

Overview of current α_s extractions

Extracting α_s at EIC & Future Colliders Stony Brook Univ., 5th May 2025 David d'Enterria (CERN)

<u>Foreword</u>: Mostly covering α_s extractions from the PDG'24 (other more recent extractions will be shown during this workshop), plus future perspectives from:

The strong coupling constant: State of the art and the decade ahead arXiv:2203.08271 [hep-ph]

Introduction: QCD coupling α_s

Determines strength of the strong interaction among quarks & gluons.
 Single free parameter of QCD in the m_q = 0 limit. Running via RGE.
 Determined at a ref. scale (Q=m₇), decreases as a_s≈ln(Q²/Λ²)⁻¹, Λ≈0.2 GeV

$$\frac{\partial \alpha_s}{\partial \log Q^2} = \beta(\alpha_s) = -\alpha_s^2(\beta_0 + \beta_1 \alpha_s + \beta_2 \alpha_s^2 + \mathcal{O}(\alpha_s^3))$$

The solution at three-loop precision

$$\frac{\alpha_s}{4\pi}(Q^2) = \frac{1}{\beta_0 x} \left[1 - \frac{\beta_1}{\beta_0^2} \frac{\log x}{x} + \frac{\beta_1^2}{\beta_0^4 x^2} \left(\log^2 x - \log x - 1 + \frac{\beta_2 \beta_0}{\beta_1^2} \right) \right]; \quad x = \log\left(\frac{Q^2}{\Lambda^2}\right) \land \approx 0.2 \text{ GeV}$$
Standard Model with n_f quark flavours:
$$\int_{q}^{q} \int_{q}^{q} \int_$$

Introduction: QCD coupling α_s

■ Determines strength of the strong interaction among quarks & gluons. ■ <u>Single</u> free parameter of QCD in the m_q = 0 limit. ■ Determined at a ref. scale (Q=m_z), decreases as $\alpha_s \approx \ln(Q^2/\Lambda^2)^{-1}$, $\Lambda \approx 0.2$ GeV

2025: Where are we 40 yrs later? How EIC/future-colliders will improve it?

Motivation: QCD coupling α_s

■ Determines strength of the strong interaction among quarks & gluons. ■ <u>Single</u> free parameter of QCD in the m_q = 0 limit. ■ Determined at a ref. scale (Q=m₇), decreases as $\alpha_{c} \approx \ln(Q^{2}/\Lambda^{2})^{-1}, \Lambda \approx 0.2$ GeV

• Least precisely known of all interaction couplings ! $\delta \alpha \approx 10^{-10} \ll \delta G_{F} \approx 10^{-7} \ll \delta G \approx 10^{-5} \ll \delta \alpha_{s} \approx 10^{-3}$

Motivation: α_{s} impact beyond QCD

Precision calculations of Higgs hadronic x-sections/decays, top mass, EWPO...

Process	σ (pb)	$\delta \alpha_s(\%)$	PDF + $\alpha_s(\%)$	Scale(%)
ggH	49.87	± 3.7	-6.2 +7.4	-2.61 + 0.32
ttH	0.611	± 3.0	± 8.9	-9.3 + 5.9

Partial width	intr. QCD	para. m_q	para. α_s	
$H \rightarrow b\bar{b}$	$\sim 0.2\%$	1.4%	0.4%	
$H \to c\bar{c}$	$\sim 0.2\%$	4.0%	0.4%	
$H \rightarrow gg$	$\sim 3\%$	< 0.2%	3.7%	

Impacts physics approaching Planck scale: EW vacuum stability, GUT

World α_s determination (PDG 2024)

Determined today by comparing 7 experimental observables to pQCD NNLO,N³LO predictions, plus global average at the Z pole scale:

Extracting alpha_s at EIC/Future, May'25

World-average α_s (PDG 2024)

 \mathbf{Z}^2 -based average of (unweighted) pre-averages from 7 categories of observables:

 $\alpha_{s}(M_{z}) = 0.1180 \pm 0.0009 \ (\pm 0.8\%)$ Hadronic tau decay (5 values): $\alpha_{s}(M_{z}) = 0.1173 \pm 0.0017 \ (\pm 1.4\%)$ Quarkonia properties (6 values): $\alpha_{s}(M_{z}) = 0.1181 \pm 0.037 \ (\pm 3.3\%)$

DIS & PDFs fits (7 values): $\alpha_s(M_z) = 0.1161 \pm 0.0022 (\pm 1.9\%)$

e⁺e⁻ → hadrons final states (7 values): $\alpha_s(M_z) = 0.1189 \pm 0.0037 (\pm 3.1\%)$

Hadron collider measurements (7 values): $\alpha_s(M_z) = 0.1168 \pm 0.0027 (\pm 2.3\%)$

Electroweak precision fits (3 values): $\alpha_s(M_z) = 0.1203 \pm 0.0028 \ (\pm 2.3\%)$ Lattice QCD (1 FLAG average value): $\alpha_s(M_z) = 0.1184 \pm 0.0008 \ (\pm 0.7\%)$

(1) α_s from lattice QCD

Comparison of short-distance quantities (QCD static energy/force, light-q & heavy-Q currents, quarkonium,..) computed at N^{2,3}LO in pQCD to lattice data with m_{had}, f_{had} fixed to exp. data:
[FLAG Collab. http://flag.unibe.ch]

$$K^{\rm NP} = K^{\rm PT} = \sum_{i=0}^{n} c_i \alpha_s^i$$

- Community-agreed (FLAG) criteria based on: large µ scale for pQCD part, well-defined continuum limit, latt. size/spacing: L/a≫ µ/∧_{QCD}, peer-reviewed results.
- Current uncertainties driven mostly by pQCD truncation & matching, and continuum limit (lattice spacing & computing statistics).

- Future prospects:
 - Uncertainty in α_s halved with reduced latt. spacing, N^{3,4}LO pQCD, active charm quark, extension of step-scaling method to more observables.

(2) α_s from hadronic τ -lepton decays

(3) α_s from e⁺e⁻ event shapes & jet rates

Computed at N^{2,3}LO+N²LL accuracy.
 Experimentally (LEP):

Thrust, C-parameter, jet shapes 3-jet x-sections

Results sensitive to non-pQCD (hadronization) corrections.

Accounted for via MCs or <u>analytically</u>:

 $\tau = 1 - \max_{\hat{n}} \frac{\sum |\vec{p}_i \cdot \hat{n}|}{\sum |\vec{p}_i|}$ $C = \frac{3}{2} \frac{\sum_{i,j} |\vec{p}_i| |\vec{p}_j| \sin^2 \theta_{ij}}{(\sum_i |\vec{p}_i|)^2}$

- resummations in the 2-jet limit? – Uncertainty of mass-scheme to extend
 - evt. shapes to massive hadrons?

(3) α_s from e⁺e⁻ event shapes & jet rates

Computed at N^{2,3}LO+N²LL accuracy.

 Experimentally (LEP): Thrust, C-parameter, jet shapes
 3-jet x-sections

- Results sensitive to non-pQCD (hadronization) corrections.
- Improved evt-shape power-corrs:

$$\tau = 1 - \max_{\hat{n}} \frac{\sum |\vec{p_i} \cdot \hat{n}|}{\sum |\vec{p_i}|}$$
$$C = \frac{3}{2} \frac{\sum_{i,j} |\vec{p_i}| |\vec{p_j}| \sin^2 \theta_{ij}}{(\sum_i |\vec{p_i}|)^2}$$

 Modern jet substructure techniques:
 "Soft drop" can help reduce nonpQCD corrections for thrust:

- Future prospects:
- Better power-corrs for shapes, (N^{2,3}LL) resummation for rates. Grooming?
- New e^+e^- data at lower- \sqrt{s} (Belle-II) & higher- \sqrt{s} (Higgs factories) needed.

(4) α_s from DIS struct. functions

■ N^{2,3}LO analysis of (non)singlet struct. functions (BBG, JR14) (and NNLO global PDF AMBP fit) tend to give "lowish" $\alpha_{s}(M_{p}) \approx 0.1150$

Neglect of singlet contribs. for x>0.3 in NS fits? Size of higher-order corrs.?

Future prospects: New high-precision $F_2(x,Q^2)$ at EIC.

(4) α_s extraction from global-PDF fits

NNLO PDF fits extract α_s by leaving it float in the global fit (PDF+ α_s fit):

Diffs. across fits: Tolerance factors, weights on specific data sets, parametriz. biases
 Theory uncertainties (size of missing HO corrections)? Full N³LO upcoming.

Future prospects: New high-precision (polarized) PDF(x,Q²) at EIC.

(5) α_{s} from hadron colliders: HERA jet x-sections

DIS HERA jet x-sections employed for α_s extractions via NNLOjet:

- α_s from inclusive jet cross sections in NC DIS
- NNLO pQCD w/ non-pert. hadronisation corrections
- H1 and ZEUS consistent
- Sizeable scale uncertainties (MHOU) since data are at comparably low scales
- Highest precision obtained in fit to data with μ > 28 GeV
- Largest uncertainty from missing HO corrs.
- Future prospects: NNLO jet x-sections-based extractions at EIC

(5) α_s extraction from LHC pQCD x-sections

Method: (1) Compare $\sigma(exp)$ to $\sigma(NNLO)$ for varying PDFs+ α_s

(2) Extract α_s via χ^2 minimization (extra requiremnt: redo partial PDF fit)

Global requirement:

- x-section NOT incorporated/incorporable in global-PDF fits (avoid "double counting")

Theory requirements:

- NNLO prediction: Few % scale uncertainty
- Low non-pQCD & parametric (e.g. m_a) uncertainties & controlled EW corrections
- Exp. requirements:
 - Few % stat. uncertainty: Process with large cross sections (say $\sigma \gtrsim 100$ pb).
 - Few % syst. uncertainties: Ratios (luminosity & other syst. cancel out) better?

(5) α_s extraction from LHC pQCD x-sections

Increasing number of NNLO processes, but: not yet in global-PDF-fits, large xsections, small EW/non-pQCD corrections, small exp. uncerts,...:

First ones tried: $\sigma_{tot}(ttbar)$, $\sigma_{tot}(W,Z)$, $d\sigma/dp_T(Z, low p_T)$,...

Not yet tried at NNLO: Ratios $R_{32}(p_T) = \sigma(3j)/\sigma(2j)$, $\sigma(Z+j)/\sigma(Z)$, $\sigma(W+j)/\sigma(W)$,... Note: Different TH prescriptions exist to construct "correct" NNLO R_x ratios...

Extracting alpha s at EIC/Future, May'25

16/27

David d'Enterria (CERN)

(5) α_{s} from inclusive LHC ttbar x-sections

Compare $\sigma(\exp, ttbar)$ to $\sigma(NNLO, ttbar)$ for diff. PDFs+ α_s

- + Advantages: Direct LO sensitivity to α_s (via gg \rightarrow ttbar)
- B Jage Contraction – Disadvantages: $\mathcal{O}(5\%)$ exp/th. uncertainties, dependence on m_{ton}

First tried by CMS (pp @ 7TeV). Extended to 8 LHC data sets by Klijnsma et al.

Extracting alpha s at EIC/Future, May'25

David d'Enterria (CERN)

(5) α_s from inclusive LHC W, Z x-sections

- + Advantages: $\mathcal{O}(1-2\%)$ exp/th. uncertainties
- Disadvantages: No LO sensitivity to α_s (only via K_{NnLO}~1.3)
- First tried by CMS (pp @ 7,8 TeV). Extended to 28 LHC data sets by DdE&Poldaru

Future: Add past-2020 data sets + redo (partial) aN³LO PDF fit.

g

(5) α_s from inclusive jet x-sections (CMS)

Combined xFitter NNLO fit of PDF+ α_s of incl. jet $d^2\sigma/dydp_T$ + HERA DIS data + Advantages: Correlation of gluon PDF & α_s accounted for.

CMS 13 TeV [arXiv:2111.10431] HERAPDF-like analysis:

Extraction with small (mostly fit) uncertainty:

- $= 0.1166 \pm 0.0017 (\pm 1.5\%)$
- Multiple jet spectra incorporated into upcoming full global-PDF fits. (overall tolerance will decrease α_s sensitivity?)

Extracting alpha_s at EIC/Future, May'25

(5) α_s from EEC in multijet events (ATLAS)

- Multijet energy-energy correlations available at NNLO
 - + Advantages: Small exp. uncertainties (JES/JER). PDF uncertainties subleading.
- Use multi-jets transverse energy-energy correlations (TEEC) and their associated azimuthal asymmetries (ATEEC) to perform the measurement
- The TEEC function is defined as the transverse-energyweighted distribution of the azimuthal differences between jet pairs in the final state

$$\frac{1}{\sigma} \frac{\mathrm{d}\Sigma}{\mathrm{d}\cos\phi} = \frac{1}{N} \sum_{A=1}^{N} \sum_{ij}^{N} \frac{E_{\mathrm{T}i}^{A} E_{\mathrm{T}j}^{A}}{\left(\sum_{k} E_{\mathrm{T}k}^{A}\right)^{2}} \delta(\cos\phi - \cos\varphi_{ij})$$

Also use associated azimuthal asymmetries (ATEEC) to cancel uncertainties symmetric in $\cos(\phi)$

$$\frac{1}{\sigma} \frac{\mathrm{d}\Sigma}{\mathrm{d}\cos\phi} = \frac{1}{\sigma} \frac{\mathrm{d}\Sigma}{\mathrm{d}\cos\phi} \bigg|_{\phi} - \frac{1}{\sigma} \frac{\mathrm{d}\Sigma}{\mathrm{d}\cos\phi} \bigg|_{\pi-\phi}$$

- Large theoretical improvement from NNLO correction to gg→3-jet production in pp collisions
 - reduction of theoretical uncertainty by a factor of 3 (TH scale still leading uncertainty)

RGE running of QCD coupling tested up to scales Q \approx H_T/2 \approx 2 \text{ TeV}

20/27

[arXiv:2301.09351]

(5) α_s from Z boson d σ /dp_T recoil (ATLAS)

- Differential Z boson x-sections available at N^{2,3}LO+N^{3,4}LL (not yet in PDG)
- Method: Compare $d\sigma/dp_T(exp)$ to $d\sigma/dp_T(N^nLO+N^nLL)$ for diff. PDFs/ α_s : Extract α_s
 - + Advantages: $\mathcal{O}(<1\%)$ exp. uncertainties, direct sensitity to α_s (ISR gluon)
 - Disadvantages: Sensitivity to npQCD effects, resummation, HF PDFs

 Extraction with "aggressive" ±0.75% uncertainty:

- Just one approx-N³LO PDF fit used
- Gaussian npQCD model under good control?

(5) α_s from energy correlations inside jets (CMS)

3-,2-particle jet substructure energy correlators

(NLO, not in PDG) (E3C and E2C) as a function of ang. separation (x_{L}) known at NLO+NNLL.

Advantages: Insensitive to PDFs. Uncorrelated with other extractions

(6) α_s from Z boson hadronic decays

• Z-boson decays known at N³LO, no NP uncerts. (but only ~4% sensitivity to α_s):

$$R_l^o \equiv \frac{\Gamma(Z \to h)}{\Gamma(Z \to l)} = R_Z^{\text{EW}} N_C \left(1 + \sum_{n=1}^4 c_n \left(\frac{\alpha_s}{\pi}\right)^n + \mathcal{O}(\alpha_s^5) + \delta_m + \delta_{np}\right) \qquad \swarrow$$

Extraction from three Z-peak pseudo-observables (LEP, SLC):

Extracting alpha s at EIC/Future, May'25

2000

(6) α_s from EW bosons hadronic decays

Future: Permil uncertainty possible only with a machine such as FCC-ee

Extracting alpha_s at EIC/Future, May'25

David d'Enterria (CERN)

Summary: Current & future α_s precision

Well-defined exp./th. path towards $\alpha_s(m_z)$ permil precision in coming years

	Relative $\alpha_S(m_{ m Z}^2)$ uncertainty			
Method	Current	Near (long-term) future		
	theory & exp. uncertainties sources	theory & experimental progress		
(1) Lattice	0.7%	pprox 0.3% (0.1%)		
(1) Lattice	Finite lattice spacing & stats.	Reduced latt. spacing. Add more observables		
	$N^{2,3}LO$ pQCD truncation	Add N ^{3,4} LO, active charm (QED effects)		
		Higher renorm. scale via step-scaling to more observ.		
(2) σ docove	1.6%	< 1.%		
(2) / decays	N ³ LO CIPT vs. FOPT diffs.	Add N ⁴ LO terms. Solve CIPT–FOPT diffs.		
	Limited τ spectral data	Improved $ au$ spectral functions at Belle II		
(2) \overline{OO} bound states	3.3%	pprox 1.5%		
(5) QQ Dound states	$N^{2,3}LO$ pQCD truncation	Add N ^{3,4} LO & more $(c\overline{c})$, $(b\overline{b})$ bound states		
	$m_{c,b}$ uncertainties	Combined $m_{c,b} + \alpha_S$ fits		
(4) DIS & PDF fite	1.7%	pprox 1%~(0.2%)		
(4) DIS & I DF IIIS	$N^{2,(3)}LO$ PDF (SF) fits	$N^{3}LO$ fits. Add new SF fits: $F_{2}^{p,d}$, g_{i} (EIC)		
	Span of PDF-based results	Better corr. matrices. More PDF data $(LHeC/FCC-eh)$		
(5) a^+a^- jets k out shapes	2.6%	$\approx 1.5\% \; (< 1\%)$		
(b) e e jets & evt snapes	$NNLO+N^{(1,2,3)}LL$ truncation	Add $N^{2,3}LO+N^3LL$, power corrections		
	Different NP analytical & PS corrs.	Improved NP corrs. via: NNLL PS, grooming		
	Limited datasets w/ old detectors $% \left({{{\mathbf{x}}_{i}}} \right)$	New improved data at B factories (FCC-ee)		
(6) Electroweak fits	2.3%	(≈ 0.1%)		
(0) Electroweak hts	N ³ LO truncation	N ⁴ LO, reduced param. uncerts. $(m_{W,Z}, \alpha, CKM)$		
	Small LEP+SLD datasets	Add W boson. Tera-Z, Oku-W datasets (FCC-ee)		
(7) Hadron colliders	2.4%	$\approx 1.5\%$		
(1) Hadron conders	$\ensuremath{\operatorname{NNLO}}(+\ensuremath{\operatorname{NNLL}})$ truncation, PDF uncerts.	N ³ LO+NNLL (for color-singlets), improved PDFs		
	Limited data sets ($t\bar{t}$, W, Z, e-p jets)	Add more datasets: Z $p_{\rm T}$, p-p jets, σ_i/σ_j ratios,		
World average	0.8%	pprox 0.4% (0.1%)		

Summary: α_s wish-list for the next ~10 years

Theoretical needs to approach (0.1%) precision:

- (1) Lattice QCD: Sufficient dedicated computing resources & person-power:
 - Develop pQCD N^{3,4}LO theory for observables in a finite space-time volume
 - Extend higher renormalization scales via step-scaling to more observables

(2) Other phenomenology efforts:

- N⁴LO for tau decays. Completion of hadronic τ decay renormalon analysis
- Advanced power corrections for e⁺e⁻ event shapes & resummation for jet rates
- NNLL accuracy parton showers matched to NNLO: NNLO(+NNLL) MCs for complex final states in e⁺e⁻, e-p, p-p
- Differential NNLO predictions for LHC & HERA multi-jet observables,...
- Z, W hadronic decays at N⁴LO & mixed QCD+EW needed for longer term.
- Experimental needs to approach (0.1%) precision:

(3) Extension of N^{2,3}LO hadron-collider- and/or PDF-based extractions via:

- LHC: Add new precision observables & datasets (TEECC, Z p_T , σ_i/σ_j ratios,...) Improved treatment of exp. correl. matrices uncertainties among measurements
- <u>EIC</u>: New DIS measurements (also LHeC/FCC-eh): F₂^{p,d}(x,Q²), PDF_{pol}(x,Q²), Bj.SR
- FCC: Hadronic Z (and W) decays is the only non-lattice method known that can reach permil precision: Tera-Z machine needed.

alphas-2025: Workshop on precision measurements of the QCD coupling constant

https://indico.cern.ch/e/alphas2025

14–19 Dec 2025 Europe/Andorra timezon

Overview

Participant List

```
Venue (CNRS Centre Paul Langevin, Aussois)
```

Accomodation & Costs

Support

alphas-conf-organizers...

The "alphas-2025: Workshop on precision measurements of the strong coupling constant" will be held at the CNRS Paul Langevin Center in Aussois (Savoie) in the third week of December 2025 (Sun. 14th to Friday 19th).

The workshop aims at exploring in depth the current status and upcoming prospects in the determination of the QCD coupling constant $\alpha_S(m_Z)$ from the key observables where high-precision experimental measurements and theoretical calculations are (or will be) available: (i) lattice QCD, (ii) hadronic decays of tau leptons, (iii) deep-inelastic electron-proton scattering and global parton densities analyses, (iv) QCD corrections to electroweak precision observables, and analysis of (v) hadronic final states in high energy particle collisions (e^+e^- , ep, and pp).

Previous meetings:

- alpha_s(2024), ECT*, Trento
- alpha_s(2022), ECT*, Trento
- alpha_s(2019), ECT*, Trento
- alpha_s(2015), CERN, Geneva
- alpha_s(2011), MPI, Munich

Starts 14 Dec 2025, 18:00 Ends 19 Dec 2025, 14:00 Europe/Andorra

David d'Enterria Giulia Zanderighi Stefan Kluth Q

Backup slides

Where LHC has made/can make an impact?

Average of pre-averages from 7 categories of observables: $\alpha_{s}(M_{z}) = 0.1179 \pm 0.0009 (\pm 0.8\%)$ BDP 2008-16 τ decays Boito 2015 Hadronic tau decay (4 values): Boito 2018 low O^2 PDG 2020 $\alpha_{s}(M_{z}) = 0.1178 \pm 0.0019 (\pm 1.6\%)$ Mateu 2018 00 Peset 2018 bound Quarkonia properties (4 values): Narison 2018 (cc) states Narison 2018 (bb) $\alpha_{s}(M_{z}) = 0.1181 \pm 0.037 (\pm 3.3\%)$ BBG06 IR14 DIS & PDFs fits (6 values): ABMP16 PDF fits NNPDF31 $\alpha_{s}(M_{z}) = 0.1162 \pm 0.0020 (\pm 1.7\%)$ CT18 MSHT20 ALEPH (j&s) OPAL (j&s) $e^+e^- \rightarrow hadrons final states$ (10 values): ADE (j&s) Dissertori (3j) e^+e $\alpha_{s}(M_{z}) = 0.1171 \pm 0.0031 (\pm 2.6\%)$ ADE (3i) jets Verbytskyi (2j) 8 shapes Kardos (EEC) Abbate (T) Gehrmann (T) Hadron collider measurements (5 values): Hoang (C) $\alpha_{s}(M_{z}) = 0.1165 \pm 0.0028 (\pm 2.4\%)$ Kliinsma (*t*t) CMS (tŤ) hadron H1 (jets)* colliders Electroweak precision fits (2 values): d'Enterria (W/Z) HERA (jets) $\alpha_{s}(M_{z}) = 0.1208 \pm 0.0028 (\pm 2.3\%)$ PDG 2020 electroweak Gfitter 2018 Lattice QCD (1 FLAG value): FLAG2019 lattice $\alpha_{s}(M_{z}) = 0.1182 \pm 0.0008 \ (\pm 0.7\%)$ 0.130 0.110 0.115 0.120 0.125 $\alpha_{\rm s}({\rm M}_7^2)$ August 2021 Extracting alpha s at EIC/Future, May'25 29/27 David d'Enterria (CERN)

(5) α_s from inclusive ttbar x-sections (CMS)

Compare $\sigma(exp,ttbar)$ to $\sigma(NNLO,ttbar)$ for diff. PDFs+ α_s

- + Advantages: Direct LO sensitivity to α_s (via gg \rightarrow ttbar)
- Disadvantages: $\mathcal{O}(5\%)$ exp/th. uncertainties, dependence on m_{top}
- Latest extraction from CMS: pp @ 13 TeV [1812.10505 [hep-ex]]

Extraction with ~3% uncert. from $\sigma(exp)$ & PDF. Correlation of $\alpha_s \& g(x,Q^2) \& m_{top}$ Future: ±3% compressible? Worth adding all data sets (past 2018) + redo fit?

) m

(5) α_s from inclusive jet x-sections (LHC)

Compare dijet $d\sigma/dp_T(exp)$ to $d\sigma/dp_T(NNLO)$ for diff. PDFs+ α_s

- α_s(m_z) from LHC dijet data in NNLO pQCD (MSbar, n_f=5, massless, m_z=91.1876 GeV)
- Fit to all dijet data χ^2 /ndf = 379.0/(351-1)
- Reasonable agreement of data sets
- Use NNPDF3.1 as central PDF (other PDF result in a bit larger α_s value, but smaller χ²)
- Uncertainties include
 - experimental
 - · non-perturbative corrections
 - PDF (replicas/eigenvectors)
 - PDFset, PDFα_s, PDFμ₀
 - Scale

 $\alpha_s = 0.1145 \pm 0.0020 (\pm 1.7\%)$

Preliminary extraction (NNPDF3.1 based) with small (±1.7%) uncertainty. Does this uncertainty cover the extractions from other PDF sets?

(3) α_s extraction from global-PDF fits

Perform a common global-PDF fit + α_s extraction:

Note: gluon & α_s strongly (anti)correlated at high (low) x.

- Theory requirements:
 - NNLO prediction: Few % scale uncertainty
 - Low non-pQCD & controlled EW (and mixed QCD EW) corrections

Exp. requirements:

 Ideally, full correlation matrices across observables needed for proper uncertainties propagation.

α_s from ϕ correlations in multijet events (CMS)

Azimuthal-correlation observable (available at NLO so far only)
Preliminary result from CMS [SMP-22-005]:

■ Not a precise extraction yet, but RGE running tested up to $Q \approx H_T/2 \approx 2$ TeV. Testing α_s running to $Q \rightarrow 10$ TeV is key for LHC physics programme.

Summary: CMS past/future impact on α_s

CMS has directly contributed to 2 NNLO α_s values in PDG:

 $\alpha_s = 0.1145 \pm 0.0033 (\pm 2.9\%)$

 $\alpha_s = 0.1170 \pm 0.0019 \ (\pm 1.6\%)$

Lumi/JES/JER leading EXP uncerts.

 $1177 \pm 0.0035 (\pm 3.0\%)$

 $0.1180 \pm 0.0016 (\pm 1.3\%)$

CMS has indirectly contributed to 2+1 α_s NNLO values in the PDG:

 $\alpha_{s} = 0.1161 \pm 0.0022 (\pm 1.6\%)$

 $R_{22}(p_T^{min}) = \sigma(3j)/\sigma(2j)$

 $\frac{185}{m_{t}^{\text{pole}}(\text{GeV})} \stackrel{190}{\sim} 0.102\ 0.104\ 0.106\ 0.108\ 0.11\ 0.112\ 0.114\ 0.116\ 0.118\ 0.12\ 0.122\ \alpha_{s}^{\text{NNLO}}(\text{m}_{z})$

New NLO observables studied by CMS (theory needs NNLO upgrade):

New NNLO ratios to be studied, to reach $\pm 1\%$? $R_{32}(p_T^{min})=\sigma(3j)/\sigma(2j),$ $\sigma(Z,W+j)/\sigma(Z,W),...$

Extracting alpha_s at EIC/Future, May'25

Summary: CMS past/future impact on α_s

CMS has directly contributed to 2 NNLO α_s values in PDG:

 10^{2}

 10^{3}

35/21

Q [GeV]

Extracting alpha s at EIC/Future, May'25

p_ [GeV]

David d'Enterria (CERN)

α_s from inclusive $\sigma(W,Z)$ in hadronic collisions

Method: Calculate inclusive W^{\pm} and Z production cross sections at NNLO and compare them to the LHC experimental data.

 $\sigma_{\rm pp \to W,Z+X} = \int \int dx_1 dx_2 f_1(x_1,\mu_F) f_2(x_2,\mu_F) \left[\hat{\sigma}_{\rm LO} + \alpha_{\rm s}(\mu_R) \hat{\sigma}_{\rm NLO} + \alpha_{\rm s}^2(\mu_R) \hat{\sigma}_{\rm NNLO} + \cdots \right]$

The α_s dependency of the cross section comes from higher order effects (virtual & real parton emissions).

Experimental data & NNLO computations

$\sqrt{\text{s (TeV)}}$	7	8	13	Total
ATLAS	3	1	3	7
LHCb	3	5	1	9
CMS	6	6	0	12

- The 28 systems represent a total of ~20000 jobs, taking into account all PDF eigenvalues (101 NNPDF + (56+7) CT14 + (29+14+7) HERA + (51+7) MMHT), and 5 or 7 α_s values (0.115, 0.116, 0.117, 0.118, 0.119, 0.120, and 0.121).
- All these computations are done at the CERN computer cluster with hundreds of jobs in parallel.
- Running at NNLO is slow. Using the longest 2-week queue we get 0.2–0.6% numerical accuracy, comparable to ~1% diffs. to alternative NNLO calculators: FEWZ, DYNNLO (impact on final α_s result assessed at the end)

Exp. & theor. uncertainties. χ^2 /ndf data-theory

Experimental & theoretical uncertainties and their correlations:

Source	Uncertainty	Degree of correlation
Experimental:		
Luminosity	24% (CMS), 2–3% (ATLAS), 1–4% (LHCb), 3–6% (CDF, D0)	fully correlated per exp. at each \sqrt{s}
Systematic	1–3% (CMS), 0.3–2% (ATLAS), 0.6–2% (LHCb), 2–3% (CDF, D0)	partially correlated within each exp.
c.m. energy	0.9 – 1.3% (LHCb)	fully correlated at each \sqrt{s}
Statistical	0.32.5% (CMS), $<0.4%$ (ATLAS), $0.20.5%$ (LHCb), $0.42.6%$ (CDF, D0)	uncorrelated
Theoretical:		
PDF	1-4%	partially correlated within PDF set
Scales	$0.4 {-} 1.2\%$	partially correlated among all calculations
Numerical	$0.2{-}0.6\%$	uncorrelated

Table 4. Typical ATLAS, CMS, LHCb and Tevatron experimental and theoretical uncertainties in the W^{\pm} and Z boson production cross sections, and their degree of correlation

NNLO-data for default α_s =0.118: Goodness-of-fit ~1 for CT14/MMHT14 ~2 for HERAPDF2.0/NNPDF3.0

	CT14	HERAPDF2.0	MMHT14	NNPDF3.0
χ^2/ndf (symmetrized to the largest PDF uncertainty value)	15.8/27	21.8/27	15.7/27	58.8/27
χ^2/ndf (symmetrized to the smallest PDF uncertainty value)	26.3/27	60.4/27	22.7/27	58.8/27

Table 11. Overall goodness-of-fit per number of degrees of freedom, χ^2/ndf , among the 28 LHC experimental measurements of W⁺, W⁻, and Z boson cross sections and the corresponding theoretical predictions obtained with the four different PDF sets for their default $\alpha_s(m_Z) = 0.118$ value. The first (second) row lists the results obtained symmetrizing the PDF uncertainties of the cross sections obtained with the CT14, HERAPDF2.0, and MMHT14 sets to the largest (smallest) of their respective values.

Extracting alpha s at EIC/Future, May'25

$\sigma_{_{NNLO}}(W,Z)$ versus $\alpha_{_{s}}(m_{_{Z}})$ for CMS data

$\sigma_{NNLO}(W,Z)$ versus $\alpha_{s}(m_{7})$ for CMS data

(qd)

3200

CMS

18.2 pb⁻¹ (8 TeV)

cross section (pb) section 3150 3600 3550 3100 Theory uncertainty 3500 cross 3050 3450 (mostly PDF) 3400 pp → W_e⁺+X, √s =8 TeV HERAPDF2.0 (NNLO) 3000 pp $\rightarrow W_{\mu}^{+}+X$, $\sqrt{s} = 8 \text{ TeV}$ HERAPDF2.0 (NNLO) 3350 CT14 (NNLO) CT14 (NNLO) otal exp uncertainty otal exp uncertainty MMHT14 (NNLO) MMHT14 (NNLO) 3300 2950 uminosity uncertainty NNPDF3.0 (NNLO) uminosity uncertainty NNPDF3.0 (NNLO) 0.1 0.105 0.11 0.115 0.12 0.125 0.13 0.135 0.105 0.11 0.115 0.12 0.125 0.13 0.135 $\alpha_s^{NNLO}(m_z)$ 18.2 pb⁻¹ (8 TeV) CMS CMS (qd) cross section (pb) 2300 2450 section 2280 2260 2400 2240 2220 cross 2350 2200 2180 2300 $pp \rightarrow W_e + X$, $\sqrt{s} = 8 \text{ TeV}$ HERAPDF2.0 (NNLO) $pp \rightarrow W_{\mu} + X$, $\sqrt{s} = 8 \text{ TeV}$ HERAPDF2.0 (NNLO) 2160 CT14 (NNLO) CT14 (NNLO) Total exp. uncertainty otal exp. uncertainty MMHT14 (NNLO) 2140 MMHT14 (NNLO) 2250 inosity uncertainty NNPDF3.0 (NNLO) NNPDF3.0 (NNLO) 2120 0.1 0.105 0.11 0.115 0.12 0.125 0.13 0.135 0.1 0.11 0.115 0.12 0.125 0.105 $\alpha_s^{NNLO}(m_z)$ 18.2 pb⁻¹ (8 TeV) CMS CMS 420 470 cross section (pb) cross section (pb) 460 410 400 450 390 440

430 pp \rightarrow Z_e+X, \sqrt{s} =8 TeV

420

0.1

Total exp. uncertainty

Luminosity uncertainty

CMS

3700

3650

Exp. uncertainty (mostly lumi)

18.2 pb⁻¹ (8 TeV)

 $\alpha_{s}^{NNLO}(m_{)})$

18.2 pb⁻¹ (8 TeV)

0.13 0.135

 $\alpha_{s}^{NNLO}(m_{)})$

18.2 pb⁻¹ (8 TeV)

HERAPDF2.0 (NNLO)

MMHT14 (NNLO)

NNPDF3.0 (NNLO)

0.13 0.135

 $\alpha_{s}^{NNLO}(m_{z})$

CT14 (NNLO)

0.12 0.125

Crossing line point indicates "perfect match" of exp-theory x-sections for the default $\alpha_{s}(m_{7})=0.118$ of all PDF sets

 1σ ellipses are Joint Probability **Density Functions** (product of data & theory uncertainties)

370

0.1

380 pp \rightarrow Z₁₁+X, \sqrt{s} =8 TeV

Total exp. uncertainty

Luminosity uncertainty

0.105 0.11 0.115

HERAPDF2.0 (NNLO)

CT14 (NNLO)

0.105 0.11 0.115 0.12 0.125 0.13 0.135

MMHT14 (NNLO)

NNPDF3.0 (NNLO)

 $\alpha_{s}^{NNLO}(m_{)})$

$\sigma_{_{NNLO}}(W,Z)$ versus $\alpha_{_s}(m_{_Z})$ for LHC data: Global trends

Theory consistent with data within uncertainties but not systematically for the same $\alpha_s(m_z)$ value (in particular, HERAPDF2.0 results do not always overlap with any of the others within the 1 std.-dev. region)

- For a fixed α_s(m_z) value, HERAPDF2.0 (NNPDF3.0) predict larger (smaller) x-sections: HERAPDF2.0 (NNPDF3.0) prefer systematically smaller (larger) α_s(m_z). MMHT14 and CT14 predictions are in between (and less scattered).
- HERAPDF2.0 (MMHT14) always has the smallest (largest) slope, i.e. HERAPDF2.0 (MMHT14) x-sections are the least (most) sensitive to α_s variations.

Preferred $\alpha_s(m_z)$ per measurement & propag. uncertainty

The α_s value for each setup is determined by the intersection point of the fitted theoretical line with the experimental value.

- Each σ uncertainty δ_i propagates into α_s as δ_i/k :
- To motivate this, one can construct a marginalized posterior by multiplying the theoretical and experimental probability densities and integrating over σ:

$$P(\alpha_s) = \int f_{exp}(\sigma) \cdot f_{th}(\sigma | \alpha_s) d\sigma.$$

Using this the variance of α_s from this single system considering all uncertainty sources δ_i is given by (k is the slope of the fitted line):

$$\operatorname{var}(lpha_{s}) = rac{1}{k} \sum_{i} \operatorname{var}(\delta_{i}).$$

Combination of α_s extractions per data-set & PDF-set

- Results are combined using Convino¹ (Neyman χ² prescription), taking into account correlations and asymmetric PDF uncertainties (method equivalent to BLUE for symmetric uncertainties).
- 6 uncertainty sources for each estimate considered: EXP: statistical, luminosity, systematic; TH: NNLO scale, PDF, and numerical.
- Uncertainty correlations:
 - 1. Luminosity at the same \sqrt{s} : 1 within one detector, 0. between detectors. 0 between different \sqrt{s} .
 - 2. Stat. uncert.: fully uncorrelated.
 - 3. Syst. uncert.: see next slide.
 - 4. TH scale uncert.: partially correlated.
 - 5. PDF uncertainty: partially correlated within each PDF set (see slides later).
 - 6. TH Numerical error: fully uncorrelated.

¹J. Kieseler, Eur. Phys. J. C 77 (2017) 792

Combined 28 α_s extractions & average α_s per PDF

LHC

ATLAS 7 TeV W⁺ ATLAS 7 TeV W ATLAS 7 TeV Z ATLAS 8 TeV Z ATLAS 13 TeV W* ATLAS 13 TeV W ATLAS 13 TeV Z CMS 7 TeV W CMS 7 TeV W CMS 7 TeV Z CMS 7 TeV W. CMS 7 TeV W. CMS 7 TeV Z_u CMS 8 TeV W. CMS 8 TeV W CMS 8 TeV Z CMS 8 TeV W. CMS 8 TeV W. CMS 8 TeV Z LHCb 7 TeV W⁺ LHCb 7 TeV W LHCb 7 TeV Z LHCb 8 TeV W LHCb 8 TeV W LHCb 8 TeV W. LHCb 8 TeV W. LHCb 8 TeV Z_u LHCb 13 TeV Z

PDF	$lpha_{ m s}(m_{ m Z})$
CT14	$0.1172\substack{+0.0015\\-0.0017}$
HERAPDF2.0	$0.1097\substack{+0.0022\\-0.0023}$
MMHT14	$0.1188\substack{+0.0019\\-0.0013}$
NNPDF3.0	0.1160 ± 0.0018

CT14, MMHT14 and NNPDF3.0 scatter around $\alpha_s(m_z)=0.117-0.119$ world average with ~1% propag. uncertainties.

HERAPDF2.0 is systematically below, α_s(m_z)~0.110, and ~2% propag. uncertainty

$\alpha_{s}(m_{z})$ robustness wrt. exp./theor. ingredients

45/27

Stability of extracted $\alpha_s(m_z)$ values per PDF cross-checked by varying key

exp. & theor. ingredients & uncertainties:

(i) Data subsets: ATLAS/CMS/LHCb or 7, 8, 13 TeV (ii) Varying $\rho=0-1$ correlation of PDF/scale uncerts. (iii) $\pm 1\sigma$ TH shift of central values prior to combination (iv) Adding $\pm 1\%$ TH uncert. (diffs. among NNLO calc.)

PDF	$lpha_{ m s}(m_{ m Z})$	$lpha_{ m s}(m_{ m Z})$	$lpha_{ m s}(m_{ m Z})$
	[7 TeV data]	[8 TeV data]	$[13 \mathrm{TeV} \mathrm{data}]$
CT14	$0.1188\substack{+0.0022\\-0.0024}$	$0.1152^{+0.0024}_{-0.0023}$	$0.1210\substack{+0.0031\\-0.0033}$
HERAPDF2.0	$0.1105\substack{+0.0029\\-0.0028}$	$0.1085^{+0.0027}_{-0.0025}$	$0.1134\substack{+0.0042\\-0.0041}$
MMHT14	$0.1197\substack{+0.0022\\-0.0020}$	0.1186 ± 0.0017	$0.1187\substack{+0.0029\\-0.0030}$
NNPDF3.0	0.1171 ± 0.0023	0.1147 ± 0.025	0.1207 ± 0.0033
	[ATLAS data]	[LHCb data]	[CMS data] [28]
CT14	0.1214 ± 0.0017	0.1131 ± 0.0024	$0.1163\substack{+0.0024\\-0.0031}$
HERAPDF2.0	$0.1170\substack{+0.0038\\-0.0037}$	0.1071 ± 0.0021	$0.1072\substack{+0.0043\\-0.0040}$
MMHT14	$0.1208\substack{+0.0016\\-0.0020}$	$0.1166^{+0.0023}_{-0.0024}$	0.1186 ± 0.0025
NNPDF3.0	0.1222 ± 0.0026	0.1169 ± 0.0032	0.1147 ± 0.0023
	[PDF corr. = 1]	[scale corr. = 1]	[PDF corr. = scale corr. = 1]
CT14	0.1181 ± 0.0010	$0.1176^{+0.0017}_{-0.0016}$	0.1186 ± 0.0009
HERAPDF2.0	0.1071 ± 0.0014	$0.1100^{+0.0023}_{-0.0022}$	0.1098 ± 0.0013
MMHT14	0.1192 ± 0.0009	$0.1192^{+0.0016}_{-0.0014}$	0.1191 ± 0.0009
NNPDF3.0	0.1144 ± 0.0017	0.1157 ± 0.0018	0.1148 ± 0.0016
	[- th. shift, comb. w/o th. unc.]	[comb. w/o th. unc.]	$[+\ {\rm th.\ shift,\ comb.\ w/o\ th.\ unc.}]$
CT14	0.1142 ± 0.0009	0.1184 ± 0.0009	0.1203 ± 0.0009
HERAPDF2.0	0.1042 ± 0.0012	0.1090 ± 0.0012	0.1123 ± 0.00012
MMHT14	0.1163 ± 0.0008	0.1188 ± 0.0008	0.1209 ± 0.0008
NNPDF3.0	0.1160 ± 0.0009	0.1183 ± 0.0009	0.1205 ± 0.0009
	[symm. PDF uncert.]	[+1% uncorr. uncert.]	Largest differences
CT14	0.1176 ± 0.0023	$0.1171^{+0.0016}_{-0.0018}$	(+0.0042, -0.0041)
HERAPDF2.0	0.1121 ± 0.0027	0.1101 ± 0.0023	(+0.0073, -0.0026)
MMHT14	0.1200 ± 0.0016	$0.1191\substack{+0.0016\\-0.0015}$	(+0.0020, -0.0022)
NNPDF3.0	0.1160 ± 0.0018	0.1170 ± 0.0022	(+0.0062, -0.0016)

Final combined α_s extractions per PDF set

Final $\alpha_s(m_7)$ values per PDF with break-down of uncertainties & χ^2 /ndf:

PDF	$lpha_{ m s}(m_{ m Z})$	δ (stat)	δ (lumi)	δ (syst)	$\delta(\text{PDF})$	$\delta(\text{scale})$	$\delta ({ m num})$	χ^2/ndf
CT14	$0.1172\substack{+0.0015\\-0.0017}$	0.0003	0.0005	0.0006	$^{+0.0011}_{-0.0013}$	0.0006	0.0003	23.5/27
HERAPDF2.0	$0.1097\substack{+0.0022\\-0.0023}$	0.0004	0.0009	0.0009	$+0.0015 \\ -0.0016$	0.0007	0.0005	27.0/27
MMHT14	$0.1188\substack{+0.0019\\-0.0013}$	0.0002	0.0008	0.0003	$+0.0015 \\ -0.0007$	0.0007	0.0002	19.3/27
NNPDF3.0	0.1160 ± 0.0018	0.0006	0.0004	0.0005	0.0013	0.0006	0.0007	56.9/27

Preferred $\alpha_s(m_7)=0.1188\pm0.0016$ extraction from MMHT14:

- 1) Largest sensitivity (slope) of $\sigma(W,Z)$ to α_{s}
- 2) Better χ^2 /ndf~1 of combined α_s values.

3) Lowest (symm.) propag. uncert.4) Most robust wrt. analysis variations

