
αS from ATLAS 

Extracting the Strong Coupling at the EIC and other Future Colliders

Zdenek Hubacek



Strong coupling constant from ATLAS

• LHC is a QCD powerhouse — a true 
strong-interaction factory

• ATLAS provides a panoramic view of 
QCD in action

• QCD isn’t background — it’s the 
baseline for discovery

• αS - small number, big consequences.
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Strong coupling αS 

• One of fundamental constants

• QCD only free parameter in the 
massless quark limit

• RGE governs how αS  evolves with the 
energy scale μ.

• Conventionally “measured” at the 
reference scale Q=mZ

• Is among dominant uncertainties of 
several precision measurements at 
colliders (including Higgs coupling 
for example)
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αS extraction at colliders

Desirable features for the measurement:

• Large observable’s sensitivity to αS compared to the 
experimental precision

• High accuracy of the theory prediction

• Small size of non-perturbative QCD effects

 Exclusive vs inclusive observables

• Event shapes, jet ratios, … 

• Inclusive observables, differential distributions (jets, 
top)
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Dijet azimuthal decorrelations

• At leading order (LO), 2 jets are 
produced back-to-back in the 
azimuthal angle

Z. Hubacek: αS from ATLAS 6



Dijet azimuthal decorrelations

• At leading order (LO), 2 jets are 
produced back-to-back in the 
azimuthal angle

• Any additional radiation will cause 
the decorrelation

Z. Hubacek: αS from ATLAS 7



Dijet azimuthal decorrelations

• At leading order (LO), 2 jets are 
produced back-to-back in the 
azimuthal angle

• Any additional radiation will cause 
the decorrelation

• 3rd jet production (2→3 process) 
restricts the phase space to 
𝚫𝛟>2𝛑/3

Z. Hubacek: αS from ATLAS 8



Dijet azimuthal decorrelations

• At leading order (LO), 2 jets are 
produced back-to-back in the 
azimuthal angle

• Any additional radiation will cause 
the decorrelation

• 3rd jet production (2→3 process) 
restricts the phase space to 
𝚫𝛟>2𝛑/3

• Lower values accessible only in 
2→4 processes
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Observable definition 𝑹𝚫𝛟

• Dijet azimuthal decorrelations have been measured before at hadron colliders (D0, 
CMS, ATLAS for example)

• Observable based on ratios of cross sections and studies its energy and rapidity 
dependence 

• Fraction of dijet events where the azimuthal difference between the two leading jets 
is smaller than some 𝚫𝛟max value w.r.t. to the inclusive dijet cross section
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JHEP 12 (2015) 024

https://link.springer.com/article/10.1007/JHEP12(2015)024


𝑹𝚫𝛟, √s=8TeV, 20.2fb-1
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Binning:

Well described by the pQCD with corrections for nonperturbative effects

PhysRevD.98.092004

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.98.092004


Event shape variables

• Family of observables which 
characterize the event topology and/or 
energy flow in collider events

• Thrust, thrust minor, sphericity, 
aplanarity

• Energy-energy correlations, event 
isotropies
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Example: Transverse thrust – thrust 
axis 𝑛⊥to which the projections of pT 
are maximised, 0 ≤ 𝜏⊥ < 1 − 2/𝜋



Transverse energy-energy correlations (TEEC)

• Transverse energy-weighted 
distribution of azimuthal differences 
between jet pairs

• Asymmetry
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←back-to-back   collinear→

JHEP07(2023)085

https://link.springer.com/article/10.1007/jhep07(2023)085


• Theoretical models

• pQCD calculation (Czakon, Mitov, 
Poncelet, et al.) – NNLO corrections to 
three-jet production

TEEC analysis details, √s=13TeV, 139fb-1

Anti-kt R=0.4 jets, pT>60GeV,|η|<2.4,HT,2>1TeV

• Experimental uncertainties
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TEEC experimental results
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• At low HT,2 best description by both 
Sherpa and Herwig (angle-ordered 
shower)

• At high HT,2 Pythia8 gives the best 
description while both Sherpa and 
Herwig overestimate the height of the 
central plateau

TEEC experimental results
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TEEC NNLO prediction
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Z transverse momentum pT

• Z bosons in hadron-hadron collisions 
recoil against QCD ISR – ISR gluons will 
boost the Z in the transverse plane

• The Sudakov factor is responsible for 
the existence of a peak in the Z-boson 
pT distribution, at values of 
approximately 4 GeV

• The position of the peak is sensitive to 
αS(mZ)
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Precise measurement of Z pT, √s=8TeV, 20.2fb-1

• 15.3M Z dilepton decays (Drell-Yan 
ee,μμ)

• 80 < mll < 100 GeV, |y|<3.6

• Double differential pT, y cross section

• Interpretation of fiducial cross sections 
hampered by breakdown of fixed 
order perturbation theory ⇒ Full 
phase space measurement

• Analytical integration over decay 
angles to correct for fiducial cuts 
directly at theory level. 
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Eur. Phys. J. C 84 (2024) 315

https://link.springer.com/article/10.1140/epjc/s10052-024-12438-w


Precise measurement of Z pT
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Precise measurement of Z pT
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αS extraction in ATLAS
• Theory–data comparison based on 

minimizing a χ²(αS) function

• Sources of uncertainties entering C

• Experimental: statistical and systematics 
(luminosity, JES, unfolding, ...) 

• Theoretical: PDF uncertainties, scale 
variations (μr, μf), hadronization/UE 
corrections, PDF-αS correlation

• Use PDF sets with explicit αS dependence

• Scale uncertainties estimated by μr, μf 
variations and propagated to αS 

• PDF uncertainty propagated either via 
replicas or eigenvector sets 
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𝑹𝚫𝛟 αS extraction 

• pQCD calculations carried out using NLOJET++ interfaced 
to FASTNLO

• NLO (LO) predictions for 3 (4) jet quantities 
depending on 𝚫𝛟max 

• 𝛍r= 𝛍f= HT/2

• Several global PDF (MMHT2014, CT14, NNPDF2.3, 
ABMP16 (NNLO), HERAPDF2.0)

• Bins 0<y*<0.5 and 0.5<y*<1.0 for 𝚫𝛟max <7 𝛑/8 selected

• αS (Q) with Q=HT/2 extracted through 𝛘2 min. in 9 
intervals in the range 262 < Q < 1675 GeV

• Single minimization to obtain the statistical, 
experimental, non pert. and MMHT2014 PDF uncertainty

• Additional minimization for the PDF set and scale 
uncertainties
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TEEC αS extraction 

Fits in each HT,2 interval separately

TEEC has better exp. precision, but the 
value determined from ATEEC (shown here) 
exhibits better precision (TEEC in backup)

Both central values are correlated with 𝜌 = 
0.86 ± 0.02 (exp.) 
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Z pT αS extraction 

Theory calculation with DYTurbo at N4LLa 
and N3LO

Predictions depend on 3 scales – μr, μf 
and Q (resummation scale) – central 
value set to quadratic sum of mll and pT 
of the Z boson

N3LO MSHT20 PDF set - only PDF set at 
this order

Minimization in xFitter framework

Ndata = 72 data points in the (pt,y) double 
differential distribution
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arxiv.org/abs/2309.12986

https://arxiv.org/abs/2309.12986


Z pT αS extraction 
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Uncertainties in units of 10-3

Ratio to post-fit predictions

Observable not suitable for inclusion in
PDF fits → no correlation with αS(mZ)
determinations from PDF fits → also tried 
simultaneous PDF+αS fit



Summary

• αS is the least precisely known fundamental 
coupling, with precision limited compared to 
electroweak parameters — motivating diverse 
and independent extractions

• Hadron collider measurements achieve 
competitive precision, thanks to high statistics, 
sophisticated techniques, and careful observable 
selection optimizing sensitivity to αS.

• Reducing uncertainties requires:
• Experimentally: choosing observables with 

minimal non-perturbative and PDF sensitivity;

• Theoretically: improving perturbative 
predictions (NNLO, resummation) and reducing 
scale and PDF-related uncertainties.
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Backup
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𝑹𝚫𝛟 αS extraction 
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TEEC αS extraction 
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TEEC αS extraction 
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TEEC
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