Towards new constraints on light, dark sectors through EIC studies

Susan Gardner

Department of Physics and Astronomy
University of Kentucky
Lexington, KY

See Justin Cammarota's talk at this workshop (yesterday)!

"New opportunities for beyond-the-Standard Model searches at the EIC" Center for Frontiers in Nuclear Science July 24, 2025

A Dark-Dominated Universe Two different numbers speak to new physics

a baryon **excess**: TODAY

$$\eta = n_{\text{baryon}}/n_{\text{photon}} = (6.12 \pm 0.04) \times 10^{-10}$$

N.B. primordial D/H abundance...

[Planck, 2020; PDG, 2022]

Observational Evidence for Dark Matter ranges from "local" to cosmic scales

Rotation Curve of our Milky Way with Gaia DR3! Jiao et al., A&A, 2023

The observed circular speed does not track the luminous mass.

Most of the cosmic energy budget is of an unknown form!

A Vast Range of Dark Matter Candidates

DM direct detection experiments assume a "Standard Halo Model" (& steady state)

Cosmic small-scale structure not known! [Bechtol et al., arXiv:2203.07354] Non-steady-state effects exist! [Widrow, SG, Yanny, Dodelson, & Chen, 2012; Yanny & SG, 2013...; SG, Hinkel, Yanny, 2020]

Motivates DM (and more) searches at accelerators!

New Particle Discovery Space Is Vast Big **Energy Probed** Usually assumed $\sim g^2/M_{\rm new}^2$ Here consider direct searches for new particles of a (weakly coupled) hidden sector – DM, mediators, …!

Coupling

to SM

particles

Tiny

Hidden-Sector Portals

Different Connectors are Possible

$$\mathcal{L}_{\dim \leq 4} = \kappa B^{\mu\nu} V_{\mu\nu} - H^{\dagger} H (AS + \lambda S^2) - Y_N L H N$$

[Batell, Pospelov, and Ritz, 2009; Le Dall, Pospelov, Ritz, 2015]

N.B. hidden sector particles

Enter the dark photon A'^{μ} and its field strength tensor $V^{\mu\nu}$

With "kinetic mixing" of visible & hidden sectors, e.g.

$$\begin{split} \mathcal{L} &= -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} - \frac{1}{4} V_{\mu\nu} V^{\mu\nu} + \frac{1}{2} m_{A'}^2 A'^2 \quad \text{dark matter} \\ &- \sum_f q_f e(A_\mu + \varepsilon A'_\mu) \bar{f} \gamma^\mu f - g_X A'_\mu \bar{X} \gamma^\mu X + \dots \text{ for } M_{A'} \ll M_Z \\ &\quad \text{[Feng, Smolinsky, Tanedo, "dark sunshine", 2016]} \end{split}$$

Gauge Theories of the Hidden Sector There are many possible vector portals

- but only some are anomaly free

Typical to consider Abelian groups as F^{µv} is gauge invariant

- U(1)_Y or U(1)_{em}: enter the dark photon and
 - A A' mixing [Holdom, 1986...]
- U(1)_Y with an extended Higgs sector: now mixing with both the photon and Z occurs enter the Z_d
 [Davoudiasl, Lee, Marciano, 2014]
- U(1)_B but not anomaly free [Nelson & Tetradis, 1989; Tulin, 2014; Dobrescu & Frugiuele, 2014...] $\mathcal{L}_{B'} = g_{B'}^u \bar{u} \gamma^\mu u B'_\mu + g_{B'}^d \bar{d} \gamma^\mu d B'_\mu + ...$
- U(1)B-L [Feng et al., 2017...] $\mathcal{L}_B = \frac{1}{3} \bar{q} \gamma^\mu q B_\mu$
- $U(1)_{\mu-\tau}$ [Altsmannshofer, Gori, Pospelov, & Yavin, 2014]

Dark Photon Searches

Searches for displaced vertices

[Liu & Reimer, Fermilab E906/SeaQuest]

[Batell, Pospelov, and Ritz, 2009; Gninenko, 2011] [SG, Holt, Tadepalli, 2015]

[Bluemlein and Brunner, 2011 & 2013]

or "bump hunts" to sample $(\varepsilon, M_{A'})$ phase space

[cf. Bjorken, Essig, Schuster, and Toro ("BEST"), 2009]

Can look for scalars and more....

Special Opportunities at an EIC

for light, weak coupled particle searches

The EIC is a high-intensity electron-ion collider; its planned detector can also detect forward particles

[N.B. https://www.jlab.org/conference/EPIC]

Thus, BSM searches at the EIC....

- favor particles with couplings to first-generation fermions (& can access weaker couplings)
- ullet gives a \mathbb{Z}^2 signal boost via coherent production
- can probe "visible" or "invisible" final states
- sensitivity to particles at the MeV-GeV scale....

[Davoudiasl, Marcarelli, & Neil, 2023; Balkin et al., 2024; Davoudiasl & Liu, 2025...]

"Light" New Physics Searches

— some possibilities — {N.B. many papers!}

Scalars:

$$\mathcal{L}_S = g_V^e \phi \bar{e} e + g_S^{\chi} \phi \bar{\chi} \chi$$

Vectors:

$$\mathcal{L}_{V} = g_{V}^{e} \phi_{\mu} \bar{e} \gamma^{\mu} e + g_{V}^{\chi} \phi_{\mu} \bar{\chi} \gamma^{\mu} \chi$$

$$m_{\chi} < m_{\phi}/2$$

"invisible" final states possible!

[Davoudiasl & Liu, 2025]

The QCD axion, or axion-like particles (ALPs)....

The QCD Axion

Converting a problem into an experimental opportunity

QCD could have included a P, T (CP) odd term through $G ilde{G} - ext{but the experimental limits}$ on d_n constrains its appearance severely!

[Baluni, 1979;

Why does it not appear? [Peccei & Quinn, 1977] Crewther et al., 1979]

One solution: there is a Peccei-Quinn symmetry. If it is spontaneously broken, then the axion can appear, and we have

 $\theta \to \frac{a}{f_a}$ "the strong CP problem is washed away" [Weinberg, 1978; Wilczek, 1978]

Couplings to fermions, photons also can appear N.B. many new schemes to detect them!

[e.g., with phonons: Mitridate, Trickle, Zhang, Zurek, 2020; with magnetized media: Berlin & Trickle, 2023; ALPHA: Millar et al., 2023]

Constraints on axion-photon couplings

Assuming (astro) it is all of the dark matter $\mathcal{L}_{axion}^{em} = -\frac{\delta a \gamma \gamma}{\Lambda} a F \hat{I}$

Pale red shaded regions are forecasts

 m_a [eV]

10 MeV

[Snowmass white paper 2203.14923; update (June, 2025), Ciaran O'Hare, https://cajohare.github.io/AxionLimits/docs/ap.html]

Constraints on axion-photon couplings

[Ciaran O'Hare, https://cajohare.github.io/AxionLimits/docs/ap.html]

Focus thus far on axion-photon coupling constraints

$$\frac{1}{2}(\partial_{\mu}a)^{2} - \frac{1}{2}m_{a}^{2}a^{2} - \frac{g_{a\gamma\gamma}}{4}aF_{\mu\nu}\tilde{F}^{\mu\nu}$$
 for $e^{-}q \rightarrow e^{-}j\gamma\gamma...$ [Liu & Yan, 2021; N.B.

$$\mathcal{O}(g_{a\gamma\gamma}^2)(\text{Br}(a\to\gamma\gamma))$$

Set = 1 (Strong CP?!)

Still need to detect $\gamma\gamma$!

"Bump hunts"

Study of s-channel axion production

Assumes

$$Br(a \rightarrow \gamma \gamma) \approx 100 \%$$

[Belkin et al., 2024]

$$g_{a\gamma\gamma} \equiv 1/\Lambda$$

What if the axion decays invisibly?

New possibilities using QCD + QED factorization

See Justin Cammarota's talk at this workshop (yesterday)!

- Refines computations of DIS and SIDIS cross sections & their kinematic variations
- Cross-section shapes can be modified in $\mathcal{O}(g_{a\gamma\gamma}^2)$ via "invisible" axion emission
- Limits on axion-fermion couplings also possible

Thus far, the factorization analysis assumes real photon emission...

e.g., in DIS with QCD + QED factorization

[Liu et al., 2021; Cammorata et al., 2024]

PDFs / LDFs are blended QCD+QED objects

Can add, e.g., $\gamma^* \to \gamma a$ to any charged fermion line

The axion can be "invisible" γ^*

and can add a direct coupling to fermion f with the precise weighting to depend on the **model**....

ALPs & QCD+QED factorization

ALP models: input couplings at Λ + RNG flow!

Coda: Probes of MeV-Scale Axions

via rare η meson decays

Beam dump experiments offer strong

constraints on $g_{a\gamma\gamma}$

However, we can also consider $a \rightarrow e^+e^-$, though the axion must decay **promptly** enough to be detected as in, e.g.,

$$\eta(\eta') \to \pi\pi(a \to e^+e^-)$$

[Alves & Gonzalez-Solis, 2024]

Possible if axion-pion mixing is suppressed....

[Alves & Weiner, 2018; Alves, 2021; Hostert & Pospelov, 2023]

In these searches the axion decays "visibly"!

Axion Constraints

[PDG axion review, 2024; Ciaran O'Hare; note also Berlin et al., 2024]]

Summary

- We have considered new searches for axionlike particles at the EIC (as an example)
- Prompt and displaced vertex studies of visible axions-like particles have been made
- The combined QCD+QED factorization framework opens new windows on such searches, as the ALP s can decay invisibly & still be probed (via PDF/LDF shapes!)
- Potentially models with different axion-fermion couplings can be probed simultaneously....
 - I thank Justin Cammarota for discussions!

Backup Slides

Flavor Probes of ALP Couplings

[Bauer, Neubert, Renner, Schnubel, Thamm, 2022]

Model: glue only at $f = 4\pi(1 \text{ TeV})$

MAJORANA

Ultralight Axion-like Dark Matter

Can be compatible with our cosmic history if DM "overproduction" is erased by inflation

from aGG Current CMB observations
(B mode polarization)
are compatible with this

[cf. Lee & Weinberg, 1977]

[Ade et al., 2016 (BICEP2 + Keck + Planck)]

Hadronic matrix element can be estimated

$$d_n(t) \approx 2.4 \times 10^{-16} \frac{C_G a_0}{f_a} \cos(m_a t) e \text{ cm}$$

[Crewther et al., 1979]

[Graham & Rajendran, 2011; also CASPer experiment, Budker et al., 2014]

[Abel et al., PRX, 2017]

Dark Photon Parameter Space is Vast

Different experimental strategies for different regions

[Bjorken, Essig, Schuster, and Toro ("BEST"), 2009]

"Beam dump" (displaced production & detection vertices in matter) studies yield powerful constraints