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Outline

• Background & Motivation 
• Summary of sin2 𝜃𝑊  measurements

• Past, present, & future experiments

• Overview of sin2 𝜃𝑊  impact study at the EIC
• Summary and Outlook
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Motivation: Weak Mixing Angle 

• sin2 𝜃𝑊: Fundamental parameter of the Standard Model

• Accessed through different measurements & energies
• e- e+ collisions 
• Parity violation measurements 
• Atomic measurement

• (Potential) tension
• SLC and LEP1
• NuTeV

• High precision measurements
• Beyond the Standard Model Physics searches

PARITY NON-CONSERVATION IN INELASTIC ELECTRON SCATTERING
3

Comparison of results with 
SU(2)✕U(1) theories 
1. Weinberg-Salam (solid line) 
2. Hybrid (dashed line 



Running of the Weak Mixing Angle

4Scale dependence of the weak mixing angle in ("MS" ) ̅ renormalization scheme  

https://journals.aps.org/prd/pdf/10.1103/PhysRevD.72.073003
https://journals.aps.org/prd/pdf/10.1103/PhysRevD.72.073003
https://journals.aps.org/prd/pdf/10.1103/PhysRevD.72.073003


Weak Mixing Angle Measurements
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Weak Mixing Angle Measurements
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Weak Mixing Angle Measurements
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Weak Mixing Angle Measurements
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SLD at Stanford Linear Collider
e- e+ collisions (near Z pole)
Z measured through decay of Z to -> tau+ tau -
e- polarized    

LEP1 and SLC: ~3.2 𝜎 difference

9



Weak Mixing Angle Measurements
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Weak Mixing Angle Measurements

Fixed Target

PVES
1. Lepton-lepton scattering (Moller scattering)
2. Lepton-proton (elastic)
3. Lepton-deuteron (deep inelastic)

• Longitudinally polarized electron
• 𝛾-Z interference
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Weak Mixing Angle Measurements
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Future Measurements



Future Measurements
The MOLLER Experiment
• APV in Møller scattering
• Purely leptonic
• “Ultra-precise measurement of sin2(𝜃W)”
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• APV in in elastic e-p scattering
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of the electroweak mixing angle”



Future Measurements
The MOLLER Experiment
• APV in Møller scattering
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Future Measurements

Parity-Violation DIS with SoLID
• APV in in DIS e--deuteron scattering
1. Independent of pdfs, x  W
2. Well-defined SM prediction for Q2 & y
3. PVDIS Asymmetry is sensitive to both 𝑔𝑉𝐴

𝑒𝑞
 and 𝑔𝐴𝑉

𝑒𝑞

4. PVES (elastic) Asymmetry only sensitive to 𝑔𝐴𝑉
𝑒𝑞

The MOLLER Experiment
• APV in Møller scattering
• Purely leptonic
• “Ultra-precise measurement of sin2(𝜃W)”
• 𝛿 sin2𝜃W = ±0.00023(𝑠𝑡𝑎𝑡) ± 0.00012(𝑠𝑦𝑠𝑡)

•  ~0.1%
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𝑑 ≈
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Low energy electron-quark effective couplings 
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• 0.15% sin2𝜃W 
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Weak Mixing Angle Measurements
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Weak Mixing Angle at the EIC
• PVDIS 
• Impact Study
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Parity Violation DIS

𝐴𝑃𝑉 =
𝜎𝑅 − 𝜎𝐿

𝜎𝑅 + 𝜎𝐿

𝜎R,L: cross sections of right- and left-handed electrons
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Parity Violation DIS

𝛾
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𝜎R,L: cross sections of right- and left-handed electrons

24



Parity Violation DIS

𝛾
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Weak Interaction
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𝐴𝑃𝑉 =
𝜎𝑅 − 𝜎𝐿

𝜎𝑅 + 𝜎𝐿

APV is due to the interference between 
electromagnetic and weak interaction 

ᐩ

𝜎R,L: cross sections of right- and left-handed electrons
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Parity Violation DIS
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𝐴𝑃𝑉 =
𝜎𝑅 − 𝜎𝐿

𝜎𝑅 + 𝜎𝐿

𝜎𝑅 ∝ 𝑀𝐸𝑀 + 𝑀𝑍
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𝜎𝐿 ∝ 𝑀𝐸𝑀 + 𝑀𝑍
𝐿 2

   𝐴𝑃𝑉~
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𝑅−𝑀𝑍
𝐿

𝑀𝐸𝑀

ᐩ

APV is due to the interference between 
electromagnetic and weak interaction 

𝜎R,L: cross sections of right- and left-handed electrons
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PVDIS Asymmetry at the EIC

𝐴𝑃𝑉 =
𝜎𝑅 − 𝜎𝐿

𝜎𝑅 + 𝜎𝐿

Polarized cross section

𝑑2𝜎0

𝑑𝑥𝑑𝑦
=

4𝜋𝛼2

𝑥𝑦𝑄2 𝑥𝑦2 𝐹1
𝛾

− 𝑔𝑉
𝑒𝜂𝛾𝑍𝐹1

𝛾𝑍
+ 𝑔𝑉

𝑒2
+ 𝑔𝐴

𝑒2
𝜂𝑍𝐹1

𝑍 + 1 − 𝑦 𝐹2
𝛾

− 𝑔𝑉
𝑒𝜂𝛾𝑍𝐹2

𝛾𝑍
+ 𝑔𝑉

𝑒2
+ 𝑔𝐴

𝑒2
𝜂𝑍𝐹2

𝑍 −
𝑥𝑦

2
(2 − 𝑦) 𝑔𝐴

𝑒𝜂𝛾𝑍𝐹3
𝛾𝑍

− 2𝑔𝑉
𝑒𝑔𝐴

𝑒𝜂𝑍𝐹3
𝑍

27



PVDIS Asymmetry at the EIC
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PVDIS Asymmetry at the EIC

𝐴𝑅𝐿
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Where

𝑔𝐴
𝑒(𝑞)and 𝑔𝑉

𝑒(𝑞) are the :
axial and vector neutral 
weak couplings of the 
electron (quark) 



Weak Mixing Angle: Sensitivity of the EIC

• Single event gun simulation 
• Detector fast smearing

• Proton & Deuteron targets
• DJANGOH event generator
• Pseudo-data generation 

• Statistical, experimental, and PDF uncertainties

• sin2(𝜃W) extraction from fit
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e+p (18x275)
Integrated Luminosity • 100 fb-1

Event selection 
▪ 𝑄det

2 >1.0 GeV2 
▪ 𝑦det>0.1 & 𝑦det <0.9 
▪ 𝜂det >-3.5 and 𝜂det <3.5 
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Event selection 
▪ 𝑄det

2 >1.0 GeV2 
▪ 𝑦det>0.1 & 𝑦det <0.9 
▪ 𝜂det >-3.5 and 𝜂det <3.5 e+p (18x275)
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Weak Mixing Angle EIC: Choice of targets

Jlab PVDIS (6 GeV) & SoLID PVDIS: Deuteron target ✓

𝐴𝑃𝑉 = −
𝐺𝐹𝑄2

4 2𝜋𝛼
[𝑎1(𝑥) + 𝑎3(𝑥)𝑌] 

               For an Isoscalar Deuteron target, APV reduces to: Independent of pdfs, x  W

→ 𝐴𝑃𝑉,(𝑑)
𝑆𝑀 =

3𝐺𝐹𝑄2

10 2𝜋𝛼
2𝑔𝐴𝑉

𝑒𝑢 − 𝑔𝐴𝑉
𝑒𝑑 + 𝑅𝑉𝑌 2𝑔𝑉𝐴

𝑒𝑢 − 𝑔𝑉𝐴
𝑒𝑑
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Weak Mixing Angle EIC: Choice of targets

Jlab PVDIS (6 GeV) & SoLID PVDIS: Deuteron target ✓

𝐴𝑃𝑉 = −
𝐺𝐹𝑄2

4 2𝜋𝛼
[𝑎1(𝑥) + 𝑎3(𝑥)𝑌] 

               For an Isoscalar Deuteron target, APV reduces to: Independent of pdfs, x  W

→ 𝐴𝑃𝑉,(𝑑)
𝑆𝑀 =

3𝐺𝐹𝑄2

10 2𝜋𝛼
2𝑔𝐴𝑉

𝑒𝑢 − 𝑔𝐴𝑉
𝑒𝑑 + 𝑅𝑉𝑌 2𝑔𝑉𝐴

𝑒𝑢 − 𝑔𝑉𝐴
𝑒𝑑

• Anticipation of precision data of EIC – improved PDFs
• Potential to measure 𝐴𝑃𝑉  of the proton as well: Hydrogen target ✓
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Weak Mixing Angle: Sensitivity of the EIC

• Single event gun simulation
• Detector fast smearing 

• Deuteron and hydrogen targets
• DJANGOH event generator
• Pseudo-data generation 

• Statistical, experimental, and PDF uncertainties

• sin2(𝜃W) extraction from fit
• Deuteron and hydrogen targets
• Measure 𝐴𝑃𝑉  in an unexplored region

• 10 GeV < μ< 70 GeV 
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Simulated Settings
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Pseudo-Data

1. In each bin ( 𝑠, 𝑄2, 𝑥)
• Nominal PDF set used to calculate 𝐴𝑃𝑉

𝑡ℎ𝑒𝑜

• Pseudo-experimental asymmetry generated utilizing the statistical & 
systematic uncertainties

(𝐴𝑃𝑉)𝑏
𝑝𝑠𝑒𝑢𝑑𝑜

= 𝐴𝑃𝑉 𝑆𝑀,𝑏
𝑡ℎ𝑒𝑜 + 𝑟𝑏 𝜎𝑠𝑡𝑎𝑡

2 + 𝐴𝑃𝑉 𝑆𝑀,𝑏
𝑡ℎ𝑒𝑜

𝜎𝑠𝑦𝑠

𝐴 𝑏

2

+ 𝑟′ 𝐴𝑃𝑉 𝑆𝑀,𝑏
𝑡ℎ𝑒𝑜

𝜎𝑝𝑜𝑙

𝐴 𝑏

2

Uncorrelated uncertainties
1. Statistical: 𝜎𝑠𝑡𝑎𝑡

2. Particle background: 𝜎𝑠𝑦𝑠𝑡

Correlated uncertainties
1. Beam polarization: 𝜎𝑝𝑜𝑙
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Experimental Uncertainty Matrix

Σ0
2 =

𝜎1
2 ⋯ 𝜎1𝜎𝑁

⋮ ⋱ ⋮
𝜎𝑁𝜎1 ⋯ 𝜎𝑁

2
𝑏𝑖𝑛

Diagonal Terms
𝜎𝑏

2 = 𝜎𝑠𝑡𝑎𝑡,𝑏
2 + 𝐴𝑃𝑉 𝑆𝑀,0,𝑏

𝑡ℎ𝑒𝑜
𝜎𝑠𝑦𝑠

𝐴 𝑏

2

+ 𝐴𝑃𝑉 𝑆𝑀,𝑏
𝑡ℎ𝑒𝑜

𝜎𝑝𝑜𝑙

𝐴 𝑏

2

 Off-Diagonal Terms
𝜎𝑏 = 𝐴𝑃𝑉 𝑆𝑀,0,𝑏

𝑡ℎ𝑒𝑜 𝐴𝑃𝑉 𝑆𝑀,𝑏
𝑡ℎ𝑒𝑜

𝜎𝑝𝑜𝑙

𝐴 𝑏

Experimental Uncertainties
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Experimental Uncertainties

Experimental Uncertainty Matrix

Σ0
2 =

𝜎1
2 ⋯ 𝜎1𝜎𝑁

⋮ ⋱ ⋮
𝜎𝑁𝜎1 ⋯ 𝜎𝑁

2
𝑏𝑖𝑛

Diagonal Terms
𝝈𝒃

𝟐 = 𝝈𝒔𝒕𝒂𝒕,𝒃
𝟐 + 𝑨𝑷𝑽 𝑺𝑴,𝟎,𝒃

𝒕𝒉𝒆𝒐
𝝈𝒔𝒚𝒔

𝑨 𝒃

𝟐

+ 𝑨𝑷𝑽 𝑺𝑴,𝒃
𝒕𝒉𝒆𝒐

𝝈𝒑𝒐𝒍

𝑨 𝒃

𝟐

 Off-Diagonal Terms
𝝈𝒃 = 𝑨𝑷𝑽 𝑺𝑴,𝟎,𝒃

𝒕𝒉𝒆𝒐 𝑨𝑷𝑽 𝑺𝑴,𝒃
𝒕𝒉𝒆𝒐

𝝈𝒑𝒐𝒍

𝑨 𝒃

1. Statistical Uncertainty
• 𝑑Astat =

1

𝑁

2. Systematic Uncertainty
• Background: 

𝜎𝑏𝑔

𝐴
= 1%

• Polarimetry: 
𝜎𝑝𝑜𝑙

𝐴
= 1%

3. e- beam polarization = 80%
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PDF Uncertainties

• Multiple standard PDF sets used in analysis
• CT18NLO, MMHT2014, NNPDF31

• PDF uncertainties were determined following the prescription of each PDF 
set

• Hessian
σ𝑝𝑑𝑓

2

𝑏𝑏′ =
1

4
σ

𝑚=1

𝑁𝑝𝑑𝑓/2
𝐴𝑆𝑀,2𝑚,𝑏

𝑡ℎ𝑒𝑜 − 𝐴𝑆𝑀,2𝑚−1,𝑏
𝑡ℎ𝑒𝑜 (𝐴𝑆𝑀,2𝑚,𝑏′

𝑡ℎ𝑒𝑜 − 𝐴𝑆𝑀,2𝑚−1,𝑏′
𝑡ℎ𝑒𝑜 )

Σ𝑝𝑑𝑓
2 =

𝜎1,𝑝𝑑𝑓
2 ⋯ 𝜎1,𝑝𝑑𝑓𝜎𝑁,𝑝𝑑𝑓

⋮ ⋱ ⋮
𝜎𝑁𝜎1 ⋯ 𝜎𝑁

2
𝑏𝑖𝑛,𝑝𝑑𝑓

Analysis accounted for both diagonal and off-
diagonal  elements of the PDF uncertainty
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Extraction of the Weak Mixing Angle
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Projected Results: Weak Mixing Angle 
ep Results eD Results

1. Statistical and beam polarimetry uncertainties dominate;

2. Moderate precision in an unmeasured energy region

3. Combining ep + eD results, approach the sensitivity of Yellow Report: ~±0.00097 42
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1. Statistical and beam polarimetry uncertainties dominate;

2. Moderate precision in an unmeasured energy region

3. Combining ep + eD results, approach the sensitivity of Yellow Report: ~±0.00097

Projected Results: Weak Mixing Angle 



Summary and Outlook

• Several upcoming precision measurements of the 
weak mixing angle

• Moller, P2, SoLID
• A detailed study was preformed to study the 

potential impact at the EIC
• Accounted for statistical, systematic, and PDF 

uncertainties and their correlations 
• Potential to measure 𝐴𝑃𝑉 in an unexplored region

• Uncertainty larger than Yellow Report
• Moderate precision

• Should update utilizing the full simulation 
• (Talk by Tyler K.)
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Thank You
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