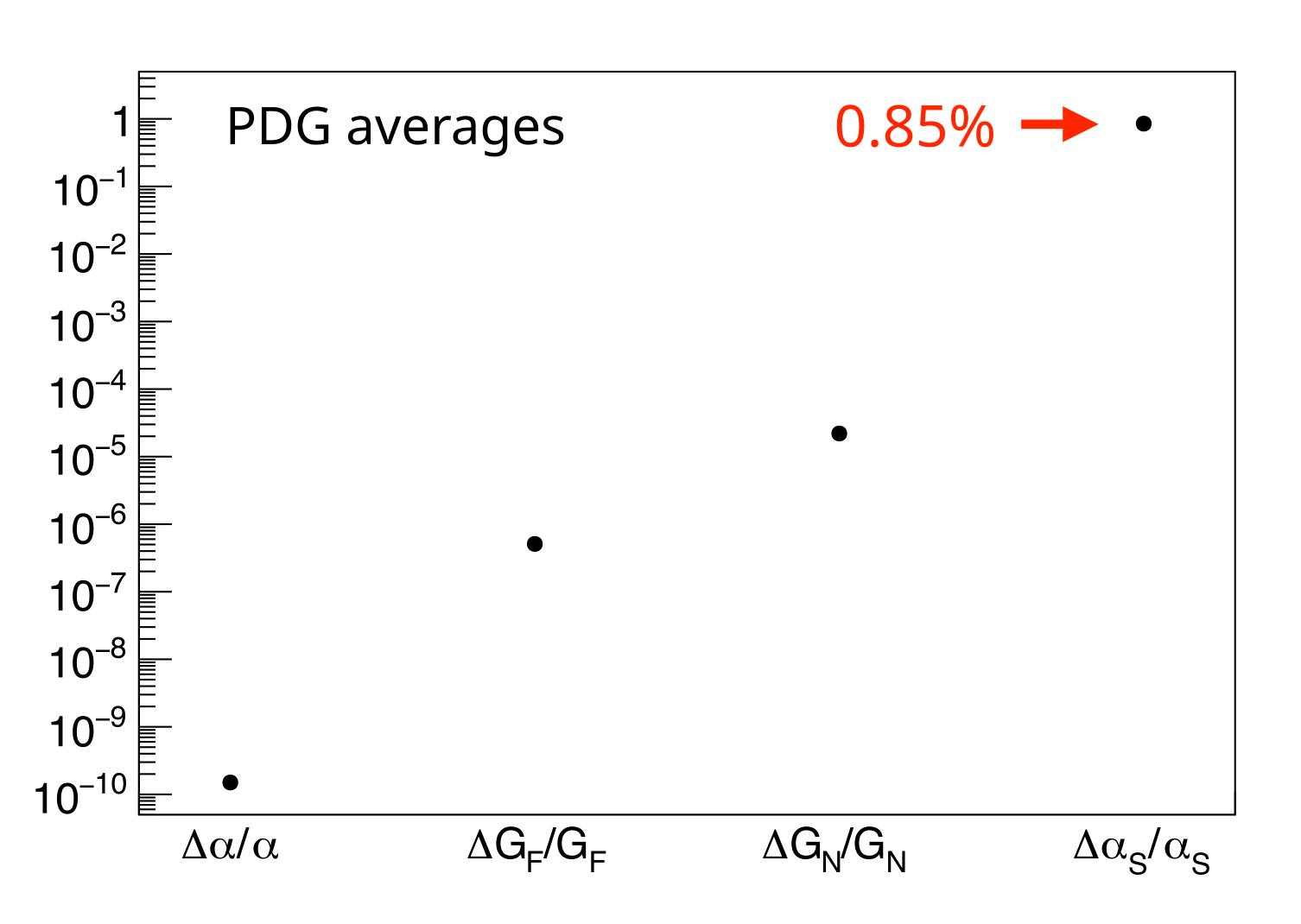
α_S precision has vastly improved in past 3 decades...



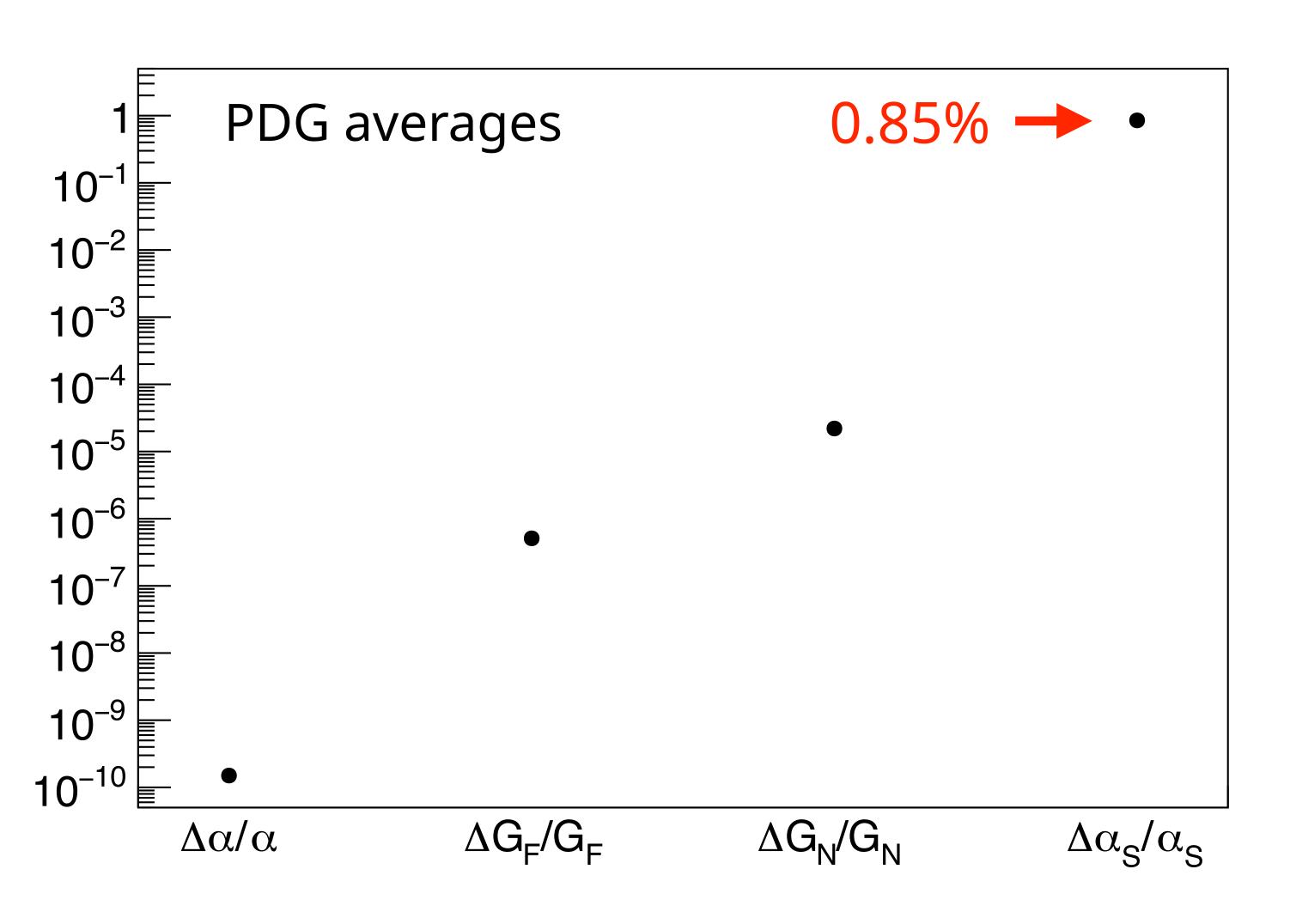
...but it remains the most poorly known fundamental force constant



...but it remains the most poorly known fundamental force constant



...but it remains the most poorly known fundamental force constant



- Limiting factor in precision tests of Standard Model, BSM searches
 - 2-4% uncertainty in Higgs production cross sections, partial decay widths
 - Leading uncertainty in electroweak pseudo-observables

What inclusive observables can constrain these couplings?

Can the EIC improve/go beyond existing measurement of these observables?

What technical challenges are associated with these measurements?

$$\frac{\mathrm{d}\sigma_{NC}^{\pm}}{\mathrm{d}x\,\mathrm{d}Q^{2}} = \frac{2\pi\alpha^{2}}{xyQ^{4}} \left[Y_{+}\tilde{F}_{2} \mp Y_{-}x\tilde{F}_{3} - y^{2}\tilde{F}_{L} \right] \qquad Y_{\pm} \equiv 1 \pm (1 - y)^{2}$$

$$\frac{\mathrm{d}\sigma_{NC}^{\pm}}{\mathrm{d}x\,\mathrm{d}O^2} = \frac{2\pi\alpha^2}{xyO^4} \left[Y_+ \tilde{F}_2 \mp Y_- x \tilde{F}_3 - y^2 \tilde{F}_L \right]$$

$$Y_{\pm} \equiv 1 \pm (1 - y)^2$$

$$\tilde{F}_{2}^{\pm} = F_{2}^{\gamma} - (g_{V}^{e} \pm P_{e}g_{A}^{e}) \frac{Q^{2}}{Q^{2} + M_{Z}^{2}} F_{2}^{\gamma Z} \dots
x \tilde{F}_{3}^{\pm} = - (g_{A}^{e} \pm P_{e}g_{V}^{e}) \frac{Q^{2}}{Q^{2} + M_{Z}^{2}} x F_{3}^{\gamma Z} \dots$$

$$\frac{\mathrm{d}\sigma_{NC}^{\pm}}{\mathrm{d}x\,\mathrm{d}O^2} = \frac{2\pi\alpha^2}{xvO^4} \left[Y_+ \tilde{F}_2 \mp Y_- x \tilde{F}_3 - y^2 \tilde{F}_L \right]$$

$$Y_{\pm} \equiv 1 \pm (1 - y)^2$$

$$\tilde{F}_{2}^{\pm} = F_{2}^{\gamma} - (g_{V}^{e} \pm P_{e}g_{A}^{e}) \frac{Q^{2}}{Q^{2} + M_{Z}^{2}} F_{2}^{\gamma Z} \dots$$

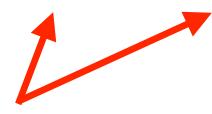
$$x\tilde{F}_{3}^{\pm} = - (g_{A}^{e} \pm P_{e}g_{V}^{e}) \frac{Q^{2}}{Q^{2} + M_{Z}^{2}} xF_{3}^{\gamma Z} \dots$$

Electron vector & axial couplings

$$\frac{\mathrm{d}\sigma_{NC}^{\pm}}{\mathrm{d}x\,\mathrm{d}Q^2} = \frac{2\pi\alpha^2}{xyQ^4} \left[Y_+ \tilde{F}_2 \mp Y_- x \tilde{F}_3 - y^2 \tilde{F}_L \right]$$

$$\tilde{F}_{2}^{\pm} = F_{2}^{\gamma} - (g_{V}^{e} \pm P_{e}g_{A}^{e}) \frac{Q^{2}}{Q^{2} + M_{7}^{2}} F_{2}^{\gamma Z} \dots$$

$$x\tilde{F}_{3}^{\pm} = -(g_{A}^{e} \pm P_{e}g_{V}^{e})\frac{Q^{2}}{Q^{2} + M_{Z}^{2}}xF_{3}^{\gamma Z}...$$



Electron vector & axial couplings

$$Y_{\pm} \equiv 1 \pm (1 - y)^2$$

$$F_2^{\gamma} = x \sum_{q} e_q^2 (q + \overline{q})$$

$$F_2^{\gamma Z} = x \sum_{q} 2e_q g_V^q (q + \overline{q})$$

$$F_3^{\gamma Z} = \sum_{q} 2e_q g_A^q (q - \overline{q})$$

$$\frac{\mathrm{d}\sigma_{NC}^{\pm}}{\mathrm{d}x\,\mathrm{d}Q^2} = \frac{2\pi\alpha^2}{xyQ^4} \left[Y_+ \tilde{F}_2 \mp Y_- x \tilde{F}_3 - y^2 \tilde{F}_L \right]$$

$$\tilde{F}_{2}^{\pm} = F_{2}^{\gamma} - (g_{V}^{e} \pm P_{e}g_{A}^{e}) \frac{Q^{2}}{Q^{2} + M_{7}^{2}} F_{2}^{\gamma Z} \dots$$

$$x\tilde{F}_{3}^{\pm} = -(g_{A}^{e} \pm P_{e}g_{V}^{e})\frac{Q^{2}}{Q^{2} + M_{Z}^{2}}xF_{3}^{\gamma Z}...$$

Electron vector & axial couplings

$$Y_{\pm} \equiv 1 \pm (1 - y)^2$$

$$F_2^{\gamma} = x \sum_{q} e_q^2 (q + \overline{q})$$

$$F_2^{\gamma Z} = x \sum_{q} 2e_q g_V^q (q + \overline{q})$$

$$F_3^{\gamma Z} = \sum_{q} 2e_q g_A^q (q - \overline{q})$$

Quark vector & axial couplings

$$\Delta \sigma = \sigma(\lambda_n = -1, \lambda_{\ell}) - \sigma(\lambda_n = 1, \lambda_{\ell})$$

$$\frac{\mathrm{d}\Delta\sigma_{NC}^{\pm}}{\mathrm{d}x\,\mathrm{d}Q^2} = \frac{8\pi\alpha^2}{yQ^4} \left[-Y_+ \tilde{g}_5 \mp Y_- \tilde{g}_1 \right]$$

$$\Delta \sigma = \sigma(\lambda_n = -1, \lambda_\ell) - \sigma(\lambda_n = 1, \lambda_\ell)$$

$$\frac{\mathrm{d}\Delta\sigma_{NC}^{\pm}}{\mathrm{d}x\,\mathrm{d}Q^2} = \frac{8\pi\alpha^2}{vQ^4} \left[-Y_+ \tilde{g}_5 \mp Y_- \tilde{g}_1 \right]$$

$$g_1^{\gamma} = \frac{1}{2} \sum_{q} e_q^2 (\Delta q + \Delta \overline{q})$$

$$g_1^{\gamma Z} = \sum_{q} 2e_q g_V^q (q + \overline{q})$$

$$g_5^{\gamma Z} = \sum_{q} e_q g_A^q (\Delta q - \Delta \overline{q})$$

$$\Delta \sigma = \sigma(\lambda_n = -1, \lambda_\ell) - \sigma(\lambda_n = 1, \lambda_\ell)$$

$$\frac{\mathrm{d}\Delta\sigma_{NC}^{\pm}}{\mathrm{d}x\,\mathrm{d}Q^2} = \frac{8\pi\alpha^2}{yQ^4} \left[-Y_+ \tilde{g}_5 \mp Y_- \tilde{g}_1 \right]$$

$$\Delta q =$$

$$g_1^{\gamma} = \frac{1}{2} \sum_{q} e_q^2 (\Delta q + \Delta \overline{q})$$

$$g_1^{\gamma Z} = \sum_{q} 2e_q g_V^q (q + \overline{q})$$

$$g_5^{\gamma Z} = \sum_{q} e_q g_A^q (\Delta q - \Delta \overline{q})$$

$$\Delta \sigma = \sigma(\lambda_n = -1, \lambda_\ell) - \sigma(\lambda_n = 1, \lambda_\ell)$$

$$\frac{\mathrm{d}\Delta\sigma_{NC}^{\pm}}{\mathrm{d}x\,\mathrm{d}Q^2} = \frac{8\pi\alpha^2}{yQ^4} \left[-Y_+ \tilde{g}_5 \mp Y_- \tilde{g}_1 \right]$$

$$\Delta q =$$

$$g_1^{\gamma} = \frac{1}{2} \sum_{q} e_q^2 (\Delta q + \Delta \overline{q})$$

$$g_1^{\gamma Z} = \sum_{q} 2e_q g_V^q (q + \overline{q})$$

$$g_5^{\gamma Z} = \sum_{q} e_q g_A^q (\Delta q - \Delta \overline{q})$$

$$\Delta g =$$

Charged-current structure functions

$$F_2^{W^-} = 2x(u + \overline{d} + \overline{s} + c \dots)$$

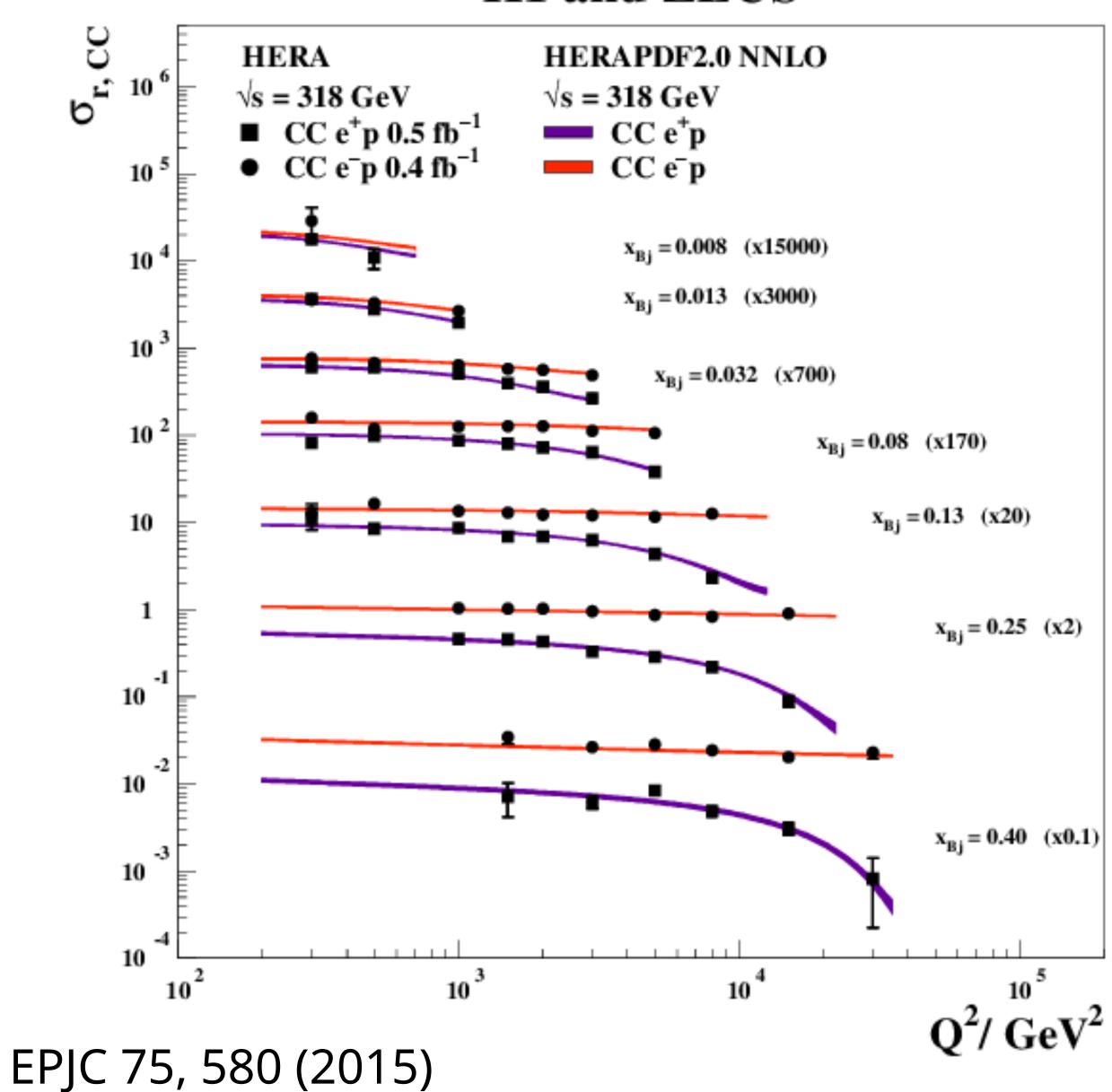
$$F_3^{W^-} = 2(u - \overline{d} - \overline{s} + c \dots)$$

$$g_1^{W^-} = (\Delta u + \Delta \overline{d} + \Delta \overline{s} + \Delta c \dots)$$

$$g_5^{W^-} = (-\Delta u + \Delta \overline{d} + \Delta \overline{s} - \Delta c \dots)$$

- Structure functions for W^+ exchange: $u \leftrightarrow d, s \leftrightarrow c$
- Unique combinations of PDFs → flavor separation

H1 and ZEUS

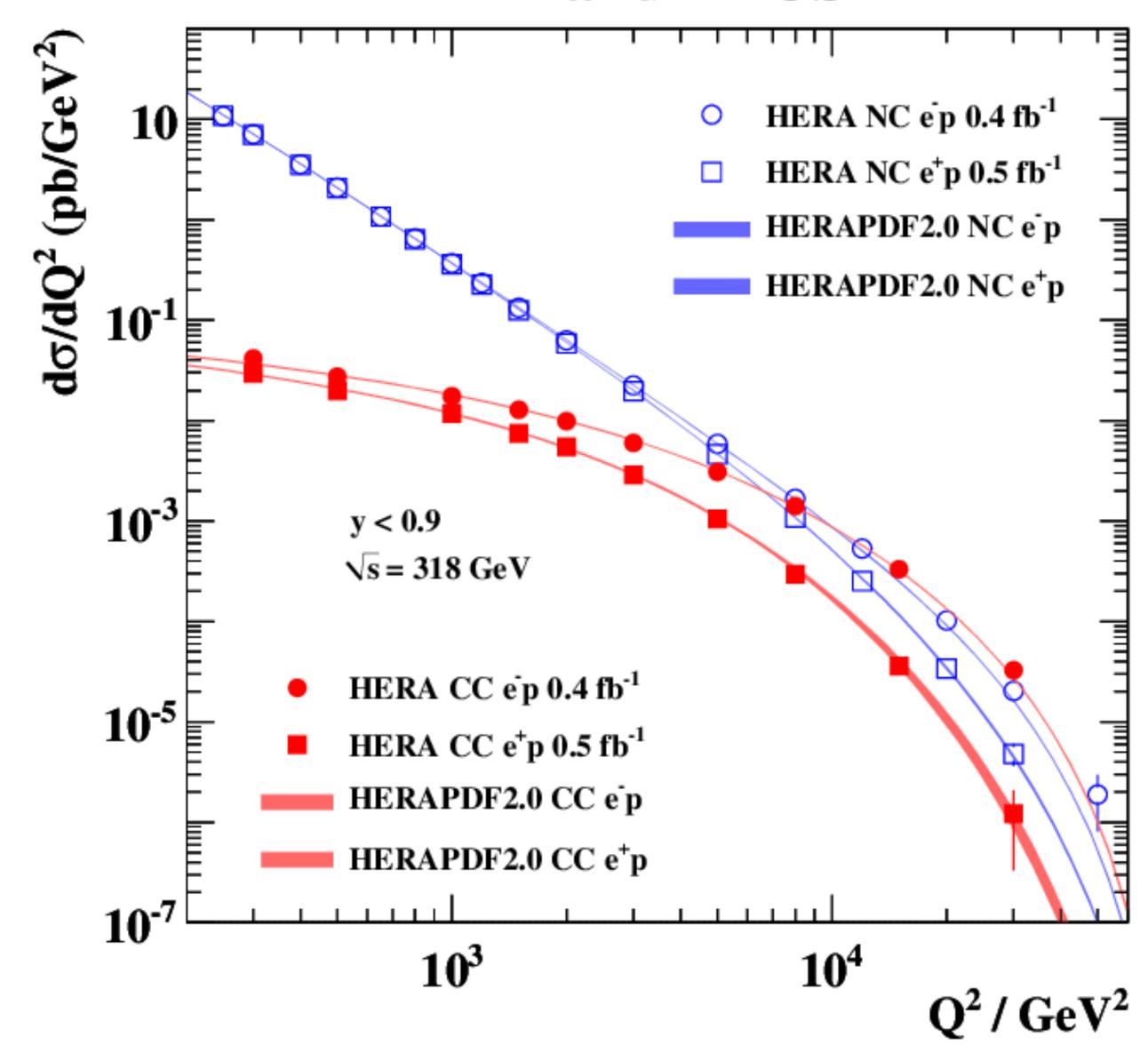


$$\sigma_{r,CC}^{+} \approx \left[x\overline{u} + (1-y)^{2}xd \right]$$

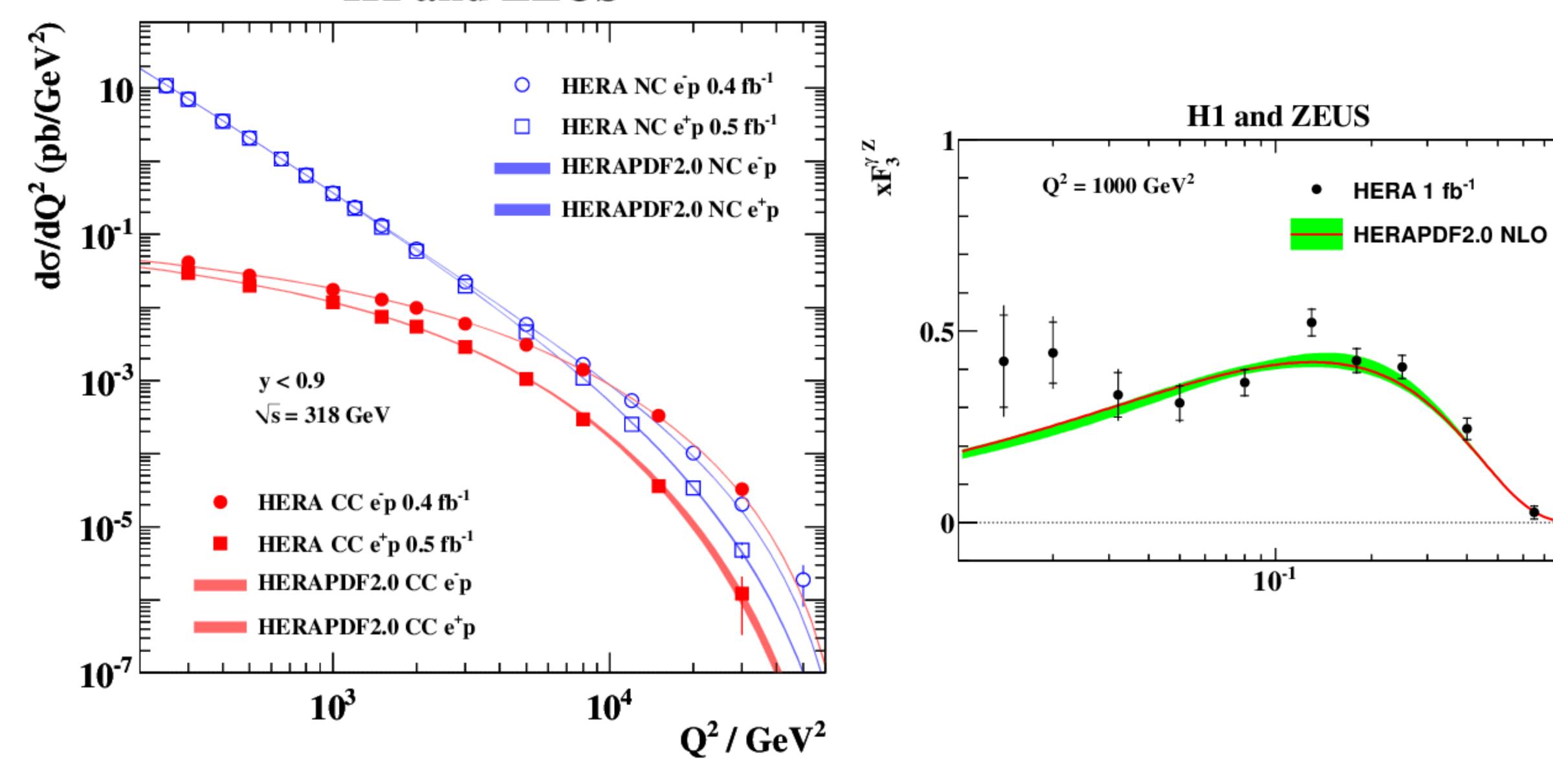
$$\sigma_{r,CC}^{-} \approx \left[xu + (1-y)^{2}x\overline{d} \right]$$

At fixed x, $y \propto Q^2$

H1 and ZEUS

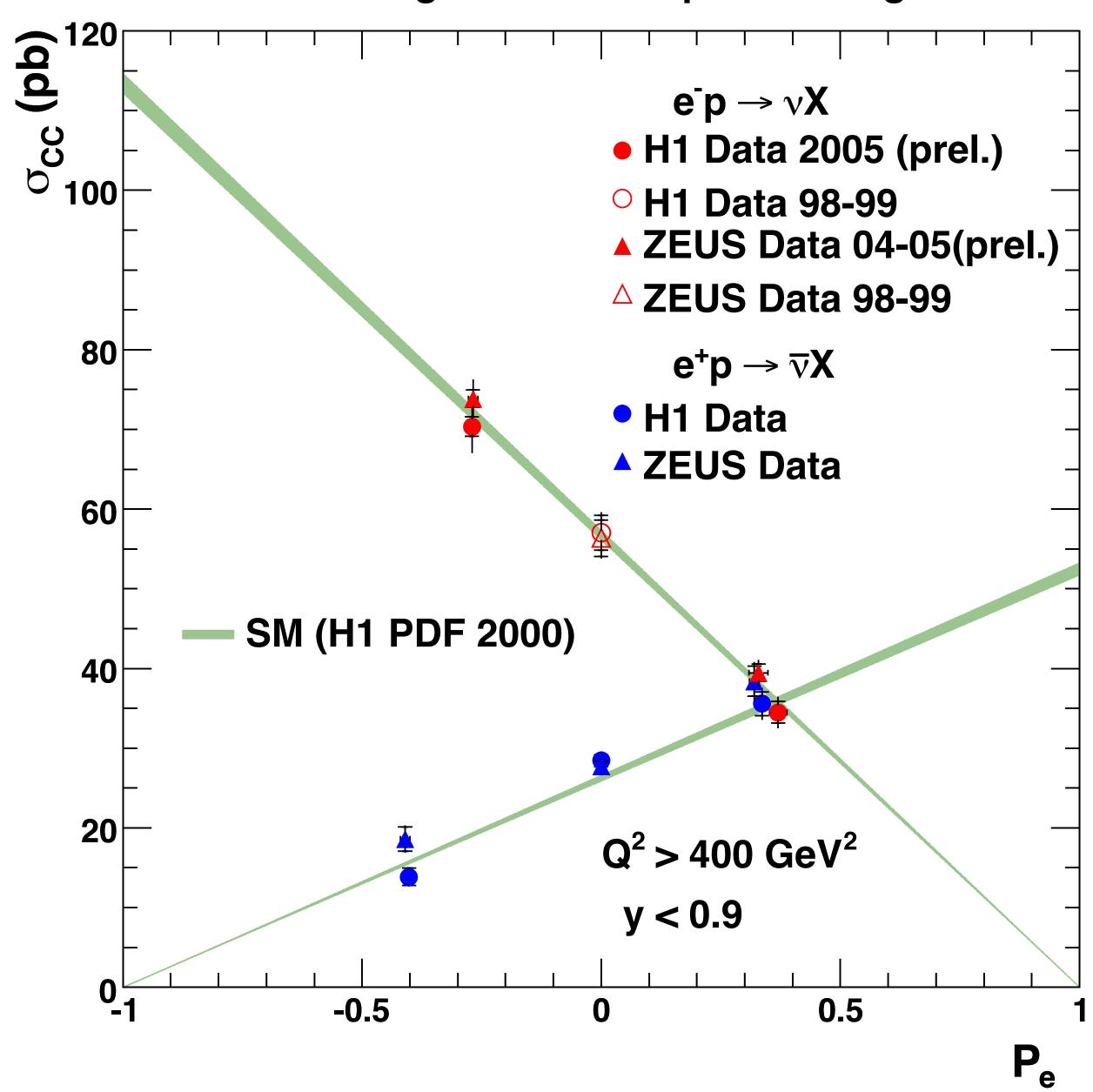


H1 and ZEUS

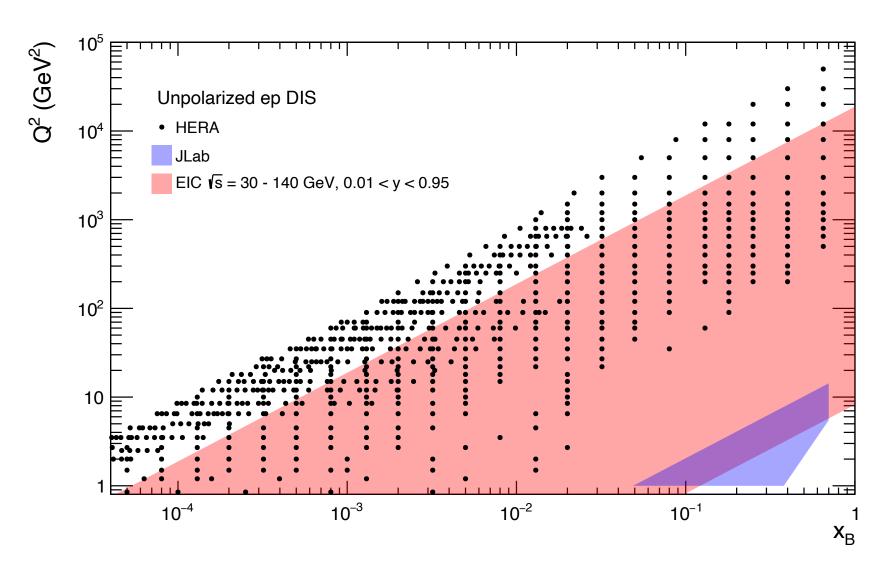


 $\mathbf{x_{Bj}}$

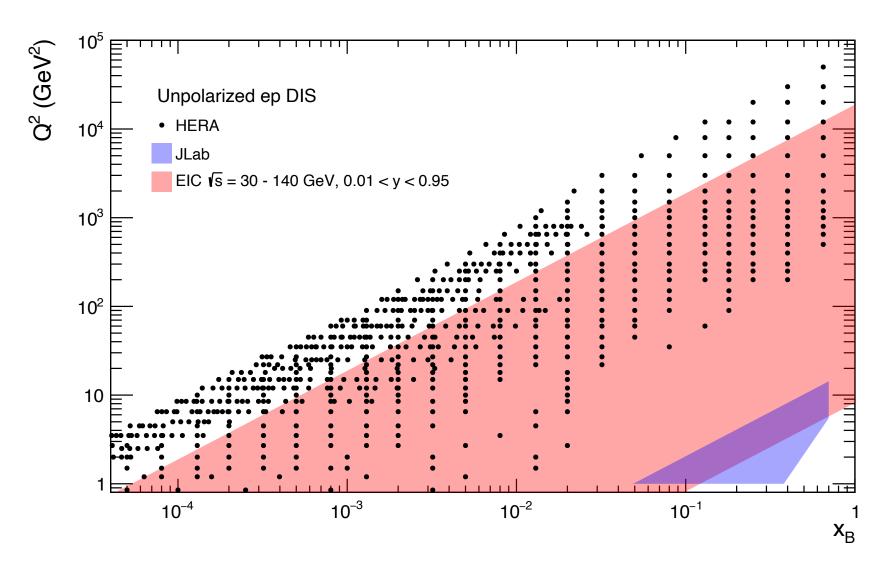
Charged Current e[±]p Scattering

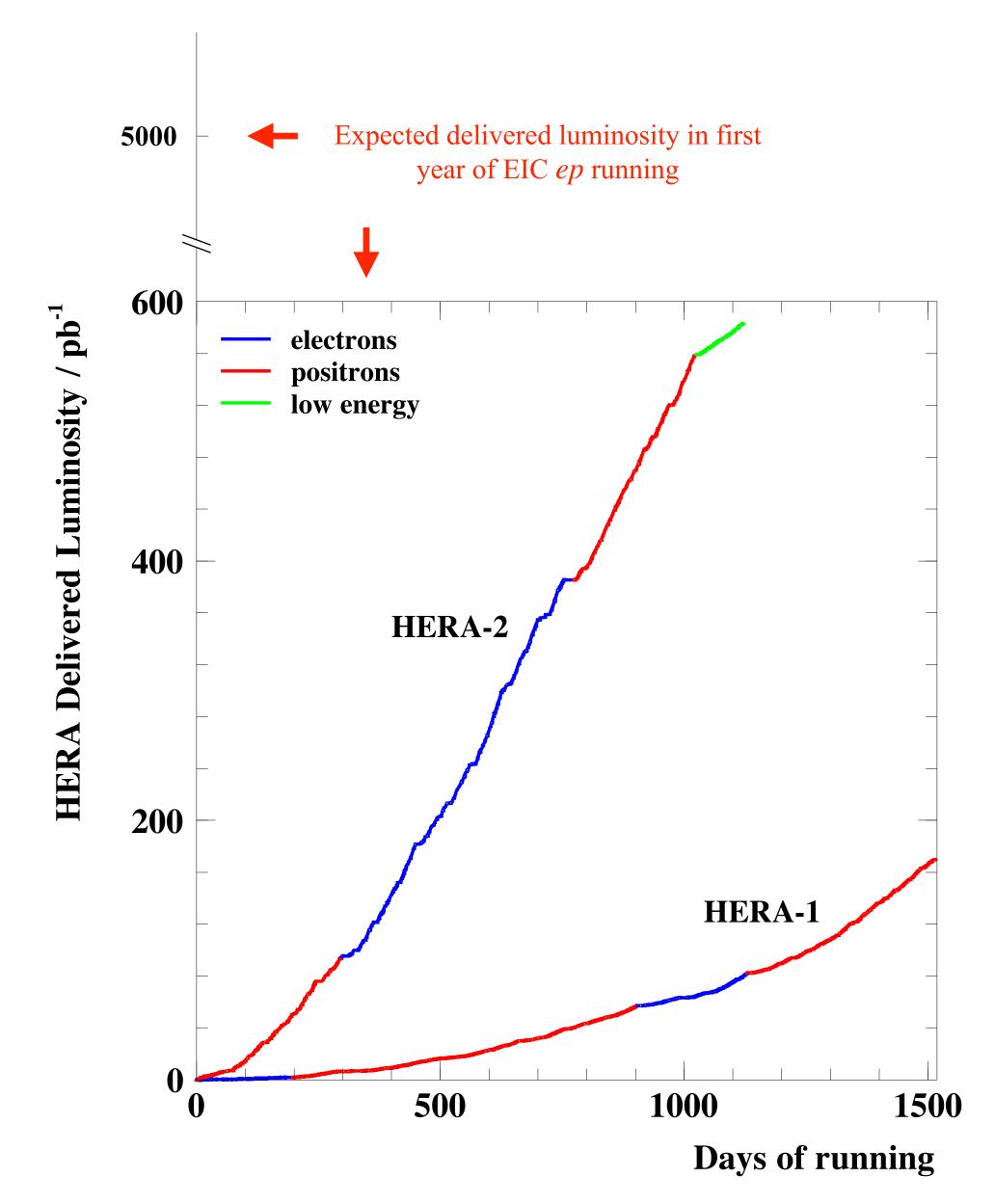


- Limitations: smaller COM energy, no positrons (yet...)
- Advantages: larger luminosity, full polarization, nuclei

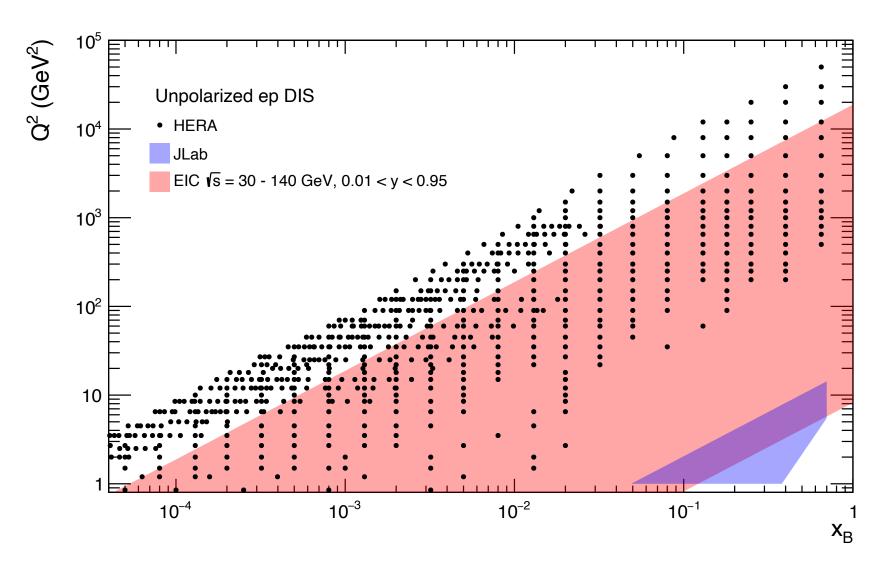


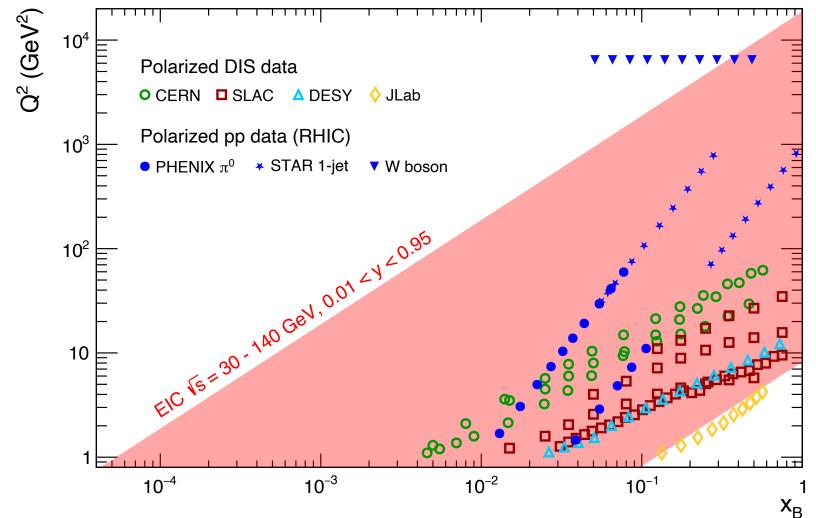
- Limitations: smaller COM energy, no positrons (yet...)
- Advantages: larger luminosity, full polarization, nuclei

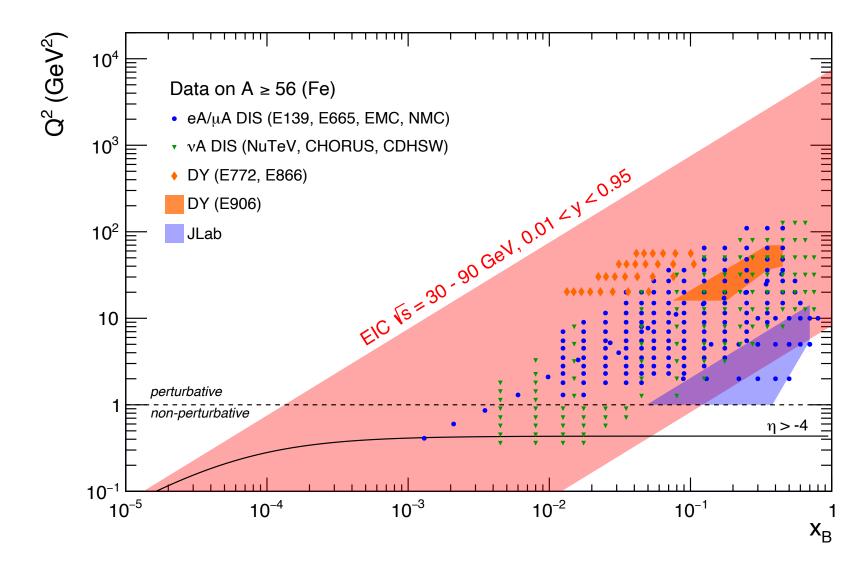




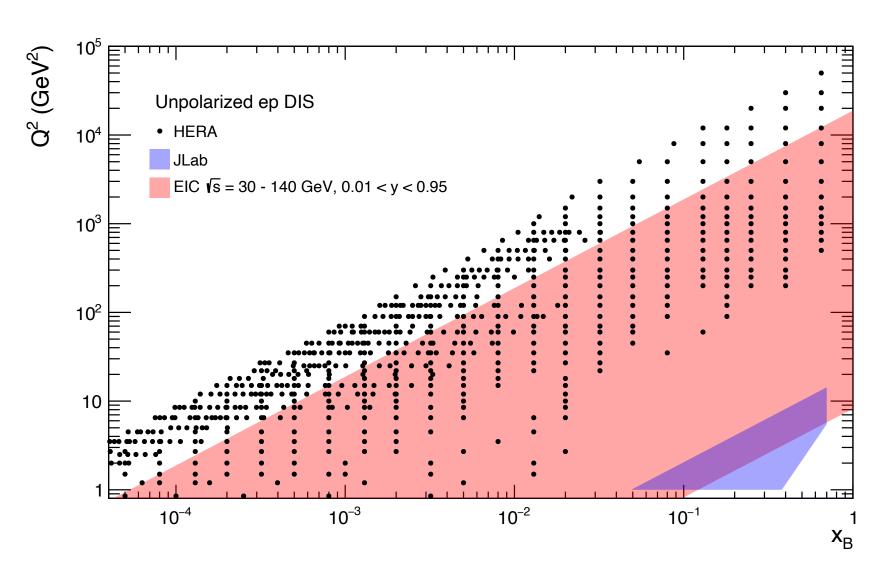
- Limitations: smaller COM energy, no positrons (yet...)
- Advantages: larger luminosity, full polarization, nuclei

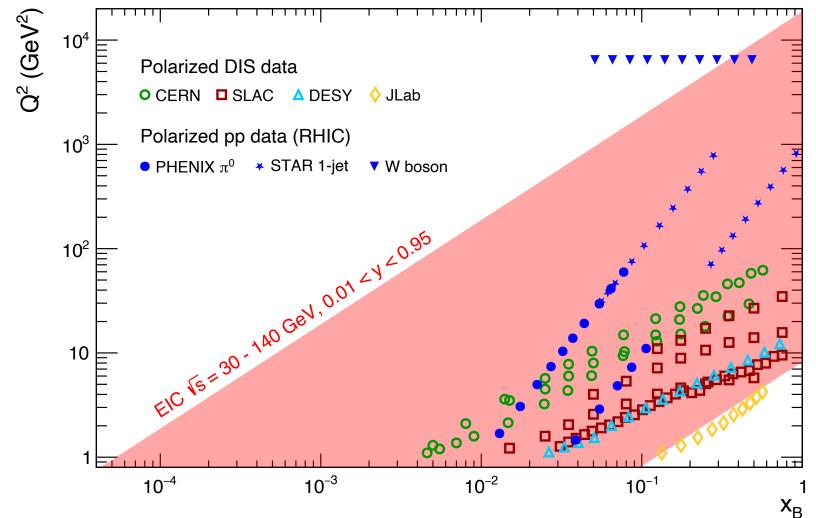


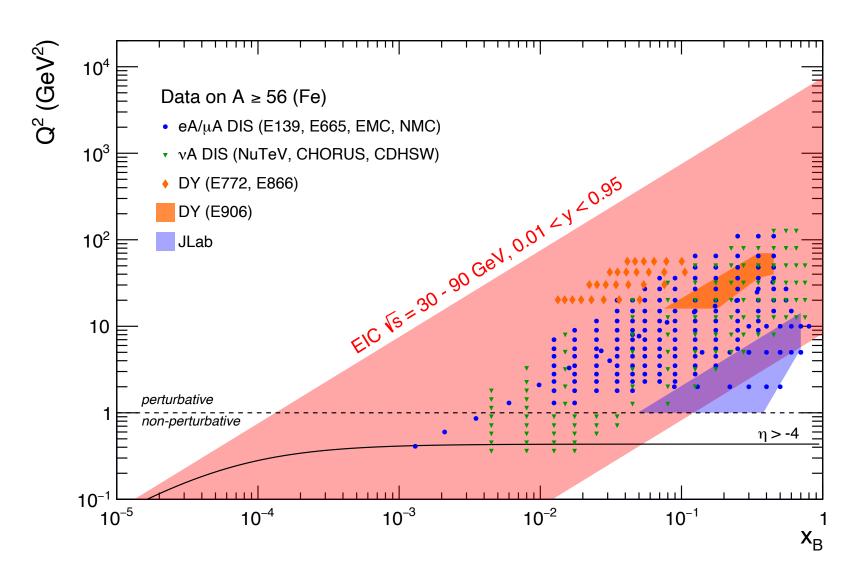




- Limitations: smaller COM energy, no positrons (yet...)
- Advantages: larger luminosity, full polarization, nuclei





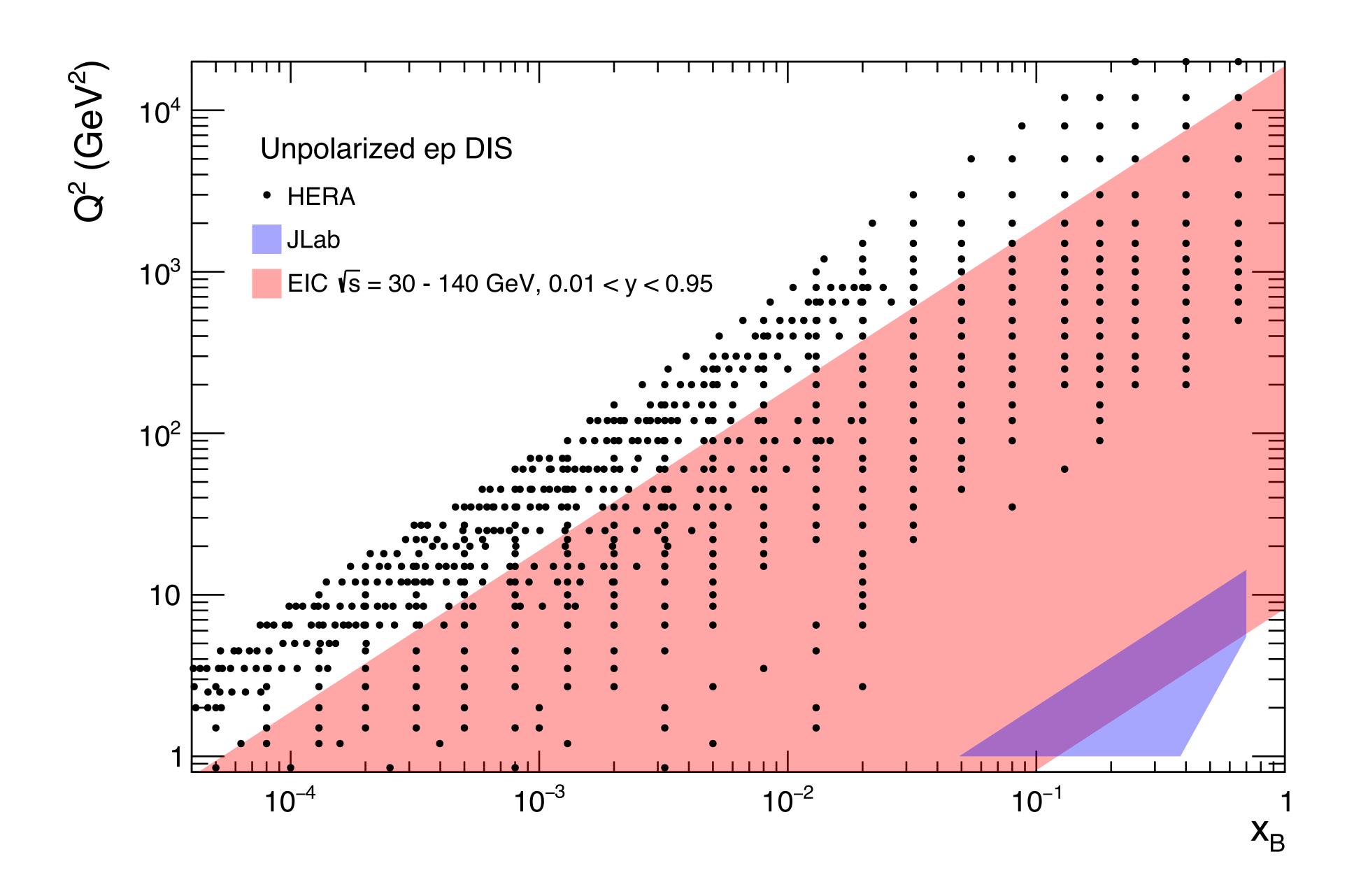


Inclusive observables:

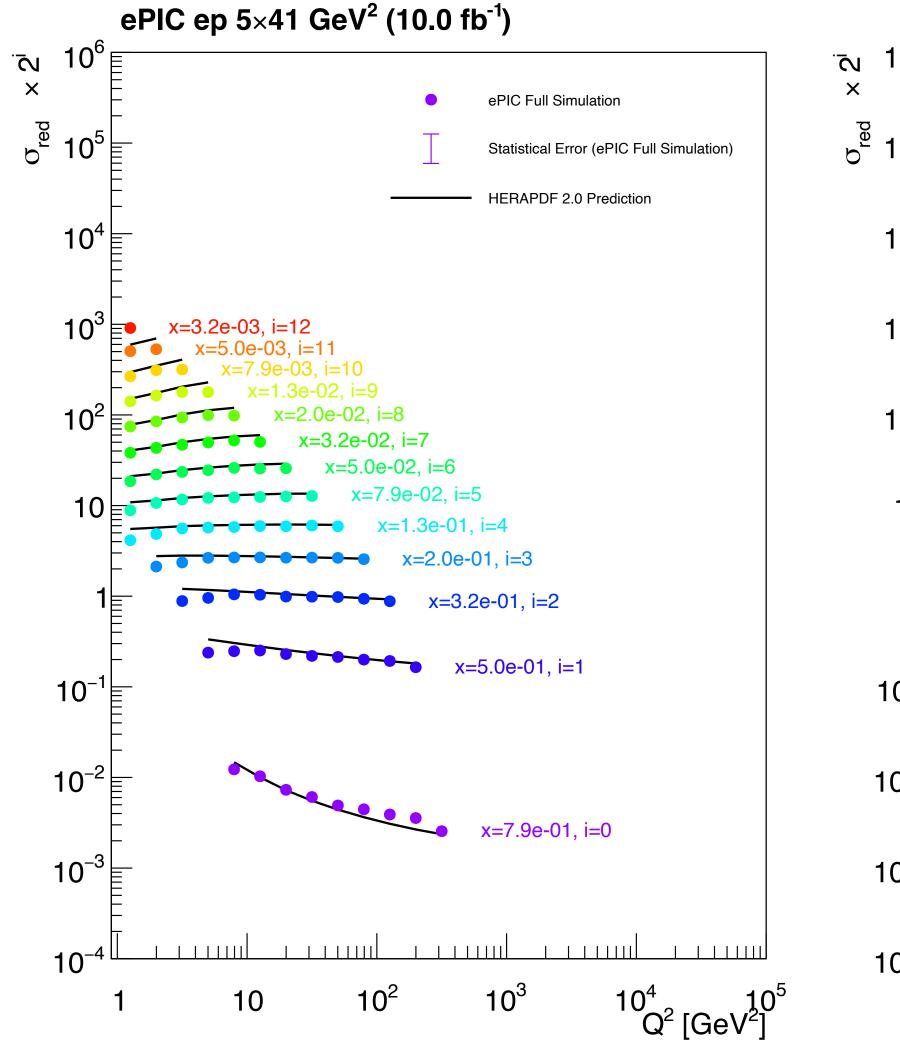
- Neutral current cross sections
- Charge-current cross sections

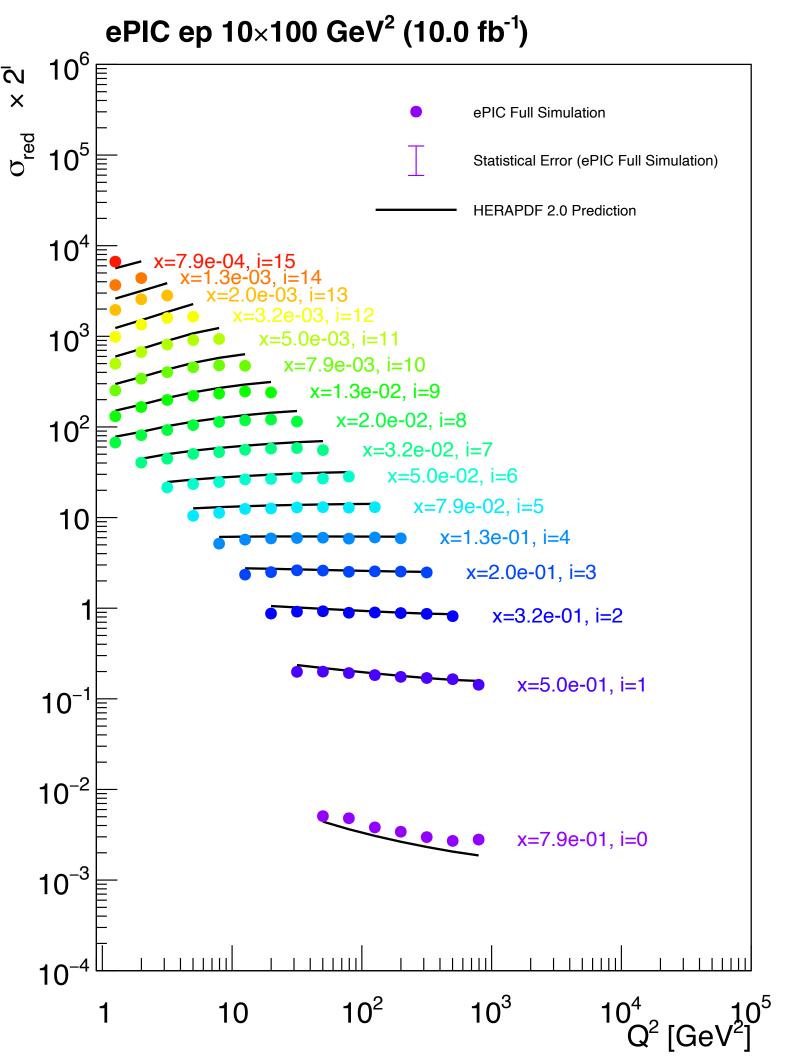
- Double-spin asymmetries
- Parity-violating asymmetries (see Mike's talk tomorrow)

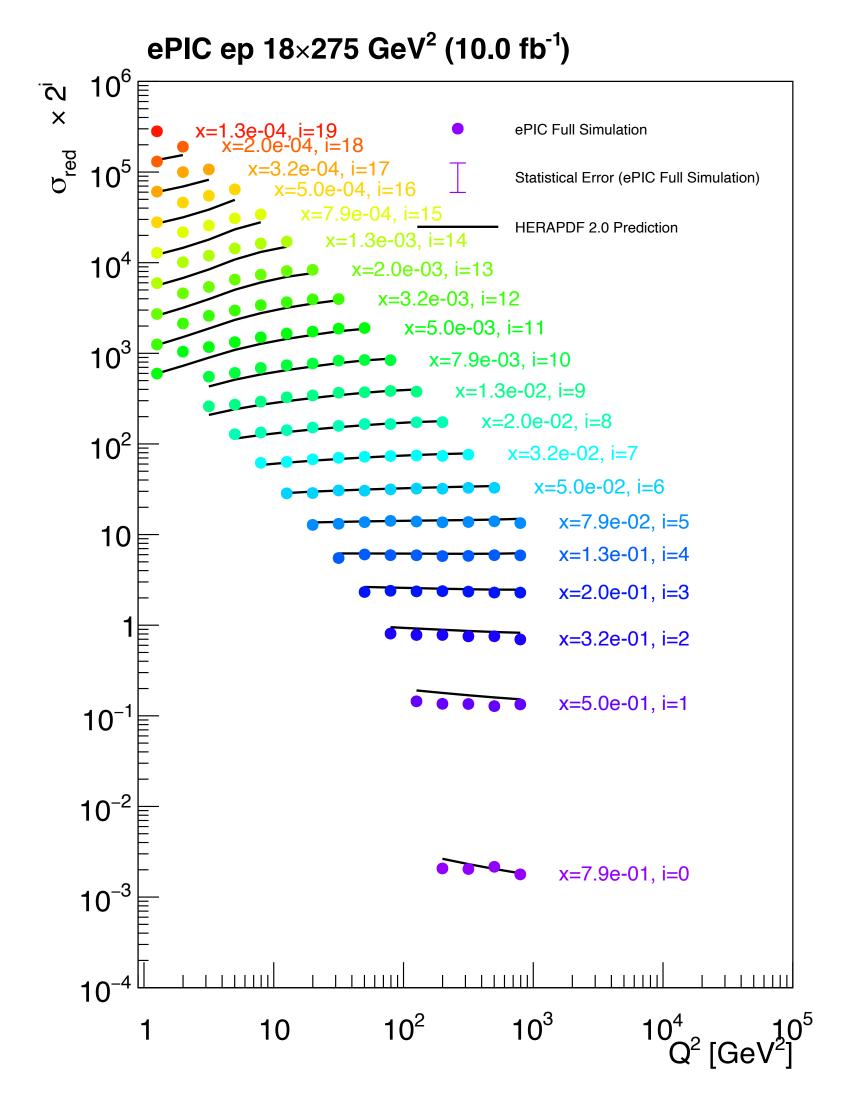
Unpolarized NC cross sections



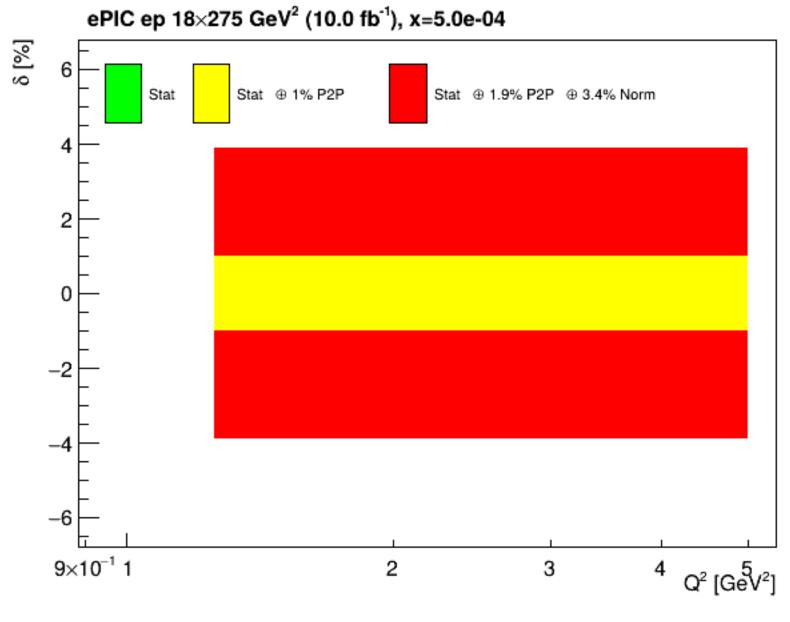
Unpolarized NC cross sections

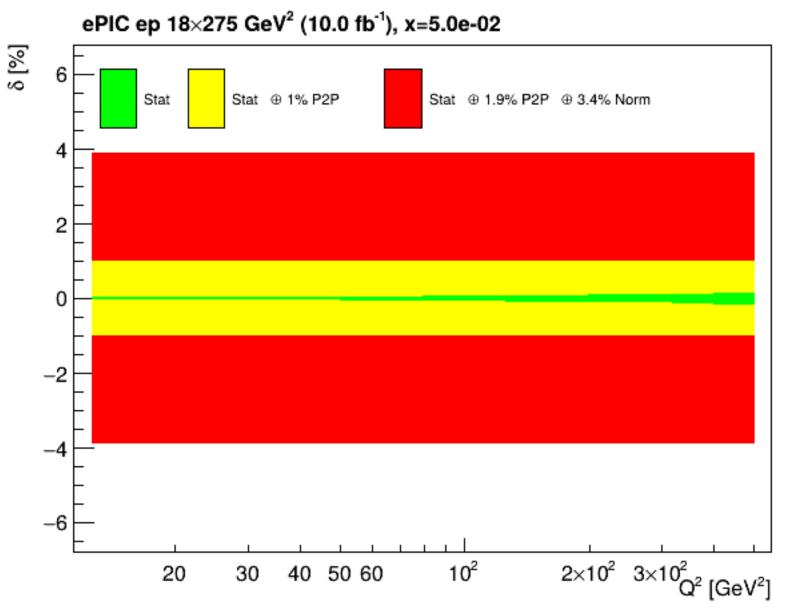


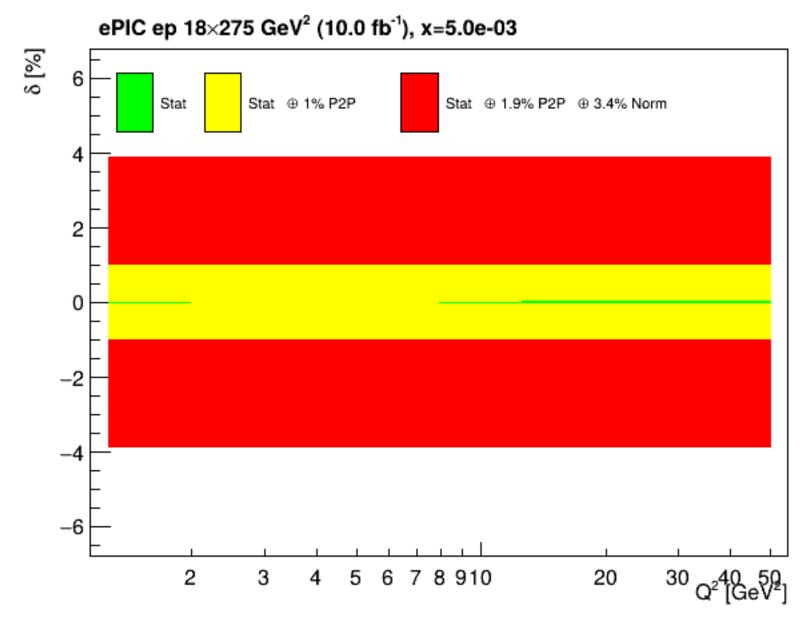


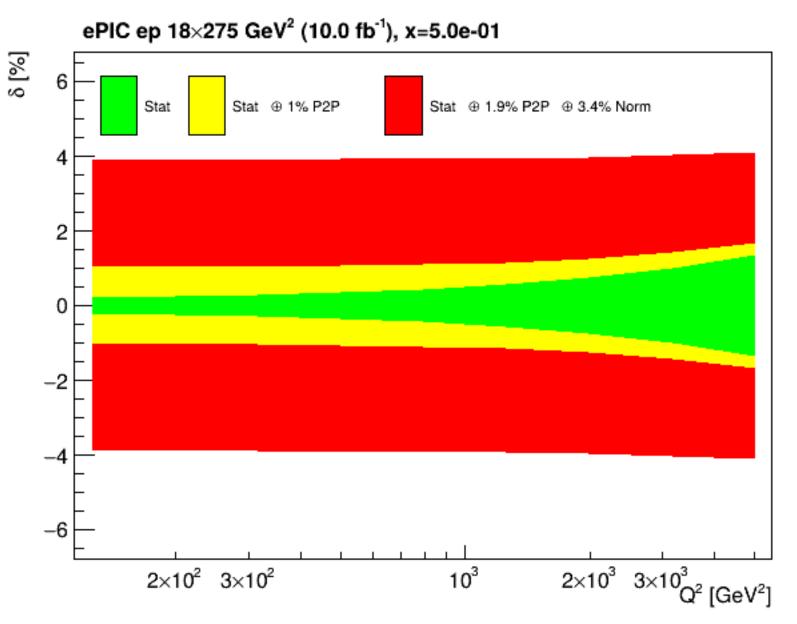


Unpolarized NC cross section precision

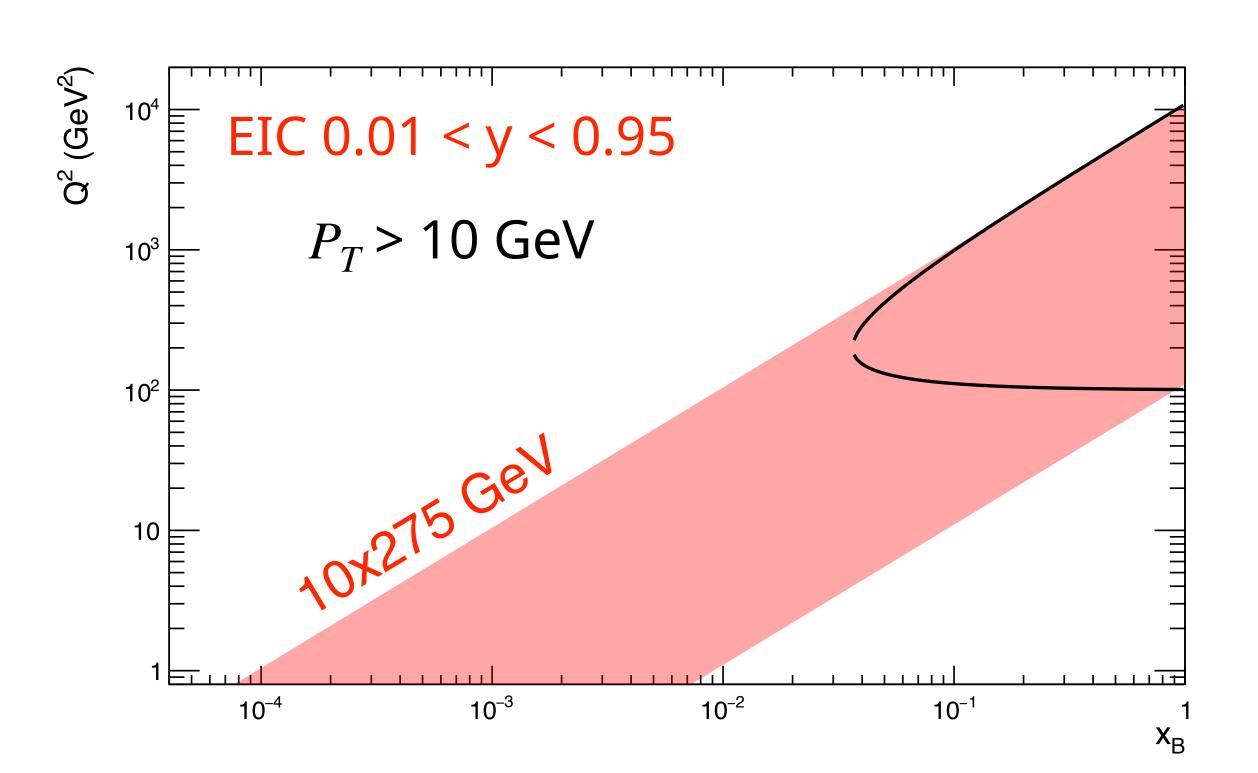


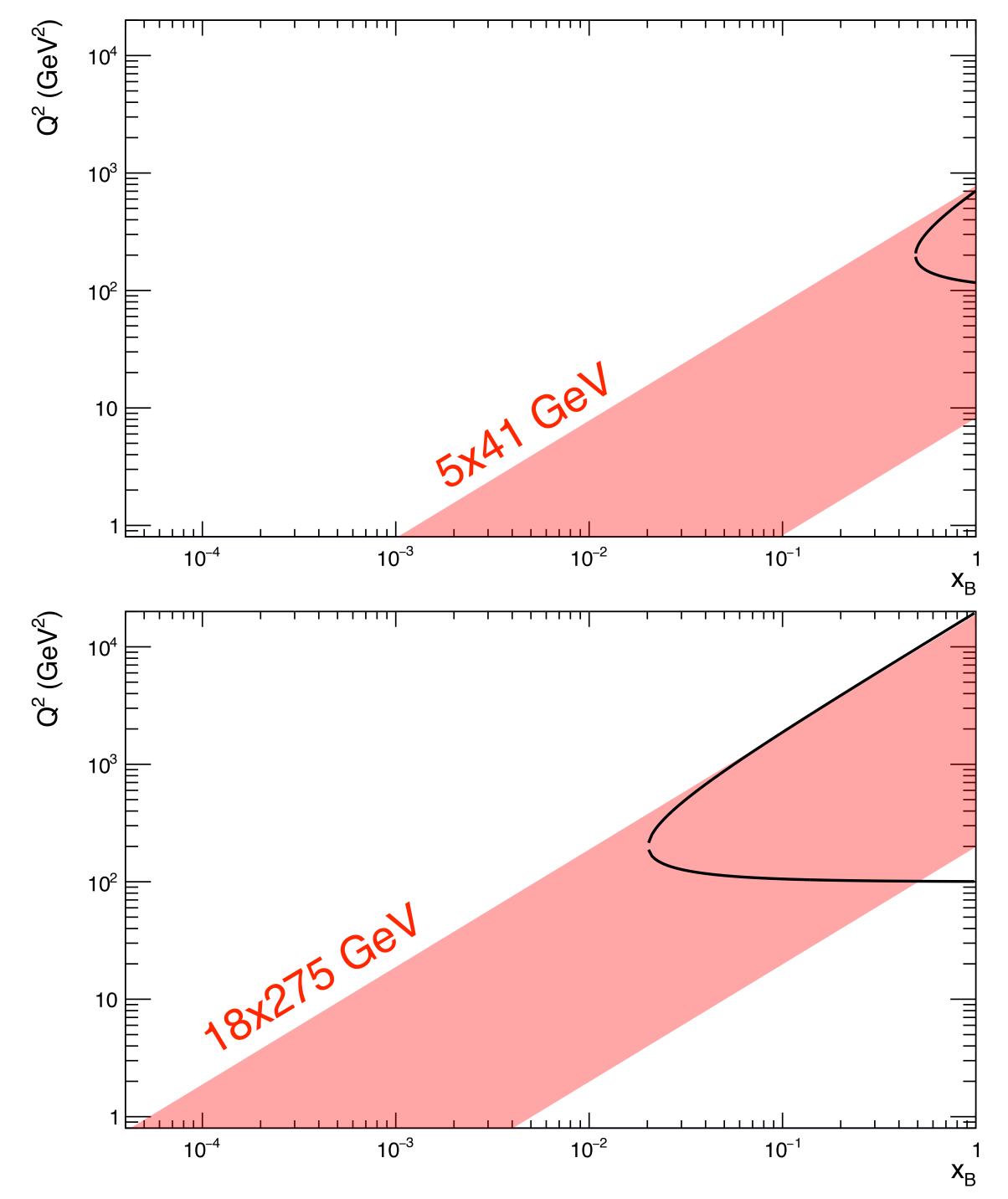




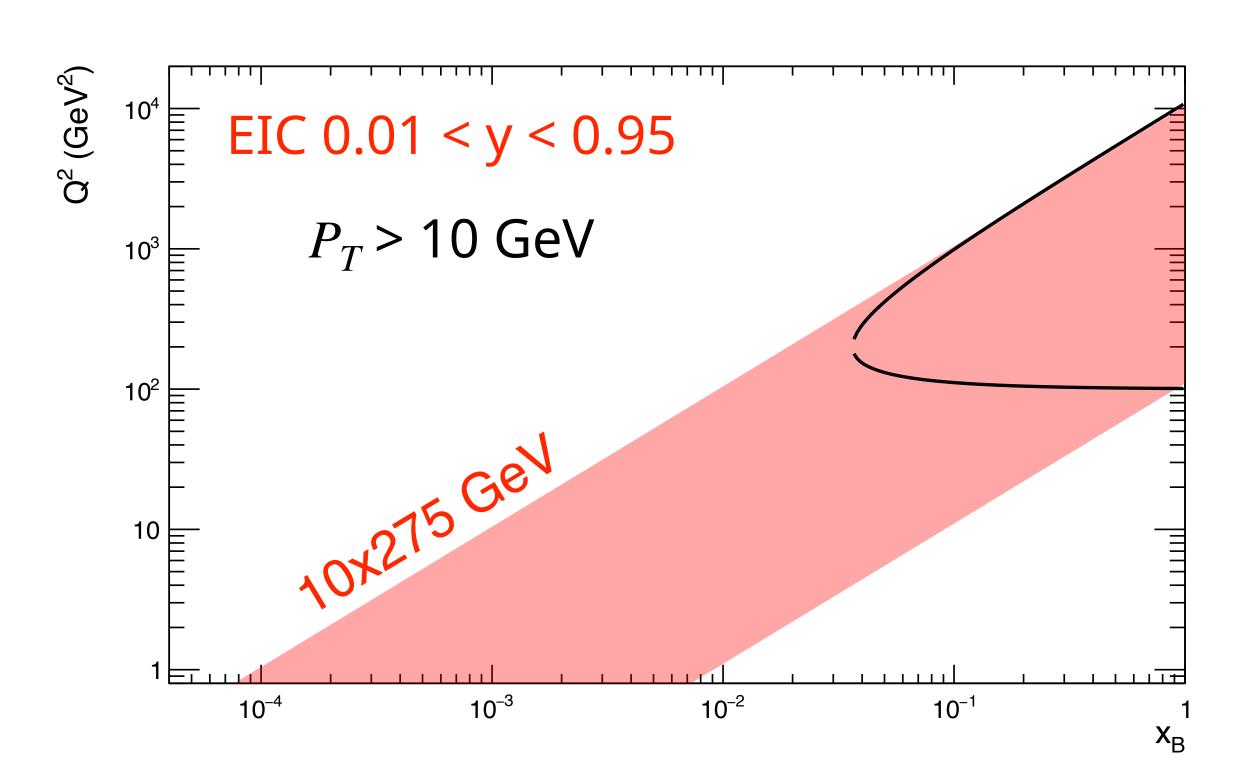


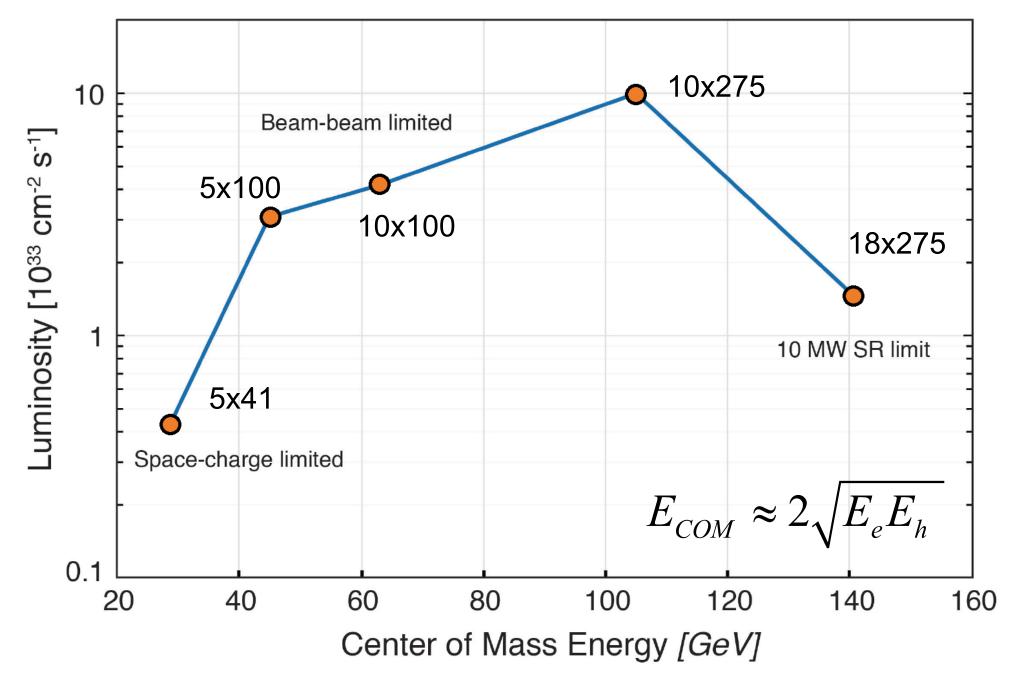
- Not feasible at lowest COM energy
- Largest phase space at 18x275 GeV
- Peak luminosity at 10x275 GeV

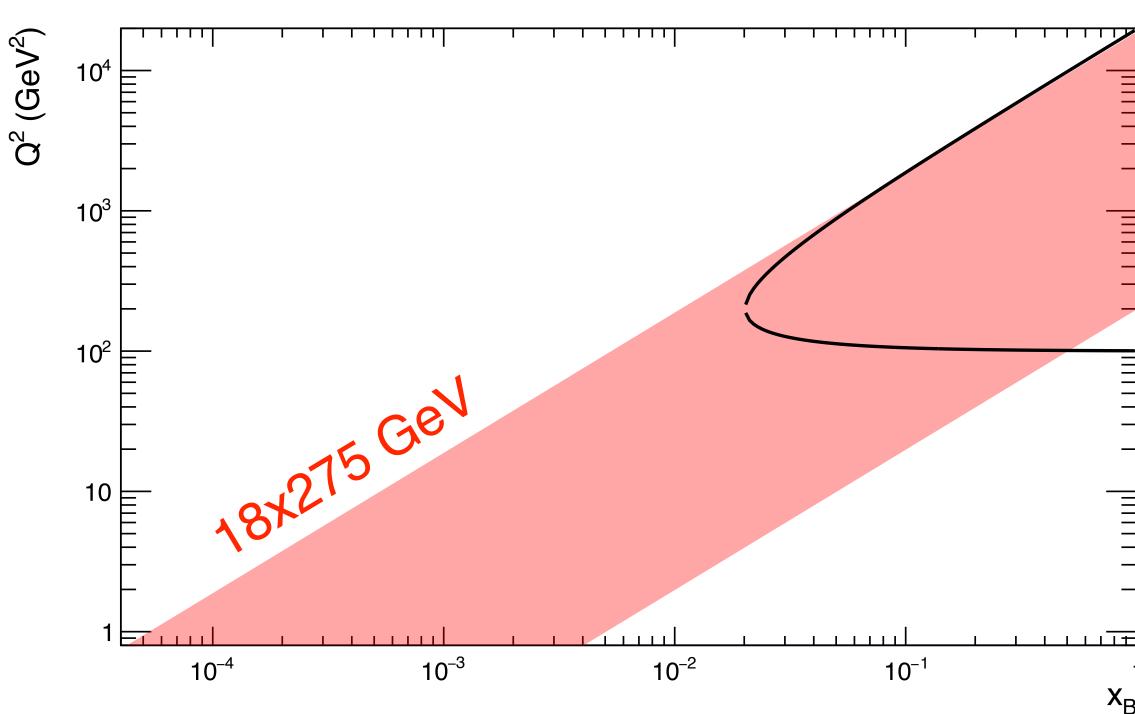




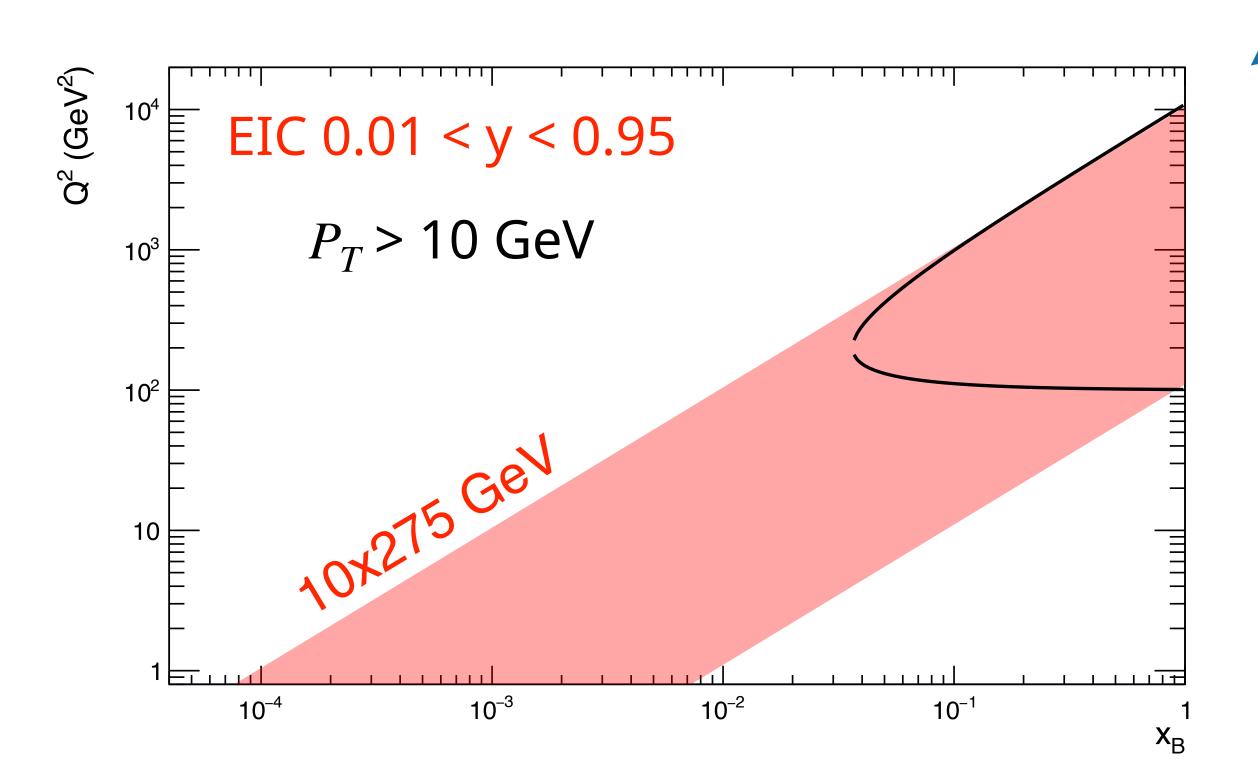
- Not feasible at lowest COM energy
- Largest phase space at 18x275 GeV
- Peak luminosity at 10x275 GeV

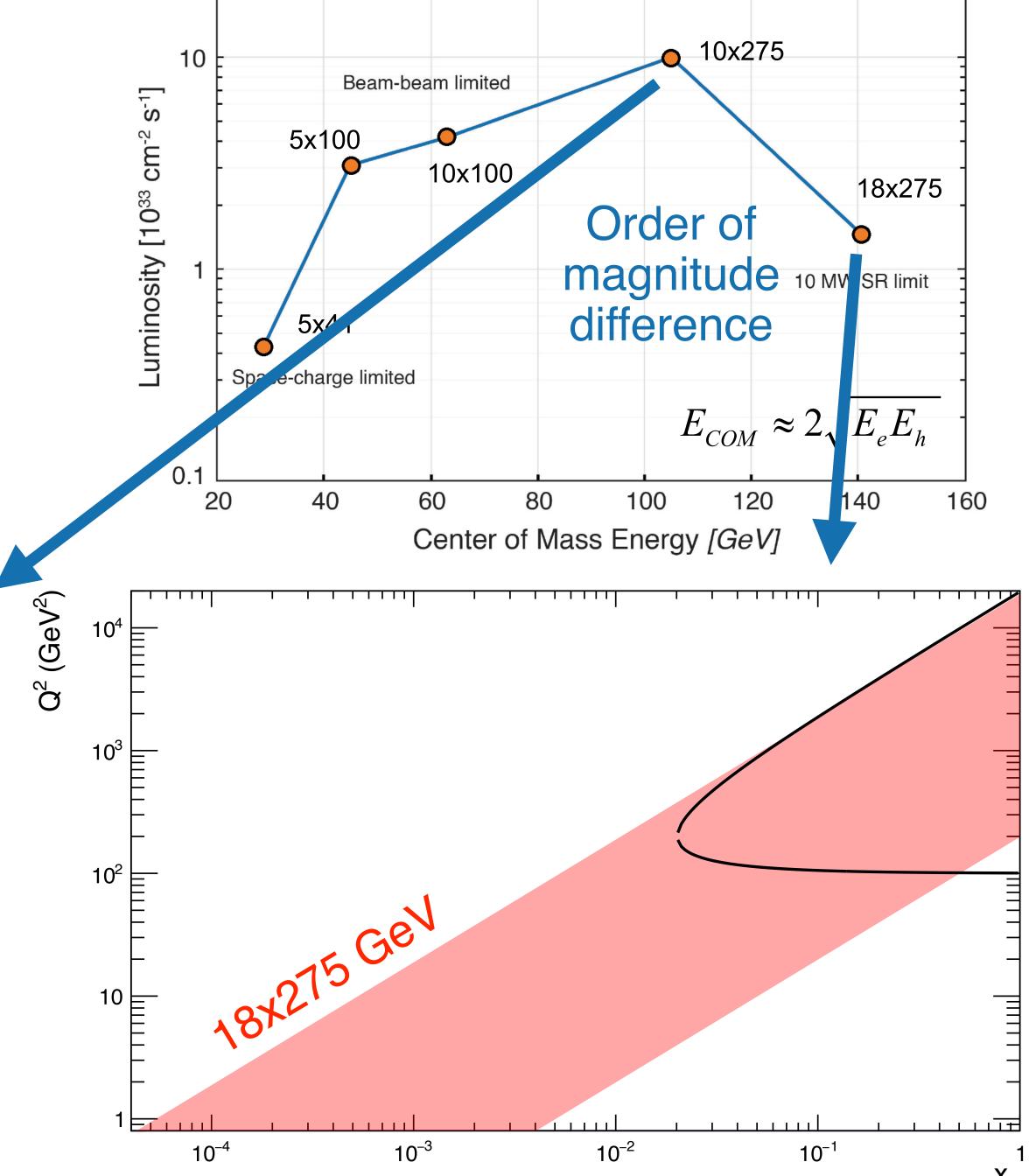






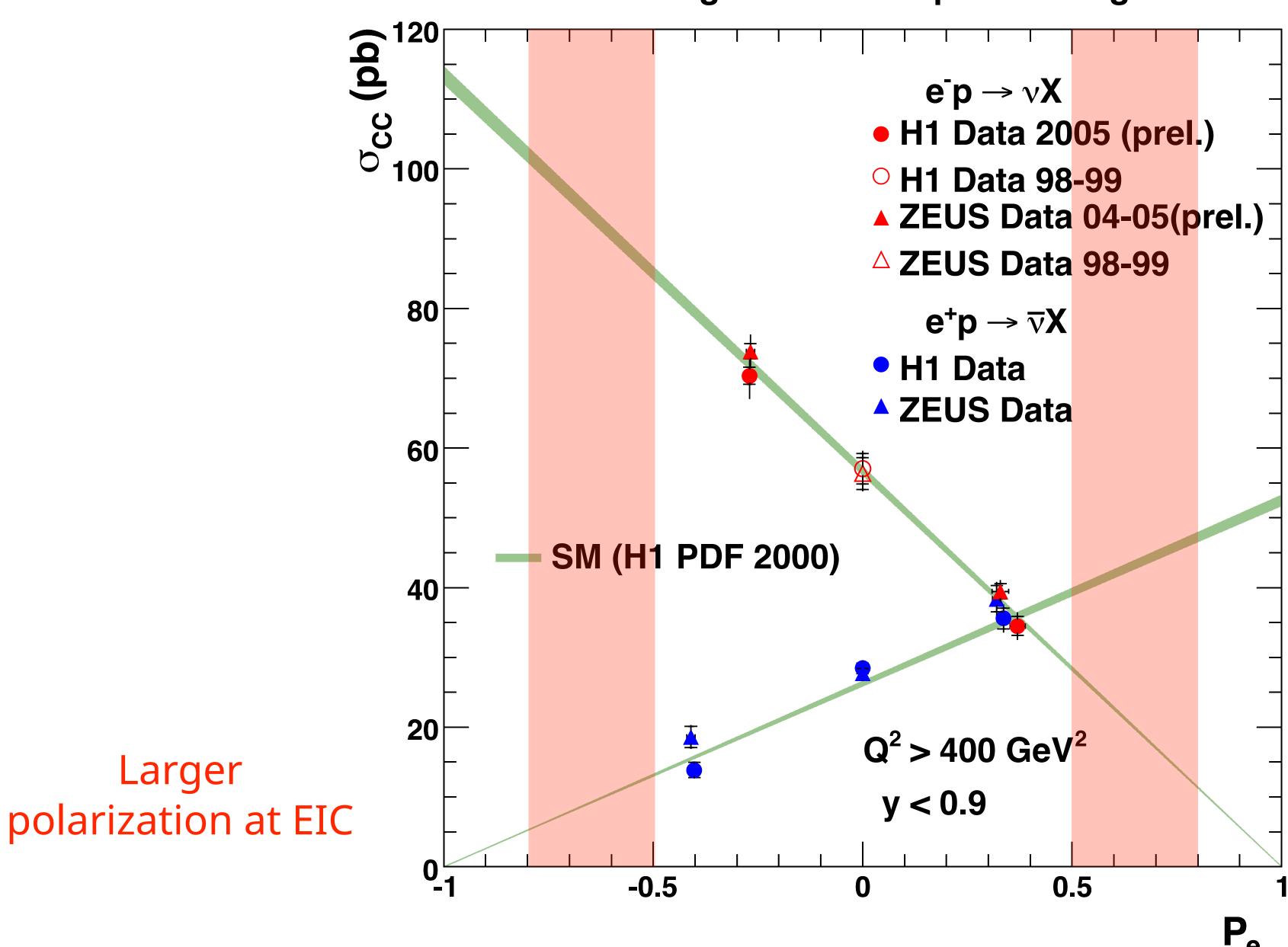
- Not feasible at lowest COM energy
- Largest phase space at 18x275 GeV
- Peak luminosity at 10x275 GeV



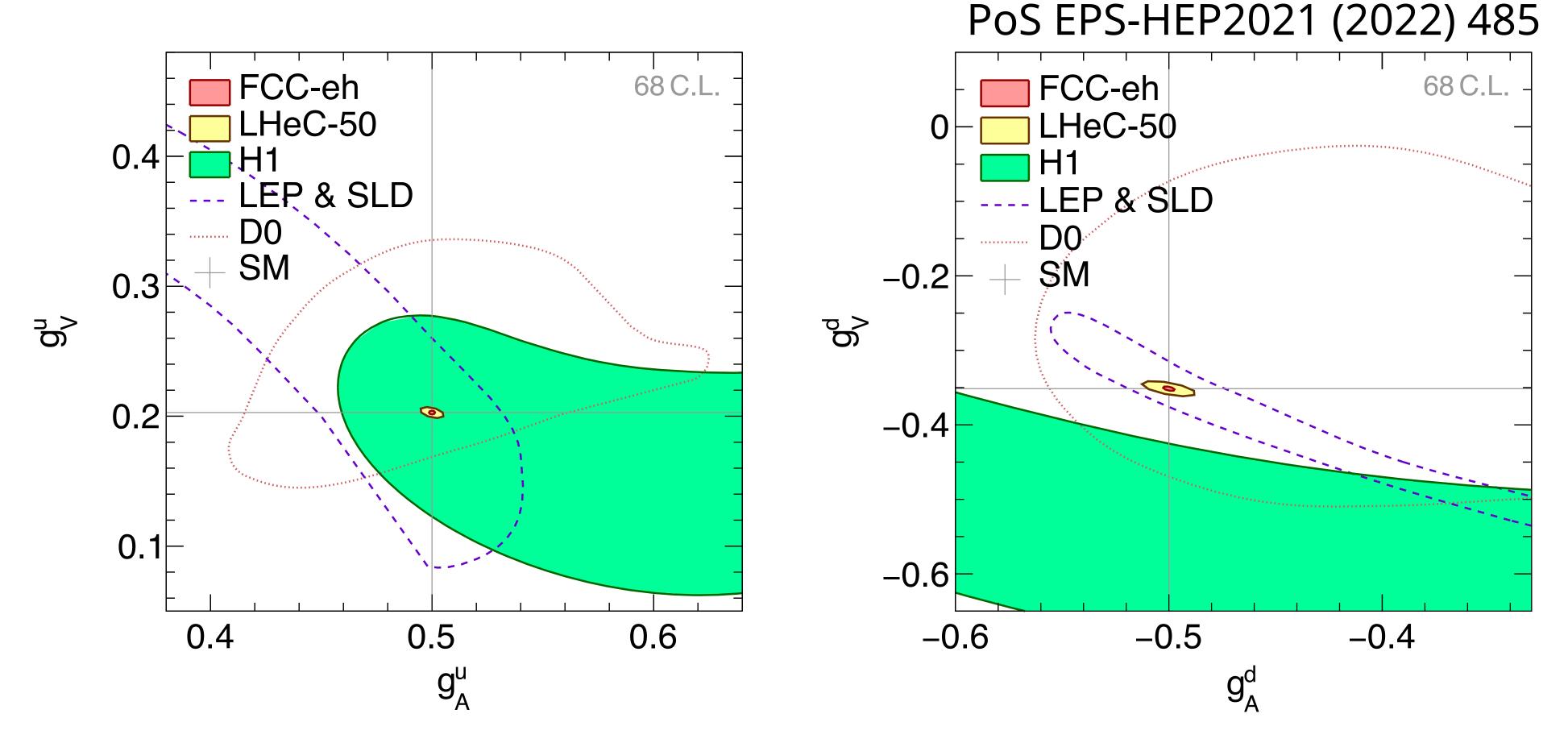


Larger

Charged Current e[±]**p Scattering**



Light quark couplings at future facilities



- FCC-eh, LHeC: high \sqrt{s} , ab⁻¹ luminosity, positrons...
- EIC can't compete, but it is much closer to being realized... can it contribute to existing constraints from HERA?

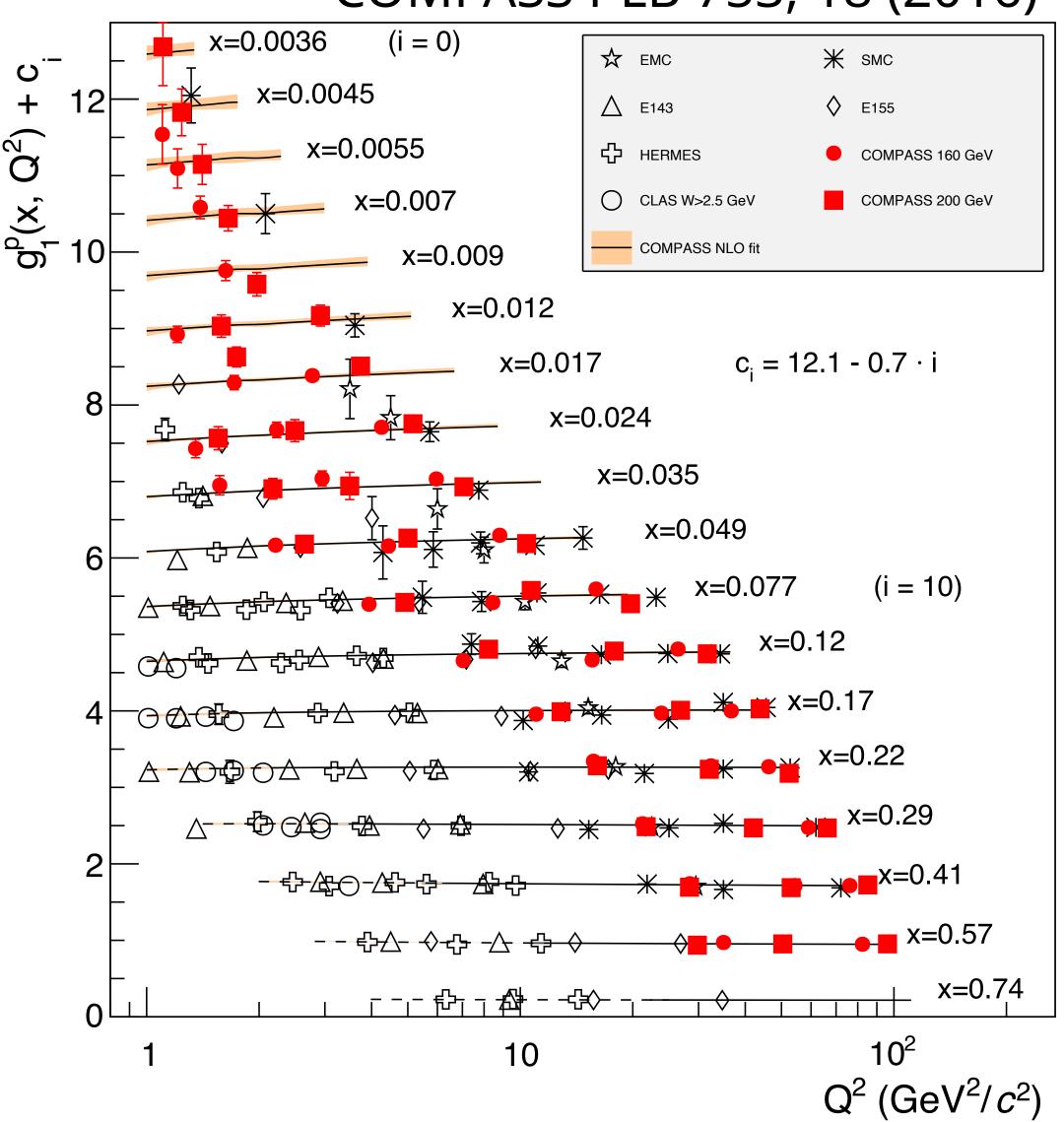
Origin of proton spin

$$\Delta\Sigma/2 + \Delta G + L_q + L_g = \frac{1}{2}$$

Origin of proton spin

$$\Delta \Sigma / 2 + \Delta G + L_q + L_g = \frac{1}{2}$$

COMPASS PLB 753, 18 (2016)

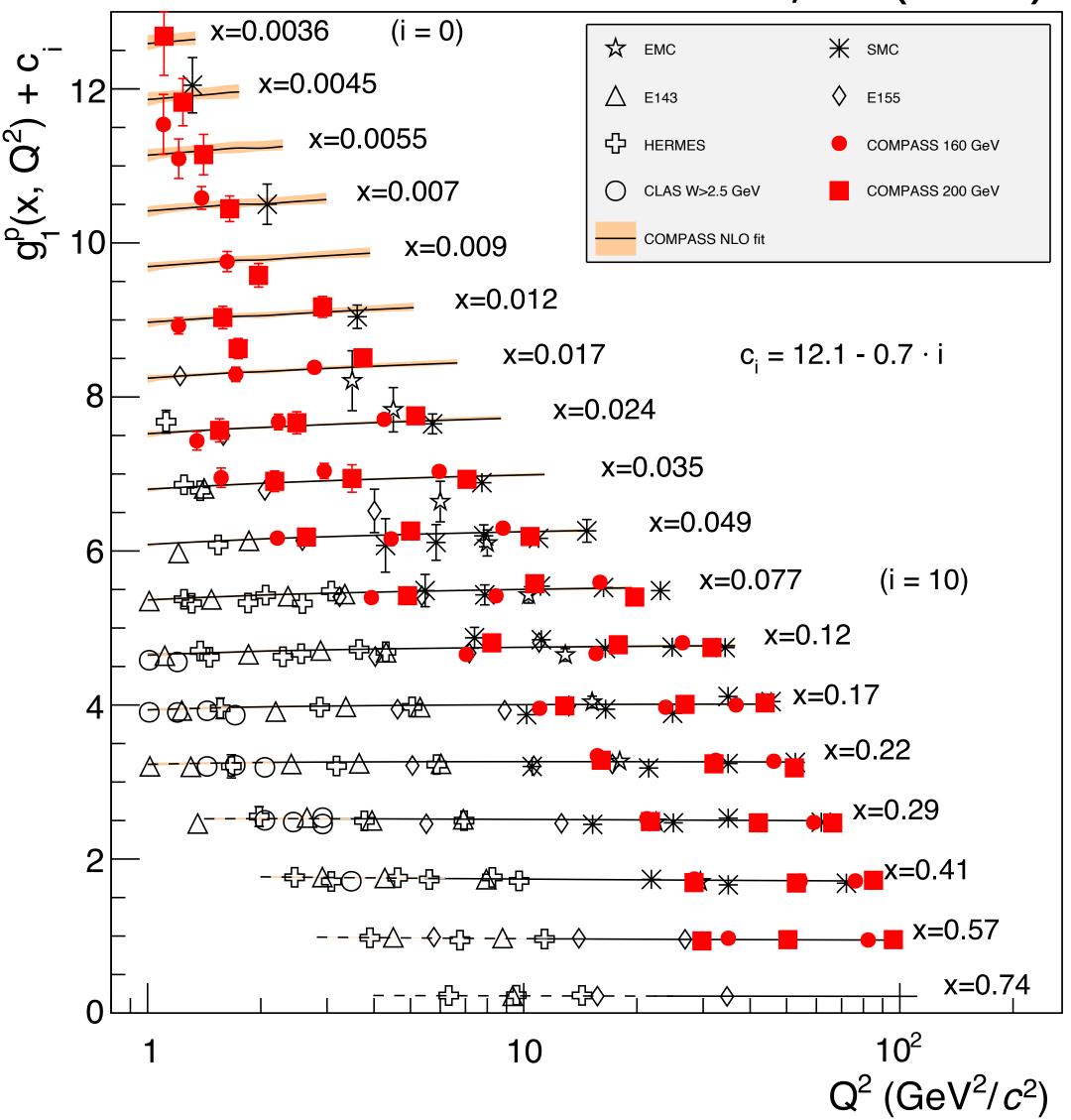


Origin of proton spin

$$\Delta \Sigma / 2 + \Delta G + L_q + L_g = \frac{1}{2}$$

$$\approx 30\%$$

COMPASS PLB 753, 18 (2016)



Origin of proton spin

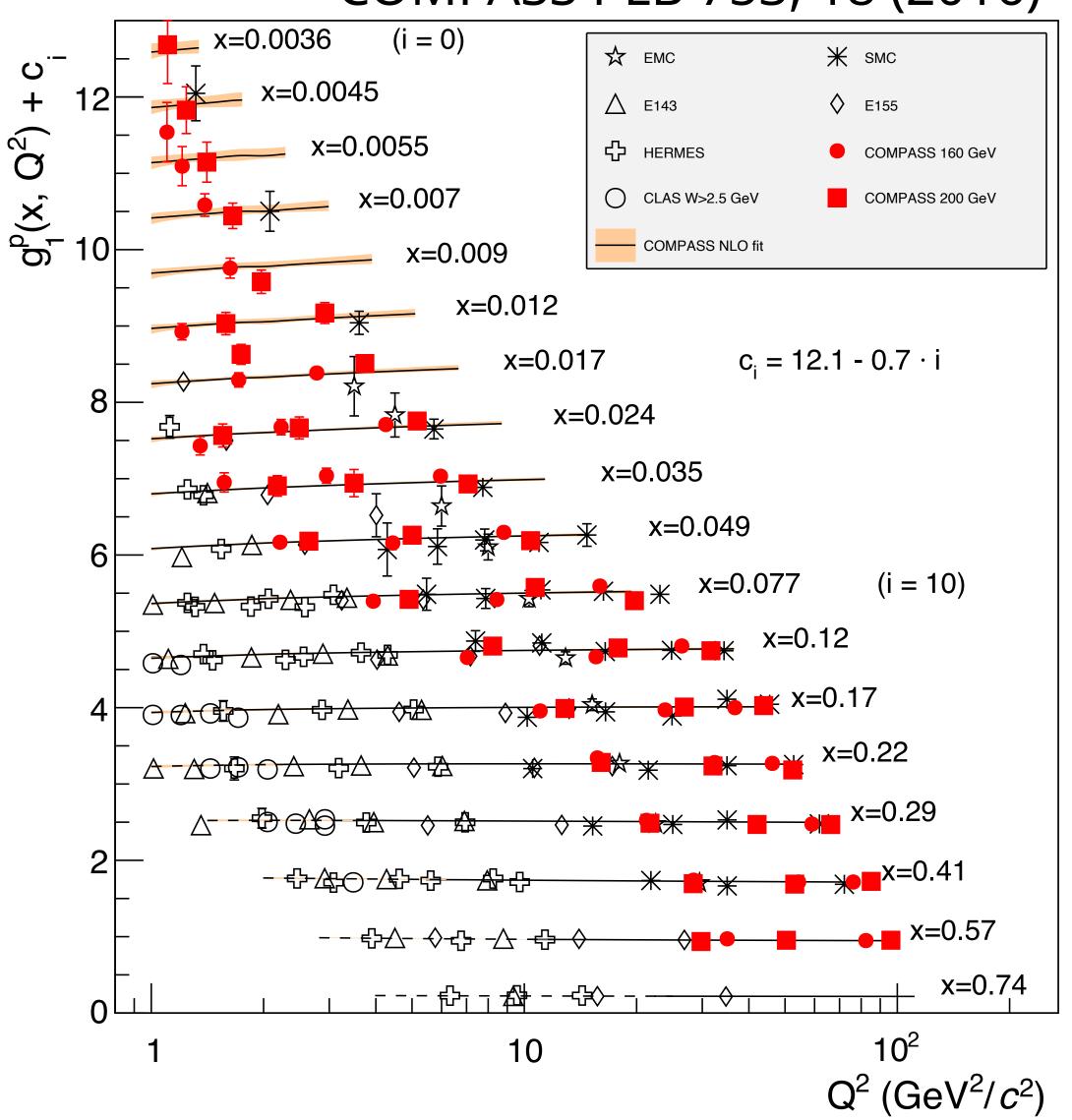
$$\Delta \Sigma / 2 + \Delta G + L_q + L_g = \frac{1}{2}$$

$$\approx 30\%$$

 $\approx 40\%$

Large uncertainty!

COMPASS PLB 753, 18 (2016)



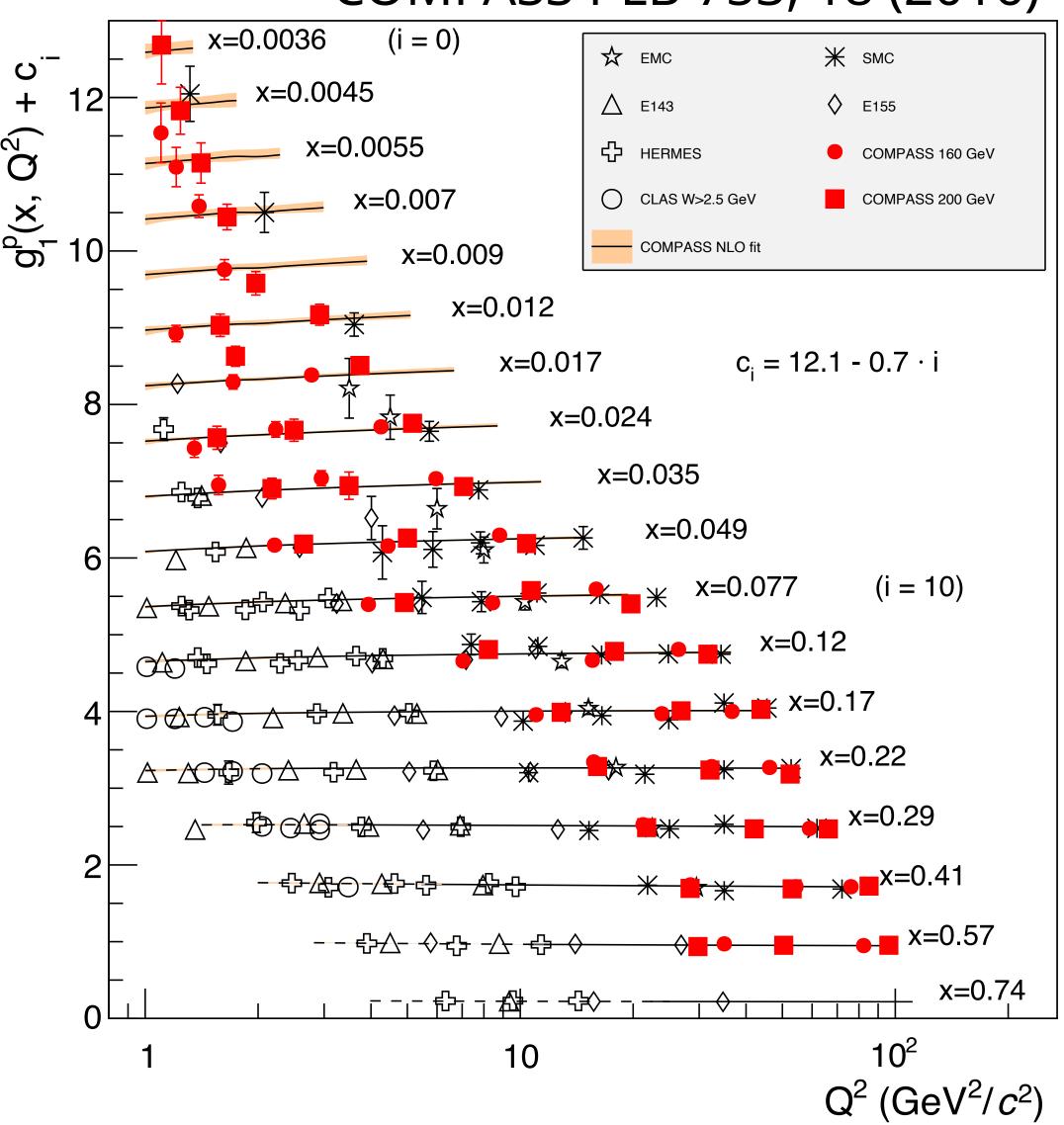
Origin of proton spin

$$\Delta \Sigma / 2 + \Delta G + L_q + L_g = \frac{1}{2}$$

$$\approx 30\%$$

$$\approx 40\%$$
Large uncertainty!

COMPASS PLB 753, 18 (2016)

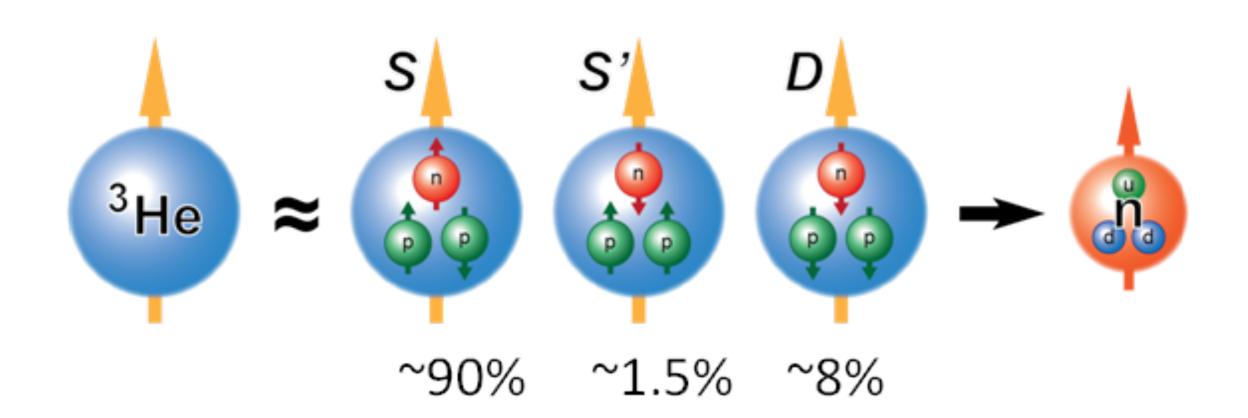


Spin structure functions from double-spin asymmetries

$$A_{1} = \frac{A_{\parallel}}{D(1 + \eta \xi)} - \frac{\eta A_{\perp}}{d(1 + \eta \xi)}$$

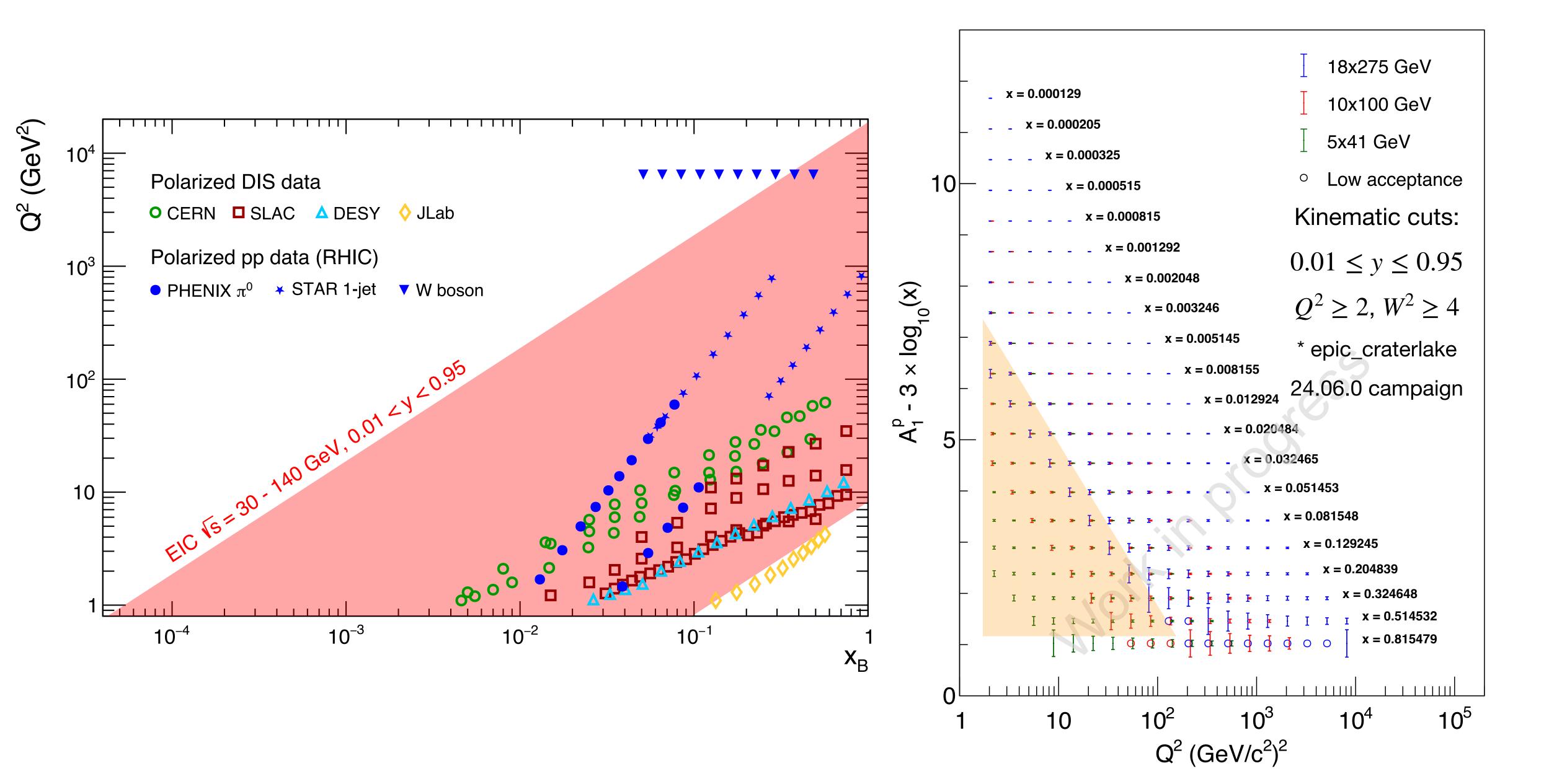
$$A_{\parallel} = \frac{\sigma^{\leftrightarrows} - \sigma^{\rightrightarrows}}{\sigma^{\leftrightarrows} + \sigma^{\rightrightarrows}} \quad \text{and} \quad A_{\perp} = \frac{\sigma^{\to \uparrow} - \sigma^{\to \downarrow}}{\sigma^{\to \uparrow} + \sigma^{\to \downarrow}}$$

$$\approx g_1/F_1$$

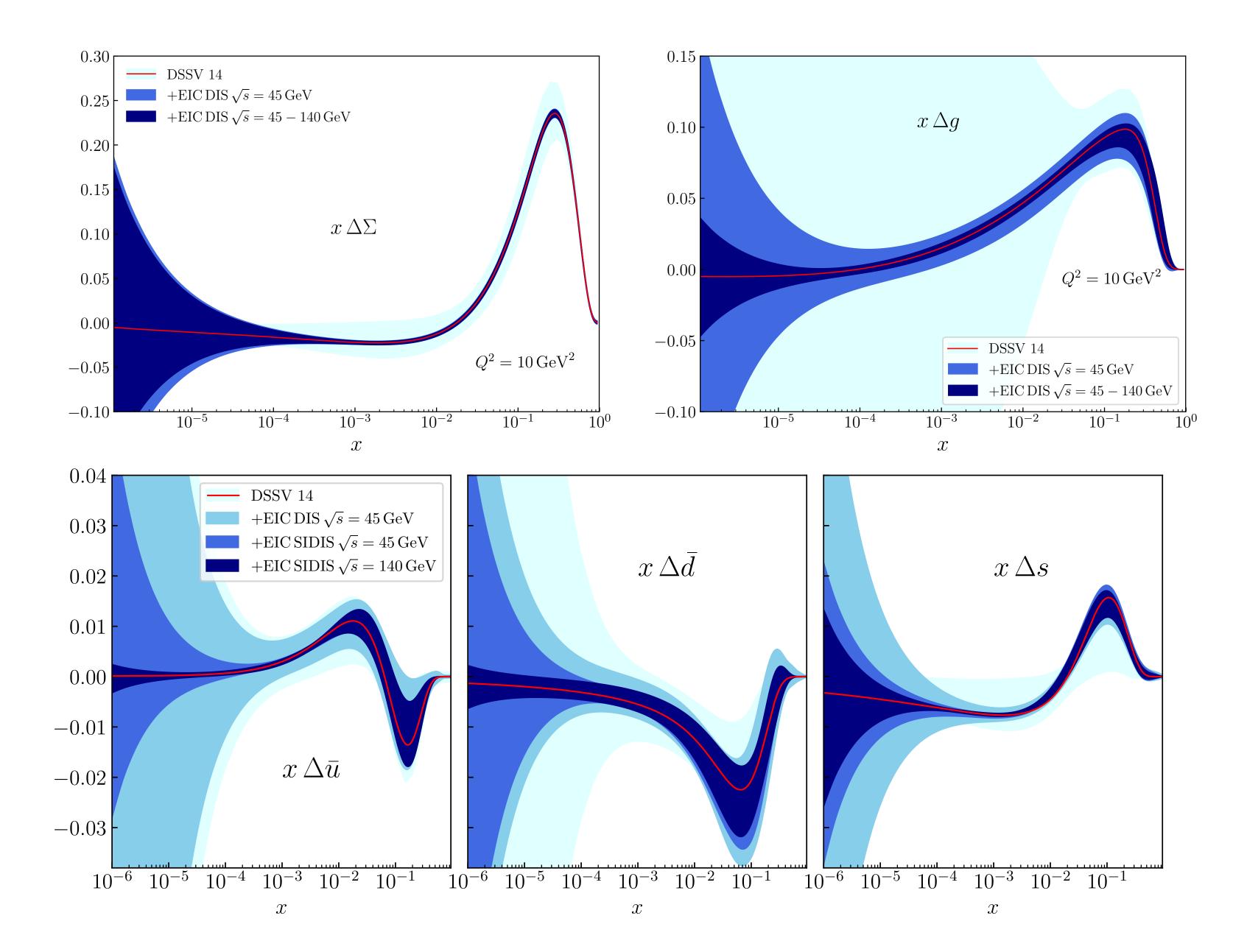


- Access g_1^p directly from A_1^p
- Access g_1^n from helium-3
 - Traditional method: measure A_1^p , $A_1^{^3He}$ and apply nuclear corrections
 - Possible EIC method: "tag" neutron scattering with two spectator protons in far-forward detector

EIC will make major contribution to ΔG at low-x



Impact of EIC measurements



From Yellow report....
working towards ePICspecific impact plots

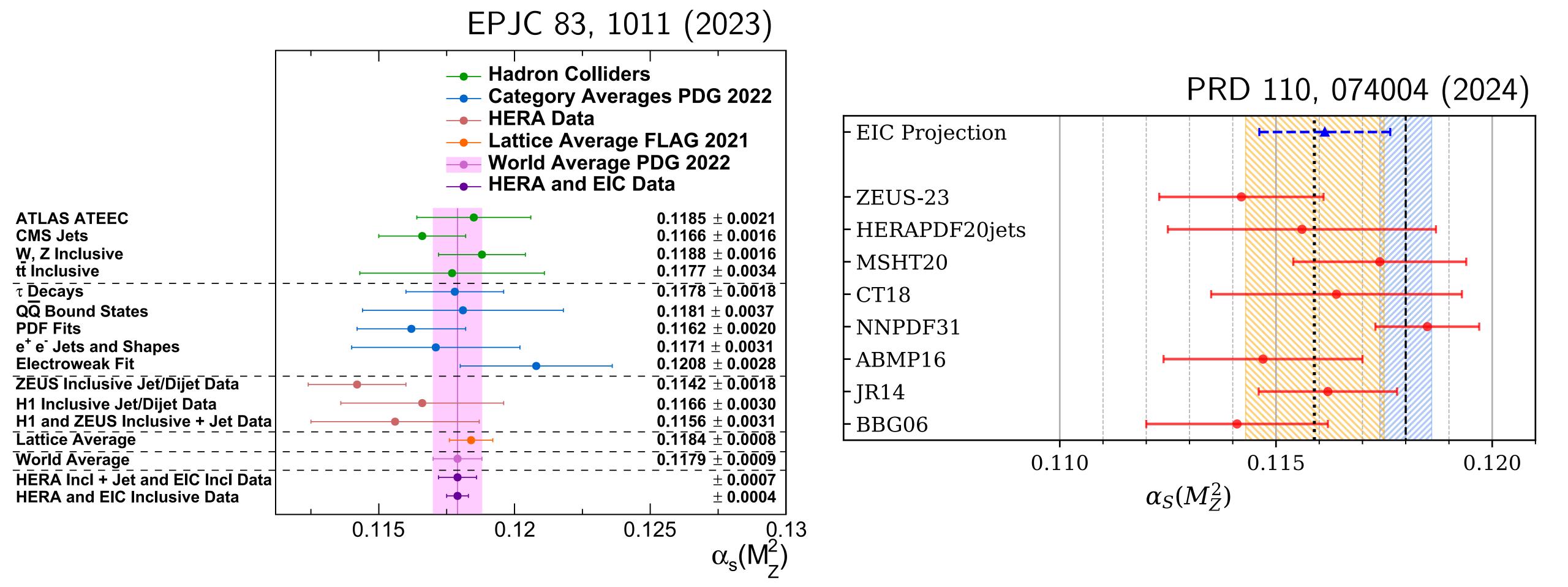
α_S at the EIC

- Simultaneous fit of α_S , PDFs on unpolarized cross sections
- Extract α_S from proton/neutron g_1 using Bjorken sum rule:

$$\Gamma_1^{\rm p-n} \equiv \int_0^{1^-} (g_1^{\rm p} - g_1^{\rm n}) dx$$

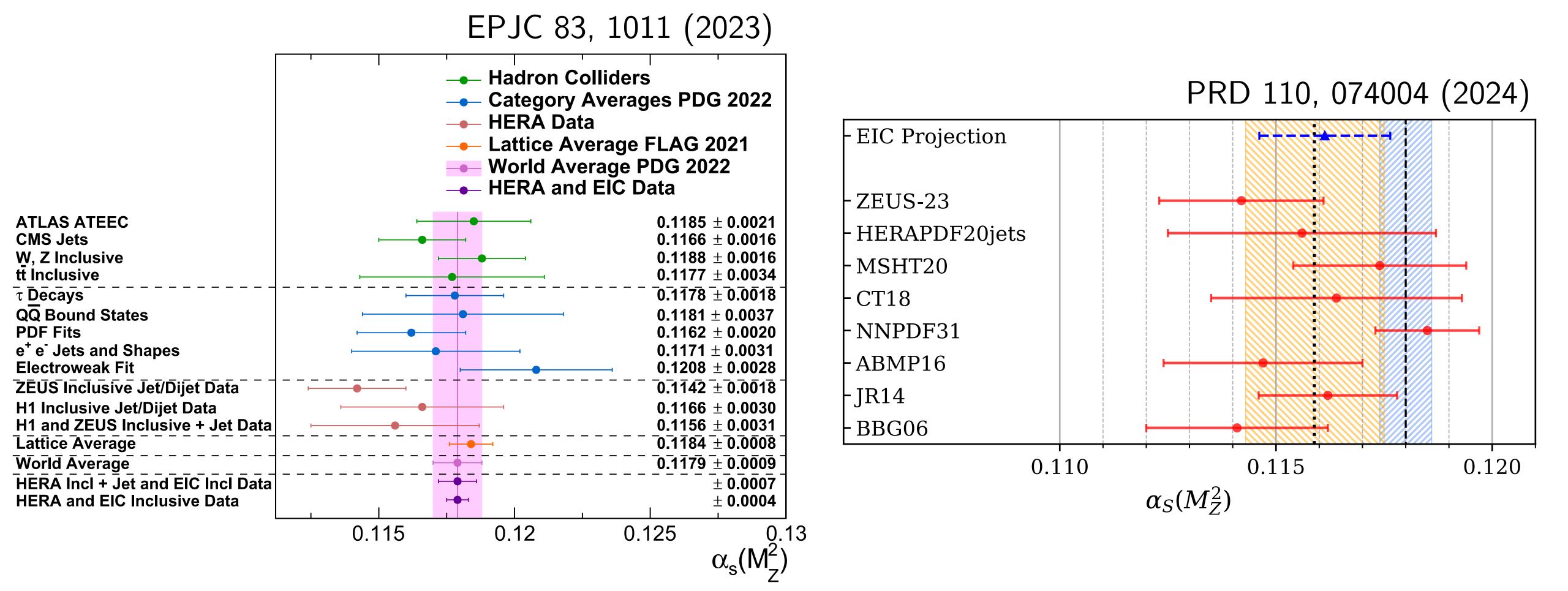
Infinite
$$Q^2$$
: $\Gamma_1^{\mathrm{p-n}}(Q^2)|_{Q^2\to\infty} = \frac{g_A}{6}$

Finite
$$Q^2$$
: $\Gamma_1^{\rm p-n}(\alpha_s) = \frac{g_{\rm A}}{6} \left[1 - \frac{\alpha_s(Q^2)}{\pi} - 3.58 \left(\frac{\alpha_s(Q^2)}{\pi} \right)^2 \dots \right]$



Unpolarized cross sections

Bjorken sum rule



Unpolarized cross sections

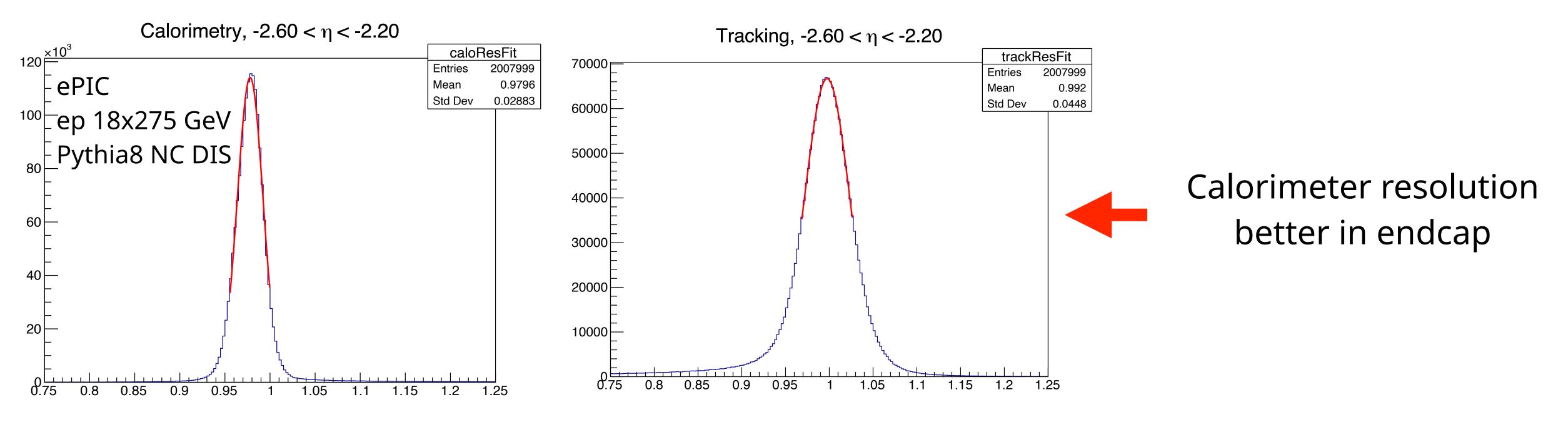
Bjorken sum rule

Global fit of unpolarized, polarized observables? (Win Lin, SBU)

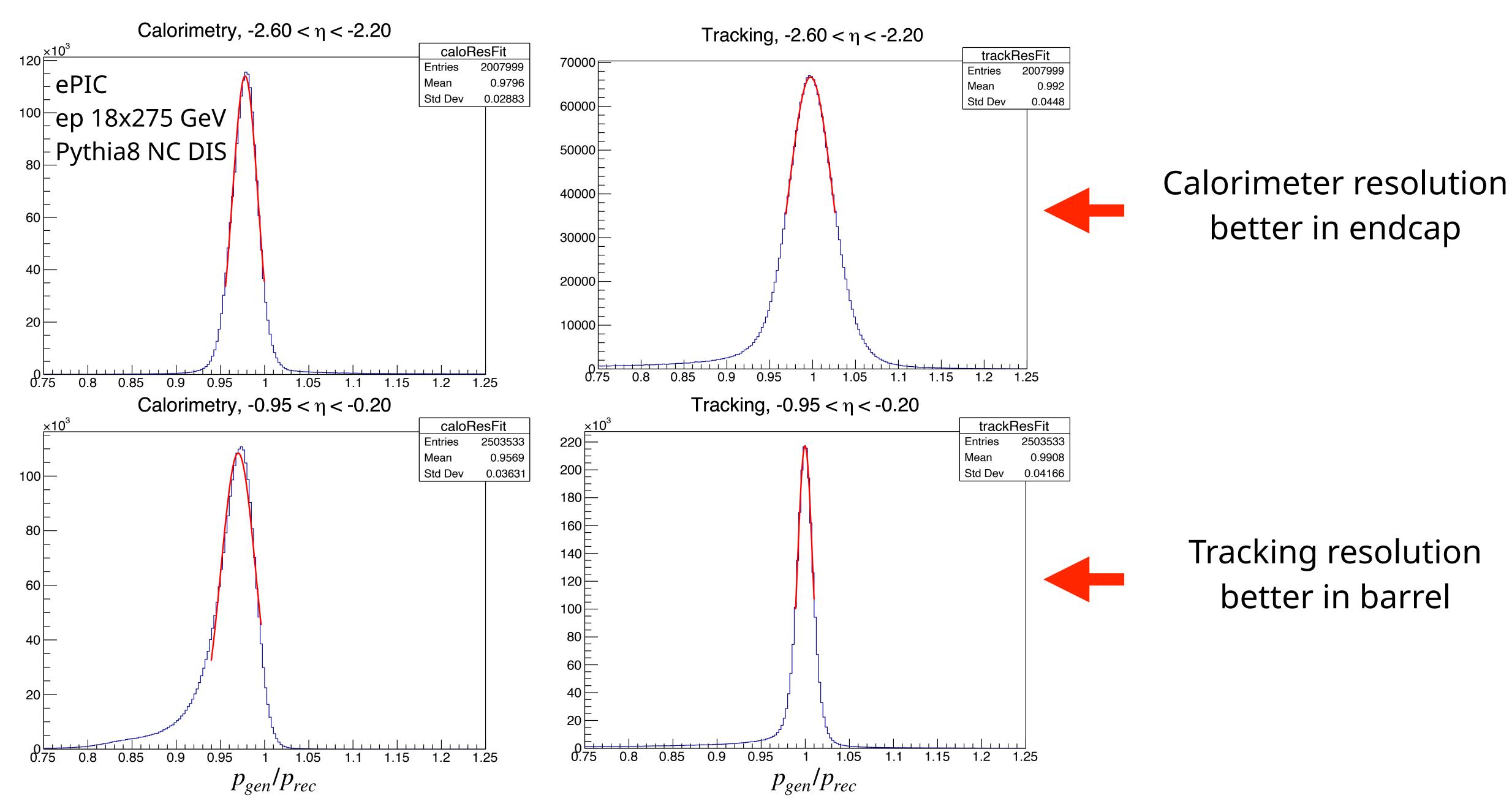
Requirements for high-precision cross sections and asymmetries

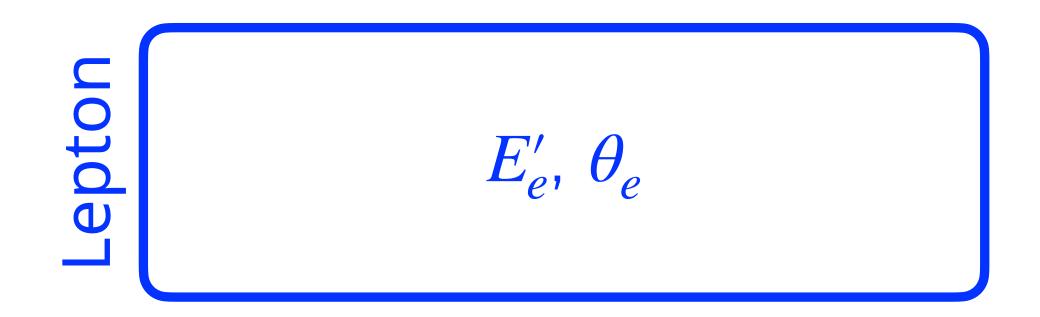
- Kinematic reconstruction
- Electron identification
- Luminosity monitoring

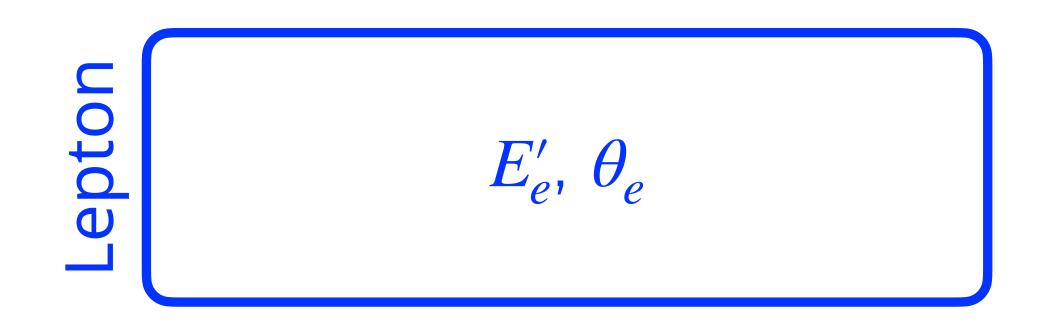
Electron momentum resolutions



Electron momentum resolutions







• Electron $Q^2\left(\underline{E'_e},\,\theta_e\right),\,y\left(\underline{E'_e},\,\theta_e\right)$

 $E_{e}^{\prime},\;\theta_{e}$

$$\delta_h = \sum_i \left(E_i - p_{z,i}\right)$$

$$p_{T,h} = \sqrt{\left(\sum_i p_{x,i}\right)^2 + \left(\sum_i p_{y,i}\right)^2}$$

$$\cos \gamma_h = \frac{p_{T,h}^2 - \delta_h^2}{p_{T,h}^2 + \delta_h^2}$$

- Electron $Q^2\left(E_e',\,\theta_e\right)$, $y\left(E_e',\,\theta_e\right)$
- Jacquet-Blondel $Q^2(\delta_h, p_{T,h})$, $y(\delta_h, p_{T,h})$

 $E_{e}^{\prime},\;\theta_{e}$

$$\delta_h = \sum_i \left(E_i - p_{z,i}\right)$$

$$p_{T,h} = \sqrt{\left(\sum_i p_{x,i}\right)^2 + \left(\sum_i p_{y,i}\right)^2}$$

$$\cos \gamma_h = \frac{p_{T,h}^2 - \delta_h^2}{p_{T,h}^2 + \delta_h^2}$$

- Electron $Q^2\left(E_e',\,\theta_e\right)$, $y\left(E_e',\,\theta_e\right)$
- Jacquet-Blondel $Q^2(\delta_h, p_{T,h})$, $y(\delta_h, p_{T,h})$
- Double-angle $Q^2\left(\gamma_h, \theta_e\right), y\left(\gamma_h, \theta_e\right)$

 $E_e',\ \theta_e$

$$\delta_h = \sum_i (E_i - p_{z,i})$$

$$p_{T,h} = \sqrt{\left(\sum_i p_{x,i}\right)^2 + \left(\sum_i p_{y,i}\right)^2}$$

$$\cos \gamma_h = \frac{p_{T,h}^2 - \delta_h^2}{2}$$

- Electron $Q^2\left(E_e',\,\theta_e\right)$, $y\left(E_e',\,\theta_e\right)$
- Jacquet-Blondel $Q^2(\delta_h, p_{T,h})$, $y(\delta_h, p_{T,h})$
- Double-angle $Q^2\left(\gamma_h, \theta_e\right), y\left(\gamma_h, \theta_e\right)$
- $e\Sigma$ $Q^2\left(E_e',\,\theta_e\right),\,y\left(E_e',\,\theta_e,\,\delta_h\right)$

Lepton

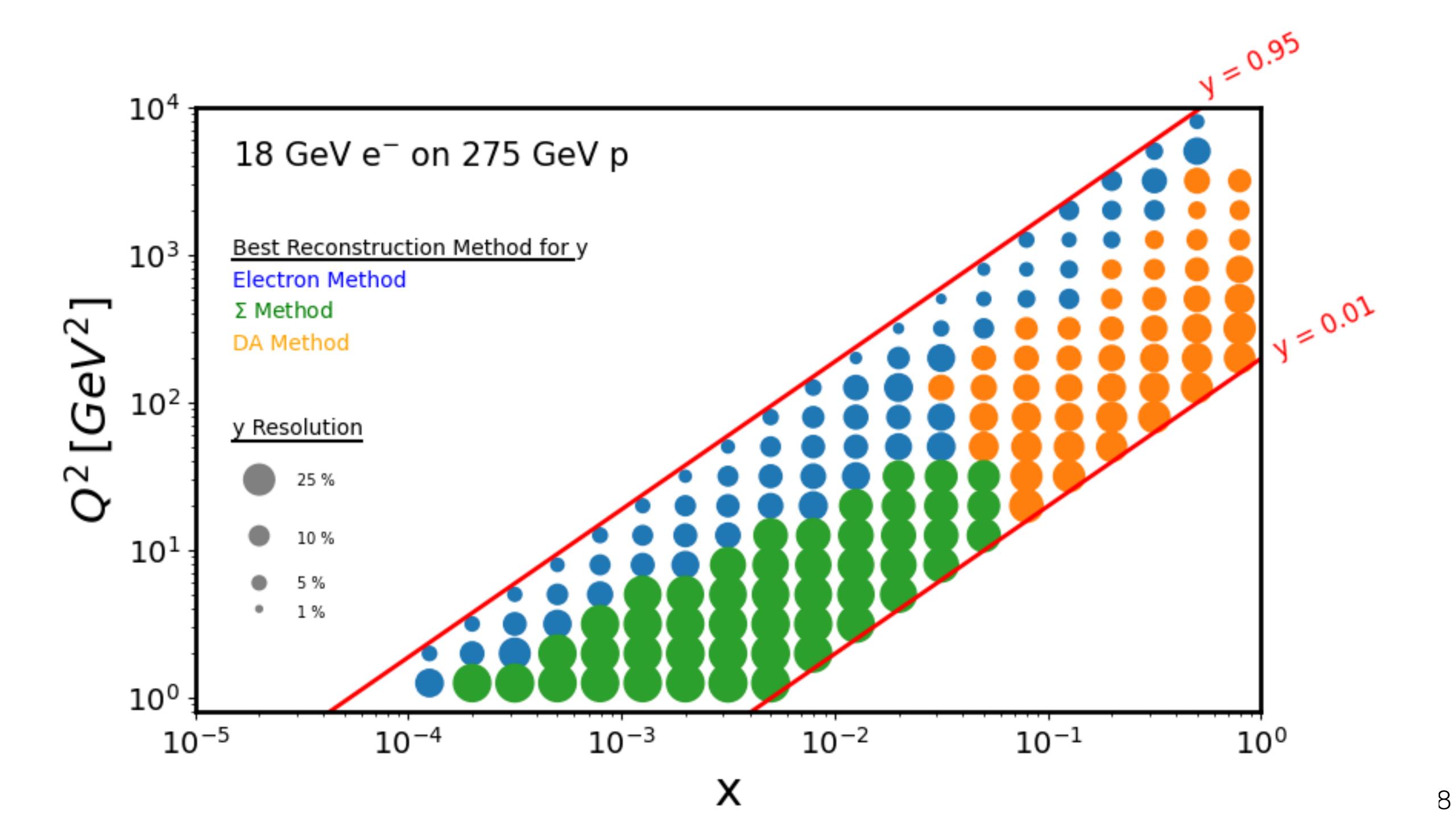
$$E'_e$$
, θ_e

$$\delta_h = \sum_i \left(E_i - p_{z,i} \right)$$

$$p_{T,h} = \sqrt{\left(\sum_i p_{x,i} \right)^2 + \left(\sum_i p_{y,i} \right)^2}$$

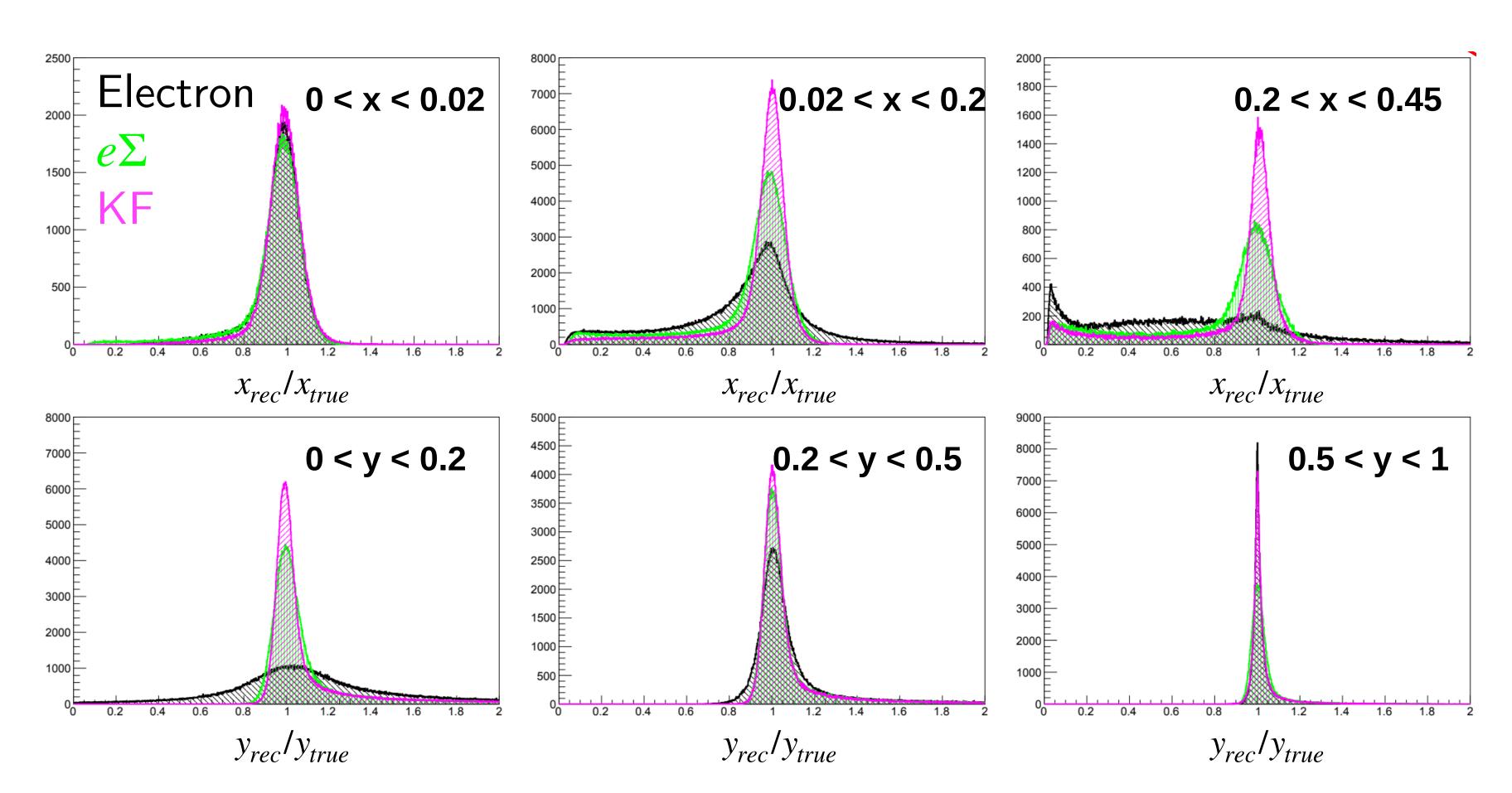
$$\cos \gamma_h = \frac{p_{T,h}^2 - \delta_h^2}{p_{T,h}^2 + \delta_h^2}$$

- Neutral-current analyses can leverage over-constrained kinematics to optimize resolution
- Jacquet-Blondel only option for charged-current analyses

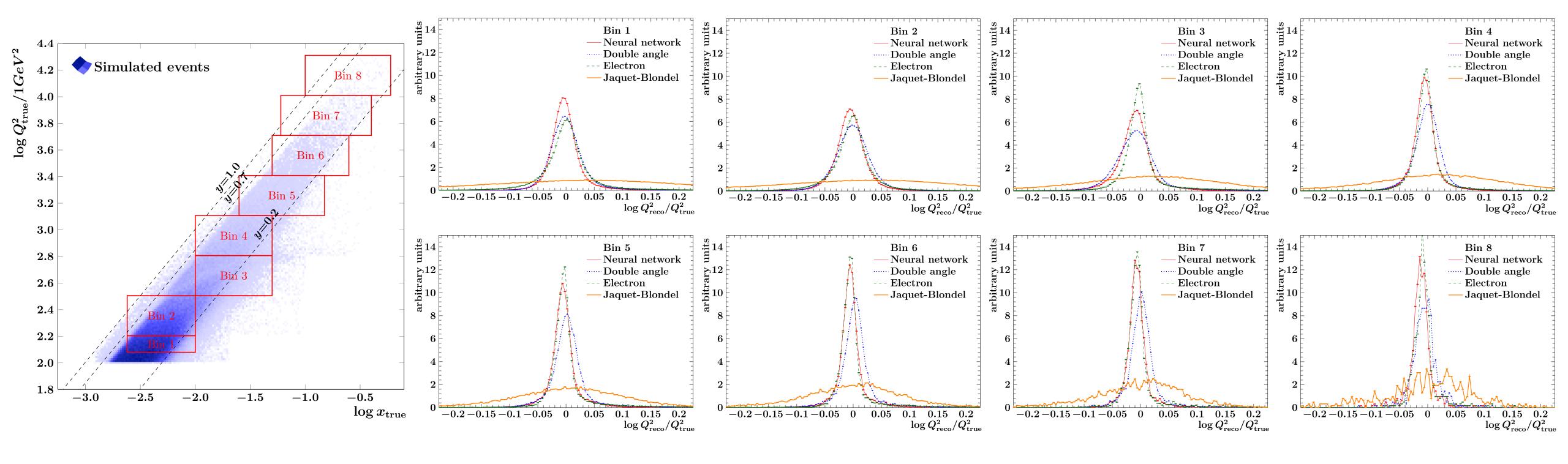


• Kinematic fitting: reconstruct $\bar{\lambda} = \{x_B, y, E_\gamma\}$ from $\bar{D} = \{E'_e, \theta'_e, \delta_h, p_{T,h}\}$ using likelihood function (Stephen Maple, et al.)

Proof of concept: Smeared DJANGOH events with ISR



- Kinematic fitting: reconstruct $\bar{\lambda} = \{x_B, y, E_\gamma\}$ from $\bar{D} = \{E'_e, \theta'_e, \delta_h, p_{T,h}\}$ using likelihood function (Stephen Maple, et al.)
- Machine learning: use simulation to train neural network
 (M. Diefenthaler, A. Farhat, A. Verbytskyi and Y. Xu)



- Kinematic fitting: reconstruct $\bar{\lambda} = \{x_B, y, E_\gamma\}$ from $\bar{D} = \{E'_e, \theta'_e, \delta_h, p_{T,h}\}$ using likelihood function (Stephen Maple, et al.)
- Machine learning: use simulation to train neural network
 (M. Diefenthaler, A. Farhat, A. Verbytskyi and Y. Xu)
- Particle-flow: optimize combination of all detector information (Derek Anderson, et al.)

Impact of pion contamination on observables

- Pions passing all electron ID cuts give contamination $f_{\pi/e}$
- Contamination can be corrected or treated as dilution

Cross sections (correct contamination):

$$\left(\frac{\Delta\left(\sigma^{r,NC}\right)}{\sigma^{r,NC}}\right)_{\pi^{-}} = \Delta f_{\pi/e}$$

$$\approx 0.1 \times f_{\pi/e}$$

Impact of pion contamination on observables

- Pions passing all electron ID cuts give contamination $f_{\pi/e}$
- Contamination can be corrected or treated as dilution

Cross sections (correct contamination):

$$\left(\frac{\Delta\left(\sigma^{r,NC}\right)}{\sigma^{r,NC}}\right)_{\pi^{-}} = \Delta f_{\pi/e}$$

$$\approx 0.1 \times f_{\pi/e}$$

Asymmetries (treat as dilution factor):

$$\left(\frac{\sigma_{A^e}}{A^e}\right)_{\pi^-} = \sqrt{(\Delta f_{\pi/e})^2 + \left(f_{\pi/e} \frac{|A^{\pi}| + \Delta A^{\pi}}{A^e}\right)^2}$$

$$\approx 0.1 \times f_{\pi/e} \dots 1 \times f_{\pi/e}$$

Impact of pion contamination on observables

- Pions passing all electron ID cuts give contamination $f_{\pi/e}$
- Contamination can be corrected or treated as dilution

Cross sections (correct contamination):

$$\left(\frac{\Delta\left(\sigma^{r,NC}\right)}{\sigma^{r,NC}}\right)_{\pi^{-}} = \Delta f_{\pi/e}$$

$$\approx 0.1 \times f_{\pi/e}$$

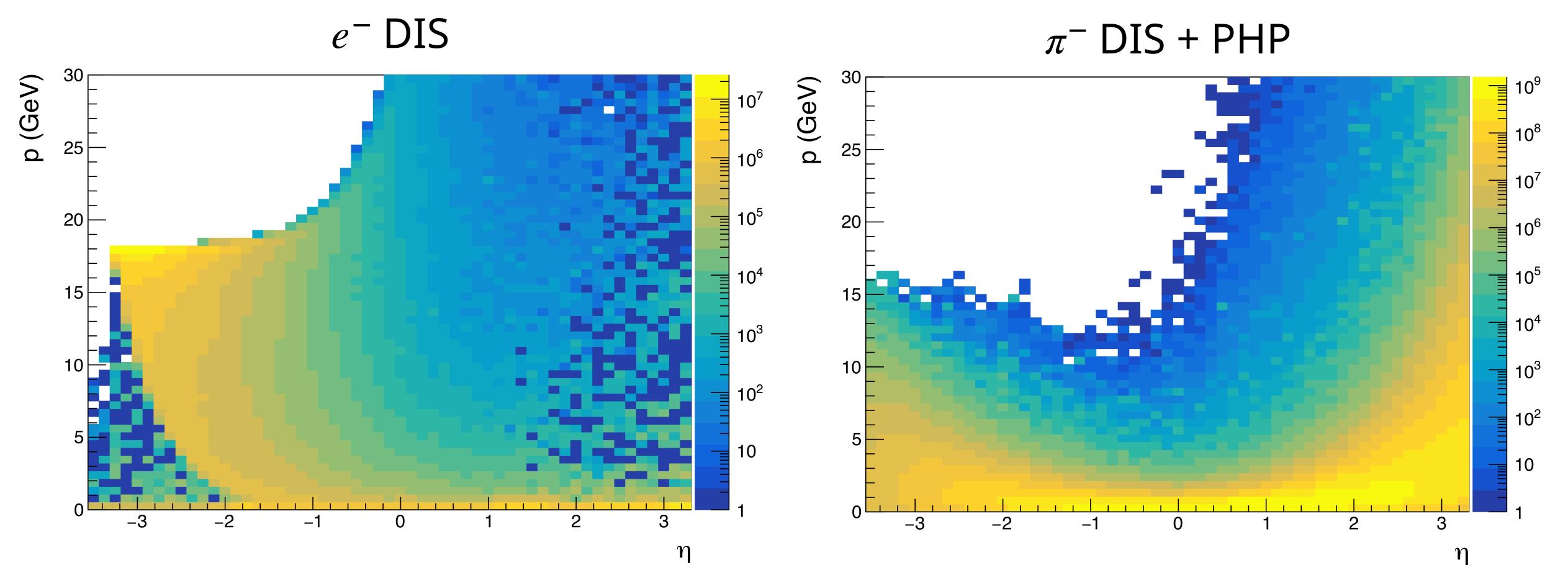
Two regimes:

Asymmetries (treat as dilution factor):

$$\left(\frac{\sigma_{A^e}}{A^e}\right)_{\pi^-} = \sqrt{(\Delta f_{\pi/e})^2 + \left(f_{\pi/e} \frac{|A^{\pi}| + \Delta A^{\pi}}{A^e}\right)^2}$$

$$\approx 0.1 \times f_{\pi/e} \dots 1 \times f_{\pi/e}$$
 Large A^e , Small A^e , nonzero $|A^\pi| < A^e$ $|A^\pi| \approx 0$

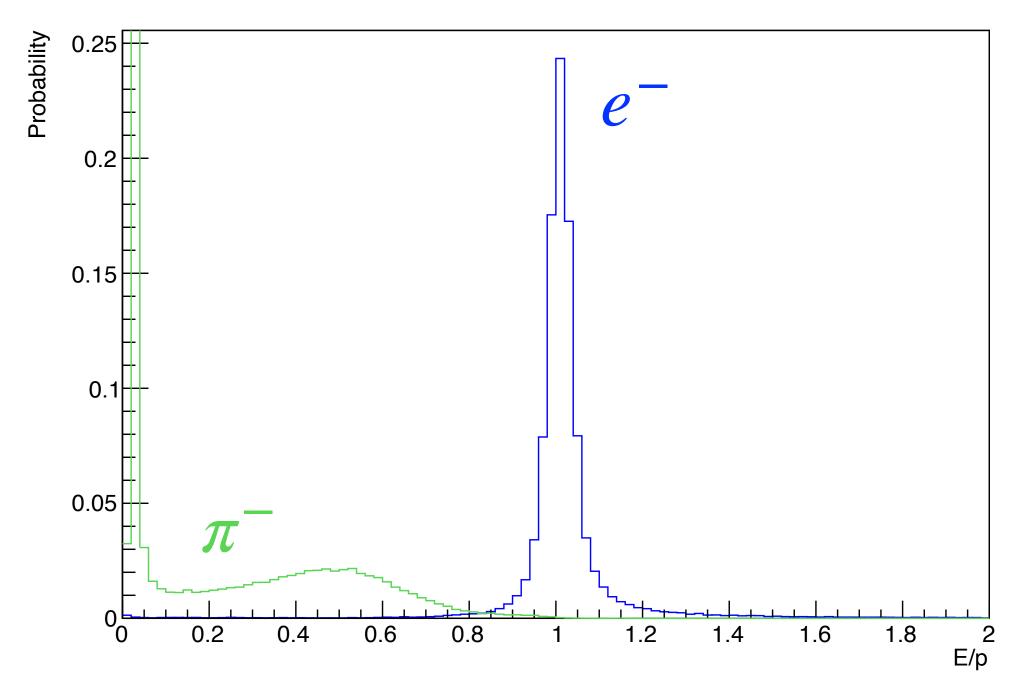
Electron to pion ratios

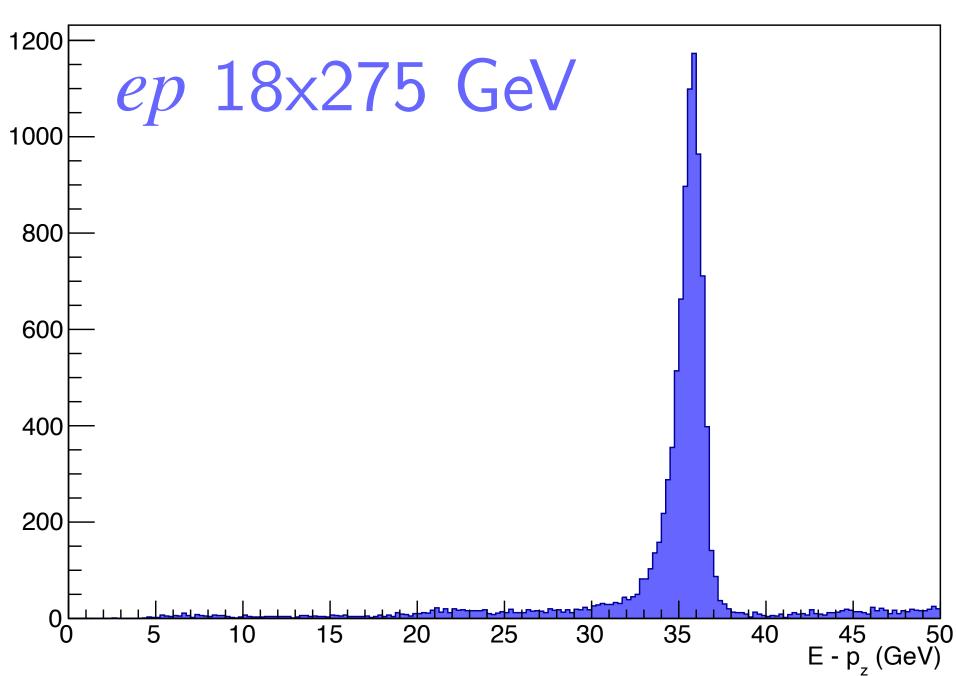


- Signal e^- from DJANGOH DIS
- Background π^- from DJANGOH DIS, Pythia6 photoproduction ($Q^2 < 2$ GeV²)

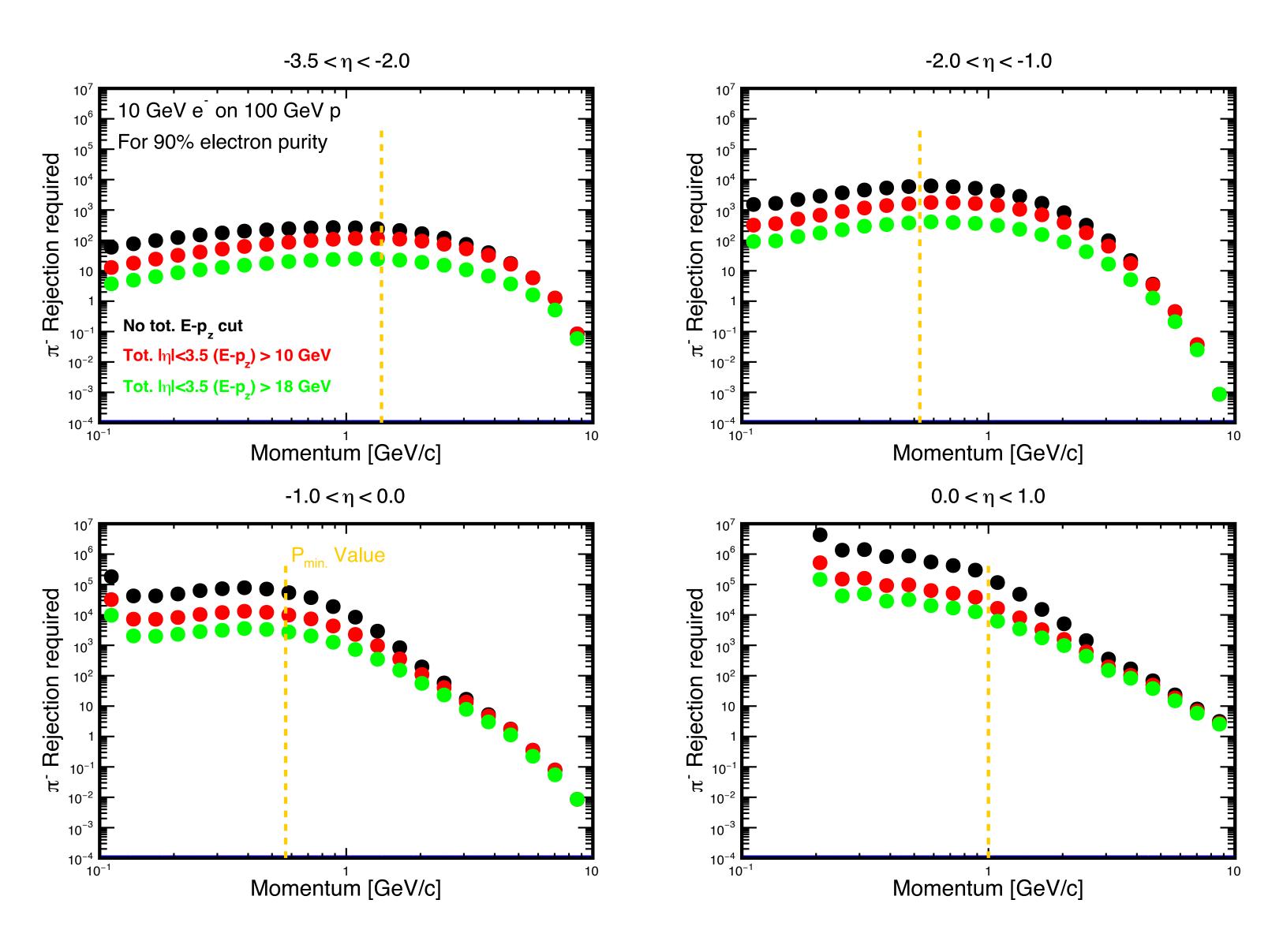
Pion suppression cuts

- $E/p \approx 1$
- $\delta = \sum_{i} (E_i p_{z,i}) = 2E_e$
 - Effective veto of photoproduction, ISR
- PID (hpDIRC, pfRICH, dRICH, ToF)
 - Critical rejection at low momentum
- Shower shape
 - Imaging barrel calorimeter





Required suppression for 90% purity



- $E p_z$ cut can reduce required suppression by up to 20x
- Tightness of cut depends on resolution of hadronic final state
- Barrel critical region due to large raw π^-/e^- ratio

HERA demonstrated luminosity measurement with bremsstrahlung

HERA demonstrated luminosity measurement with bremsstrahlung

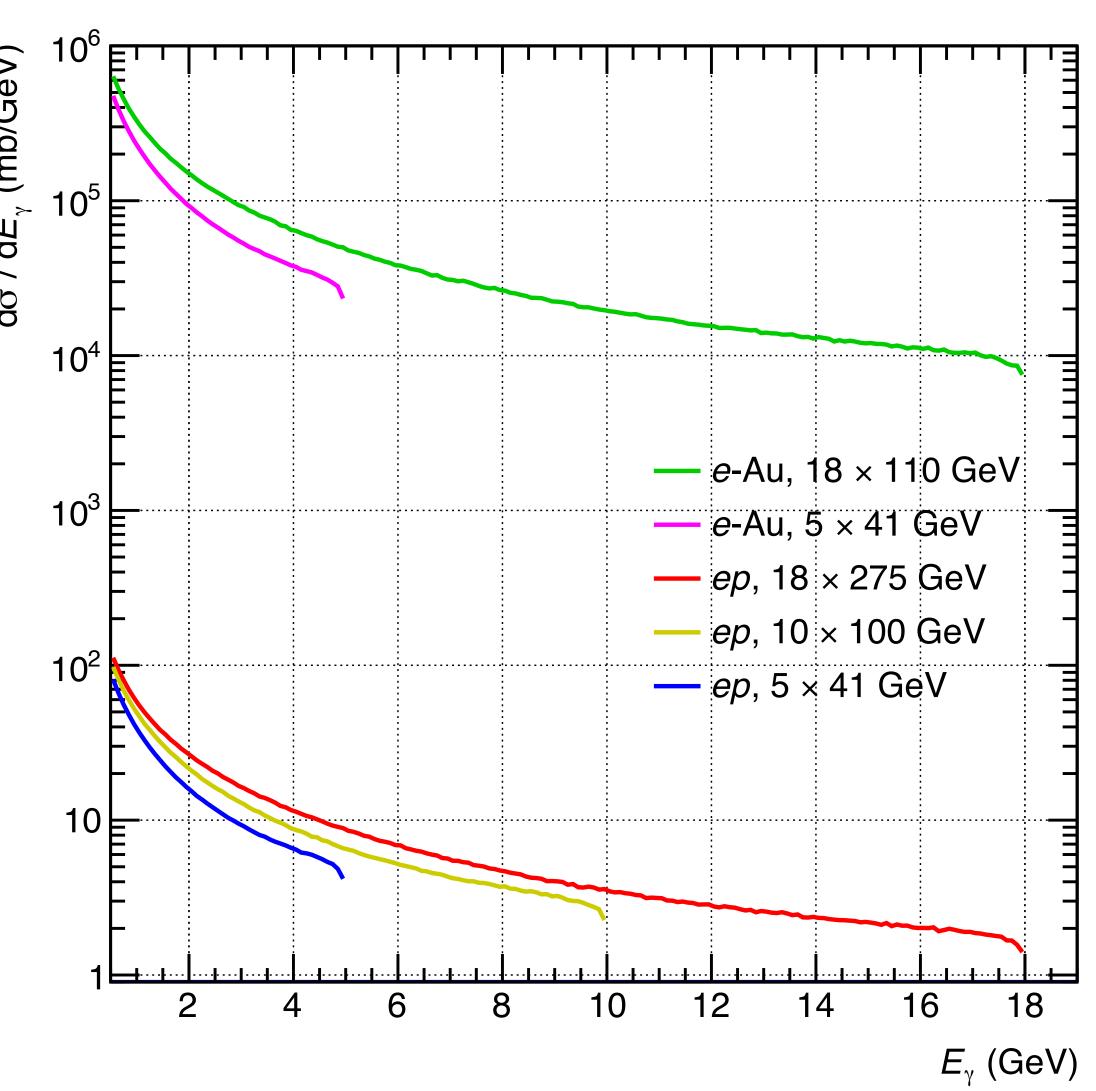
- Pure QED process with large, precisely calculable cross section
- Precision:
 - 1% at HERA-I, 1.7% at HERA-II
 - EIC goal: \leq 1% (abs.), 10⁻⁴ (rel. bunch-to-bunch)

HERA demonstrated luminosity measurement with bremsstrahlung

- Pure QED process with large, precisely calculable cross section
- Precision:
 - 1% at HERA-I, 1.7% at HERA-II
 - EIC goal: \leq 1% (abs.), 10⁻⁴ (rel. bunch-to-bunch)

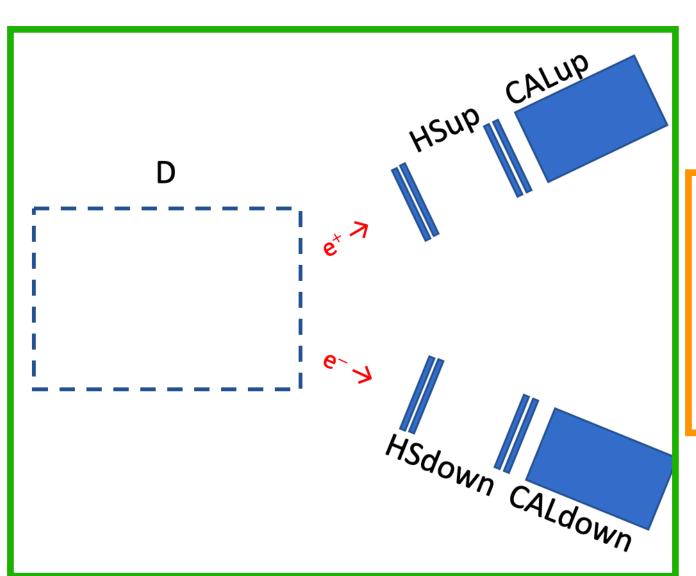
Challenges at EIC:

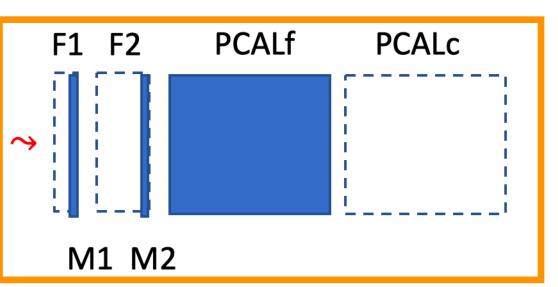
- Event pileup, even worse for heavy ions ($\sigma_{Brem} \propto Z^2$)
- Increased synchrotron radiation background
- Large integrated doses
- High bunch rate requires fast timing/readout



Address challenges with two-detector luminosity monitor

Pair spectrometer: $\det e^{\pm} \text{ pairs}$ $\operatorname{produced in exit}$ window window





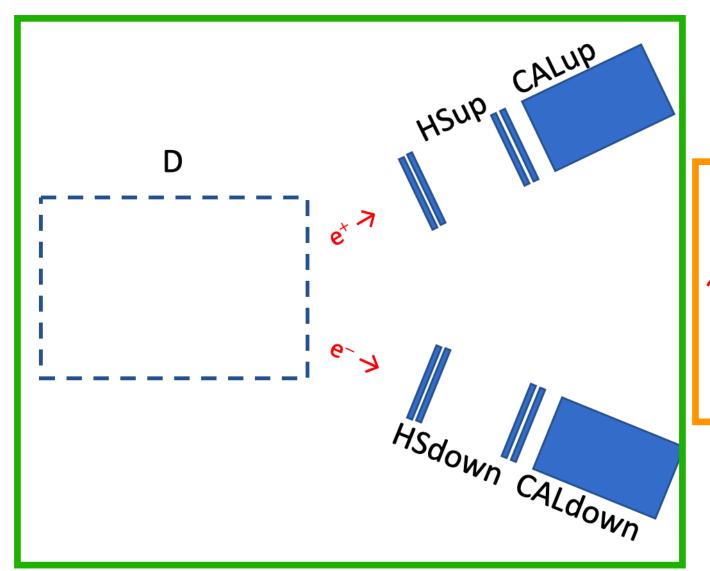
Direct photon detector: detect bremsstrahlung photons

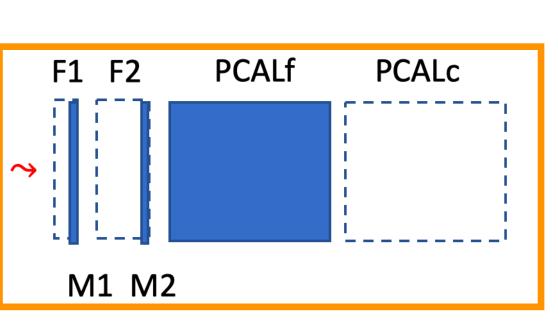
Address challenges with two-detector luminosity monitor

Pair spectrometer: detect e^{\pm} pairs produced in exit window

Exit

window





Direct photon detector: detect bremsstrahlung photons

- Both systems to use tungsten/fiber-array calorimeters
- Fibers read out with silicon photomultipliers (SiPM)
- Mesh design allows shower profile reconstruction
 - → better disentangle multi-hit events

Theory systematics

experiment

$$\sigma(x_B, Q^2) = \frac{N - B}{\mathcal{L} \cdot \mathcal{A}} \cdot \mathcal{C} \cdot (1 + \Delta)$$
 theory

- Bin-centering ${\cal C}$
- Radiative corrections Δ
 - Efforts to unify QED radiative effects with QCD radiation <u>Liu, Melnitchouk, Qiu, Sato [PRD 104, 094033 (2021)]</u>

 <u>Cammarota, Qiu, Watanabe, Zhang [arXiv:2505.23487]</u>
 - Electroweak radiation...
- Binned unfolding of experiment vs. event-by-event folding of theory

Summary

- Inclusive reactions are the "bread and butter" of the EIC
- Beyond core EIC science, inclusive physics can contribute to EW and BSM physics searches
- High-precision extractions of α_S can be performed with EIC measurements
- Polarized and charged-current measurement at the EIC are sensitive to EW couplings, but sensitivity studies are needed