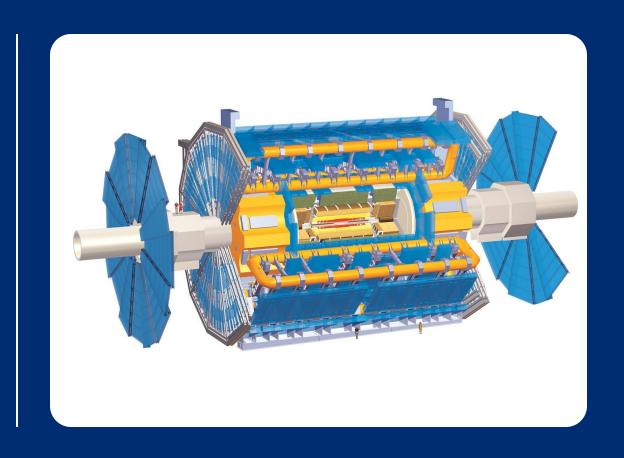


α_s from ATLAS

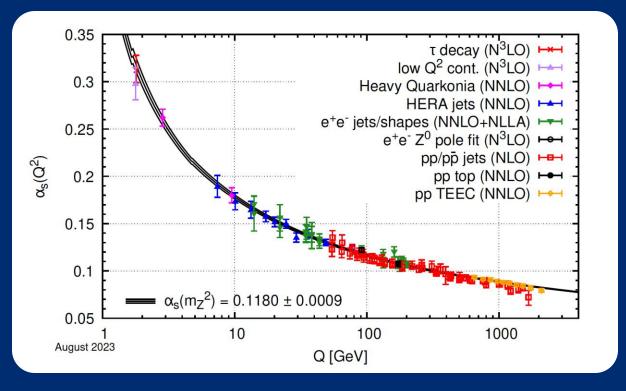
Extracting the Strong Coupling at the EIC and other Future Colliders

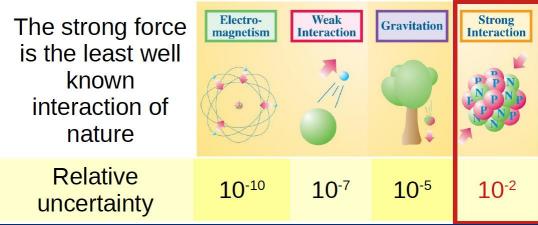
Zdenek Hubacek



Strong coupling constant from ATLAS

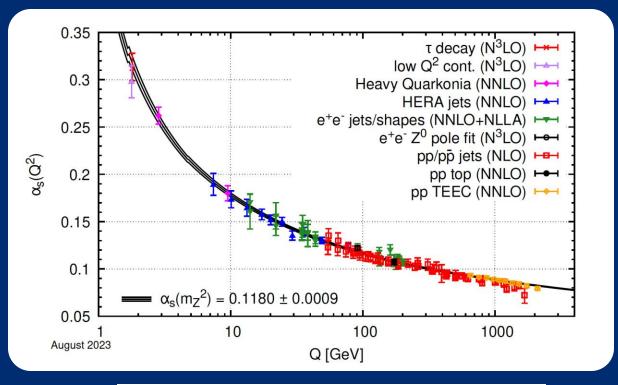
- LHC is a QCD powerhouse a true strong-interaction factory
- ATLAS provides a panoramic view of QCD in action
- QCD isn't background it's the baseline for discovery
- α_S small number, big consequences.

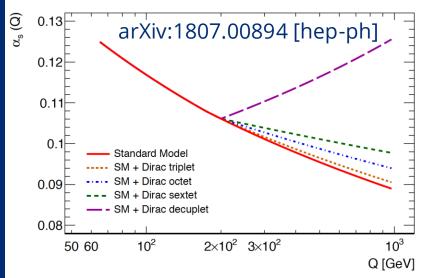




Strong coupling α_s

- One of fundamental constants
- QCD only free parameter in the massless quark limit
- RGE governs how α_S evolves with the energy scale μ .
- Conventionally "measured" at the reference scale Q=m_Z
- Is among dominant uncertainties of several precision measurements at colliders (including Higgs coupling for example)

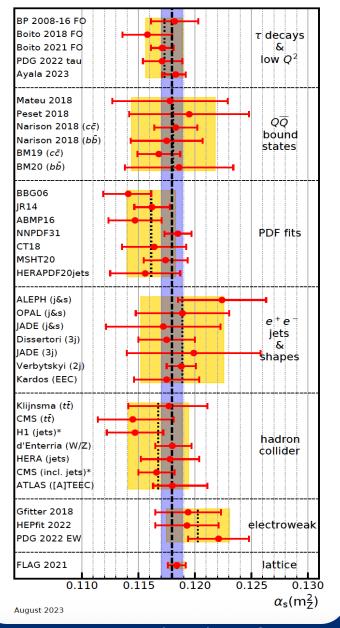




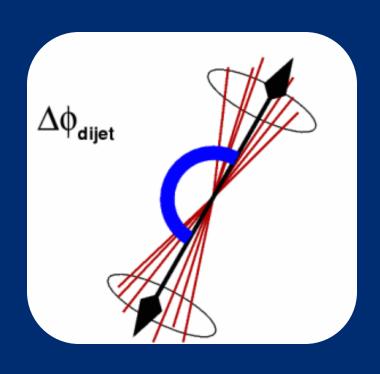
Strong coupling α_s

- One of fundamental constants
- QCD only free parameter in the massless quark limit
- RGE governs how α_S evolves with the energy scale μ .
- Conventionally "measured" at the reference scale Q=m_Z
- Is among dominant uncertainties of several precision measurements at colliders (including Higgs coupling for example)

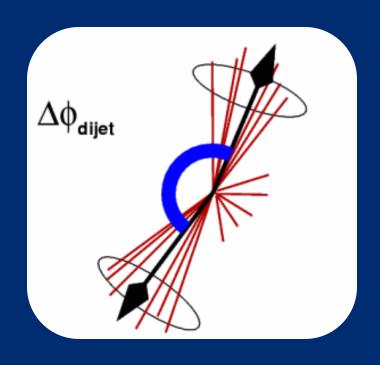
α_s extraction at colliders


Desirable features for the measurement:

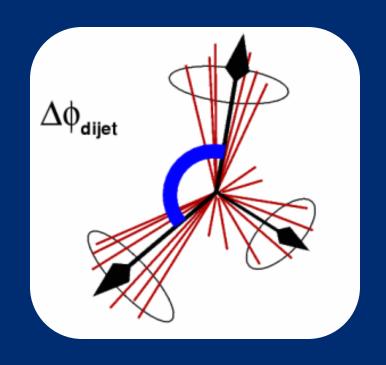
- Large observable's sensitivity to α_{S} compared to the experimental precision
- High accuracy of the theory prediction
- Small size of non-perturbative QCD effects


⇒ Exclusive vs inclusive observables

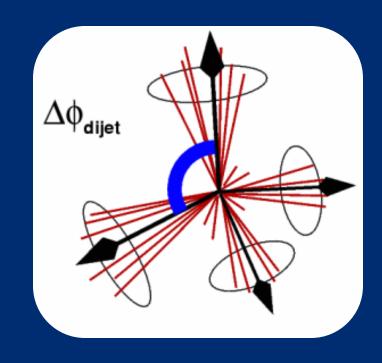
- Event shapes, jet ratios, ...
- Inclusive observables, differential distributions (jets, top)



 At leading order (LO), 2 jets are produced back-to-back in the azimuthal angle



- At leading order (LO), 2 jets are produced back-to-back in the azimuthal angle
- Any additional radiation will cause the decorrelation

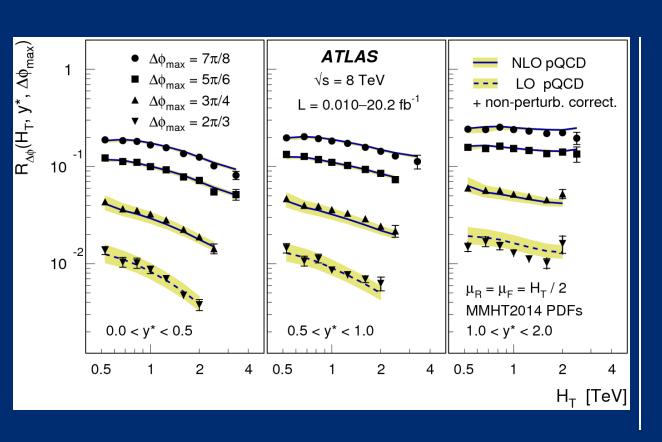


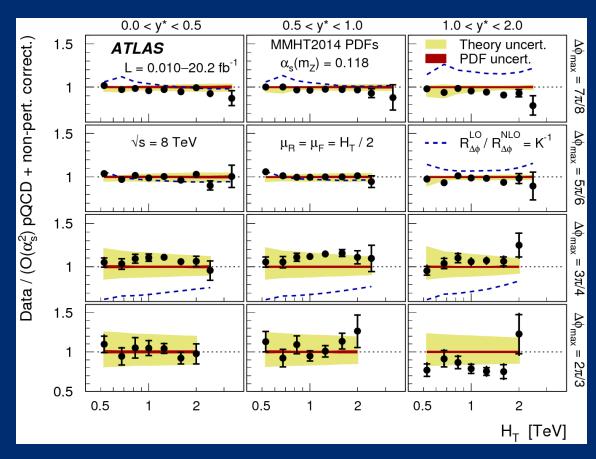
- At leading order (LO), 2 jets are produced back-to-back in the azimuthal angle
- Any additional radiation will cause the decorrelation
- 3^{rd} jet production (2 \rightarrow 3 process) restricts the phase space to $\Delta \phi > 2\pi/3$

- At leading order (LO), 2 jets are produced back-to-back in the azimuthal angle
- Any additional radiation will cause the decorrelation
- 3^{rd} jet production (2 \rightarrow 3 process) restricts the phase space to $\Delta \phi > 2\pi/3$
- Lower values accessible only in 2→4 processes

Observable definition $R_{\Lambda\Phi}$

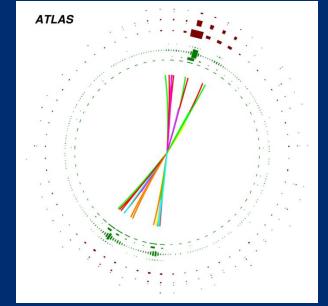
- Dijet azimuthal decorrelations have been measured before at hadron colliders (D0, CMS, ATLAS for example)
- Observable based on ratios of cross sections and studies its energy and rapidity dependence

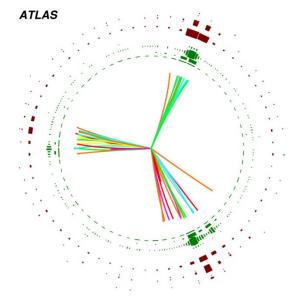

$$R_{\Delta\phi}(H_T, y^*, \Delta\phi_{ extit{max}}) = rac{rac{d^2\sigma_{ extit{dijet}}(\Delta\phi_{ extit{dijet}}<\Delta\phi_{ extit{max}})}{dH_T\,dy^*}}{rac{d^2\sigma_{ extit{dijet}}(extit{inclusive})}{dH_T\,dy^*}}$$


<u>JHEP 12 (2015) 024</u>

Fraction of dijet events where the azimuthal difference between the two leading jets is smaller than some $\Delta \phi_{\text{max}}$ value w.r.t. to the inclusive dijet cross section

$R_{\Delta\Phi}$, $\sqrt{s}=8$ TeV, 20.2fb⁻¹


Well described by the pQCD with corrections for nonperturbative effects

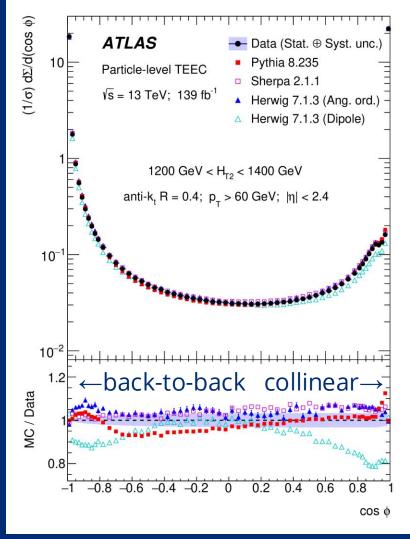

Event shape variables

- Family of observables which characterize the event topology and/or energy flow in collider events
- Thrust, thrust minor, sphericity, aplanarity
- Energy-energy correlations, event isotropies

Example: **Transverse thrust** – thrust axis n_{\perp} to which the projections of p_{\perp} are maximised, $0 \le \tau_{\perp} < 1 - 2/\pi$

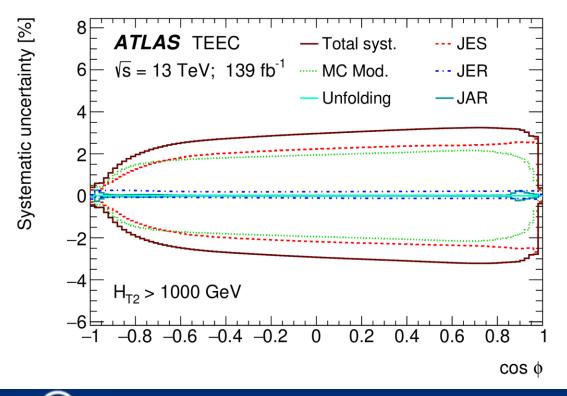
$$T_{\perp} = \max_{m{\hat{n}}_{\perp}} rac{\sum\limits_{i} |m{p}_{\mathrm{T}i} \cdot \hat{m{n}}_{\perp}|}{\sum\limits_{i} p_{\mathrm{T}i}} \qquad \qquad m{ au}_{\perp} = \mathbf{1} - T_{\perp}$$

Transverse energy-energy correlations (TEEC)


Transverse energy-weighted distribution of azimuthal differences between jet pairs

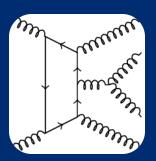
$$\frac{1}{\sigma} \frac{\mathrm{d}\Sigma}{\mathrm{d}\cos\phi} = \frac{1}{N} \sum_{A=1}^{N} \sum_{ij} \frac{E_{\mathrm{T}i}^{A} E_{\mathrm{T}j}^{A}}{\left(\sum_{k} E_{\mathrm{T}k}^{A}\right)^{2}} \delta(\cos\phi - \cos\varphi_{ij})$$

Asymmetry


$$\frac{1}{\sigma} \frac{\mathrm{d}\Sigma^{\mathrm{asym}}}{\mathrm{d}\cos\phi} = \frac{1}{\sigma} \frac{\mathrm{d}\Sigma}{\mathrm{d}\cos\phi} \bigg|_{\phi} - \frac{1}{\sigma} \frac{\mathrm{d}\Sigma}{\mathrm{d}\cos\phi} \bigg|_{\pi-\phi}.$$

TEEC analysis details, √s=13TeV, 139fb⁻¹ Anti-kt R=0.4 jets, $p_T>60$ GeV, $|\eta|<2.4$, $H_{T,2}>1$ TeV

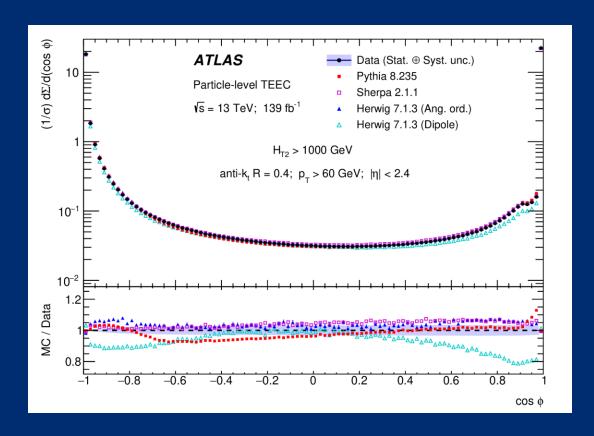
Experimental uncertainties

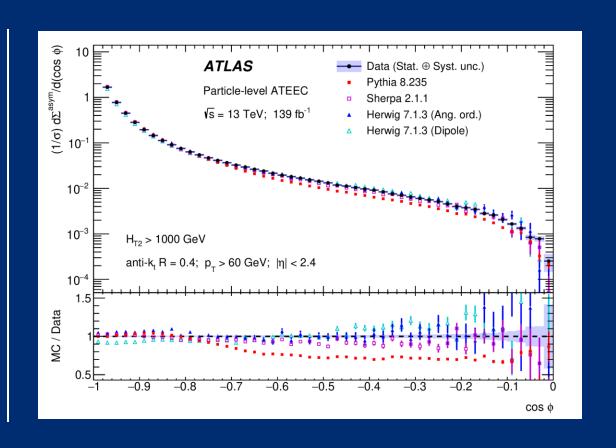


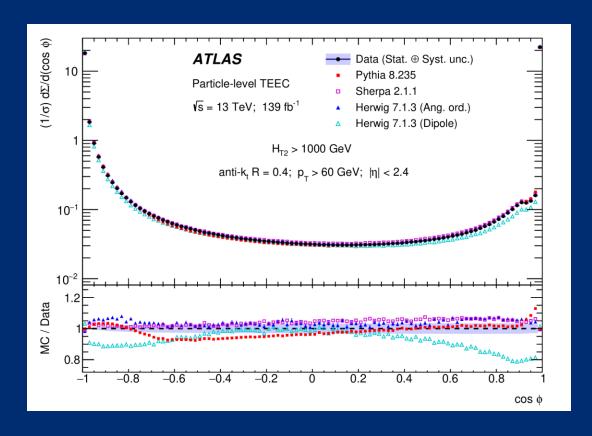
Theoretical models

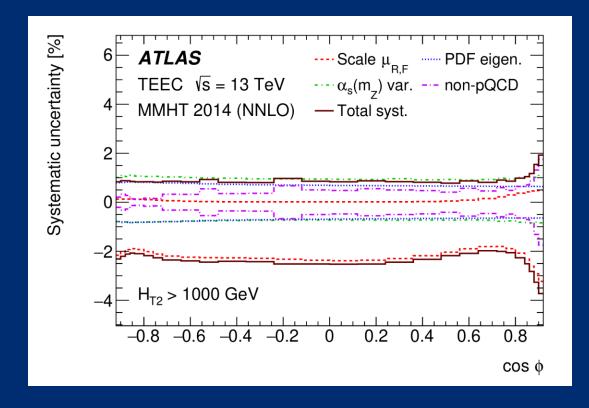
Generator	ME order	ME partons	PDF set	Parton shower	Scales μ_R, μ_F	$\alpha_{\rm s}(m_Z)$
Рутніа 8	LO	2	NNPDF 2.3 LO	p_{T} -ordered	$(m_{\mathrm{T3}}^2 \cdot m_{\mathrm{T4}}^2)^{\frac{1}{2}}$	0.140
Sherpa	LO	2,3	CT14 NNLO	CSS (dipole)	$H(s,t,u)$ [2 \rightarrow 2] CMW [2 \rightarrow 3]	0.118
Herwig 7	NLO	2,3	MMHT2014 NLO	Angular-ordered Dipole	$\max\left\{p_{\mathrm{T}i}\right\}_{i=1}^{N}$	0.120

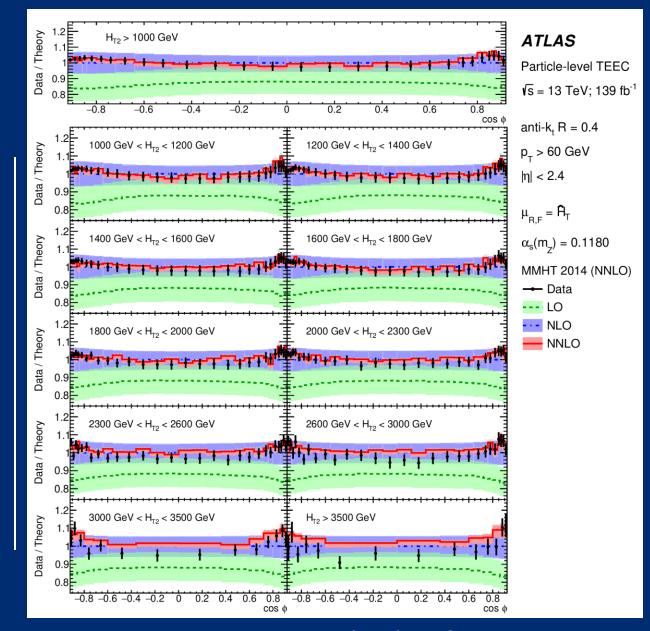
pQCD calculation (Czakon, Mitov, Poncelet, et al.) – NNLO corrections to three-jet production





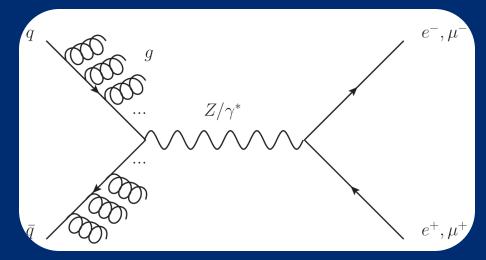

TEEC experimental results

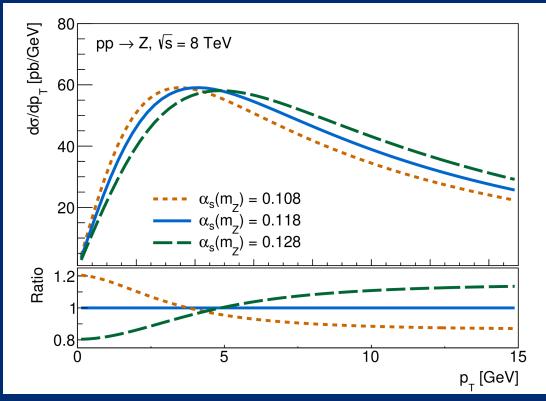

TEEC experimental results



- At low H_{T,2} best description by both Sherpa and Herwig (angle-ordered shower)
- At high H_{T,2} Pythia8 gives the best description while both Sherpa and Herwig overestimate the height of the central plateau

TEEC NNLO prediction

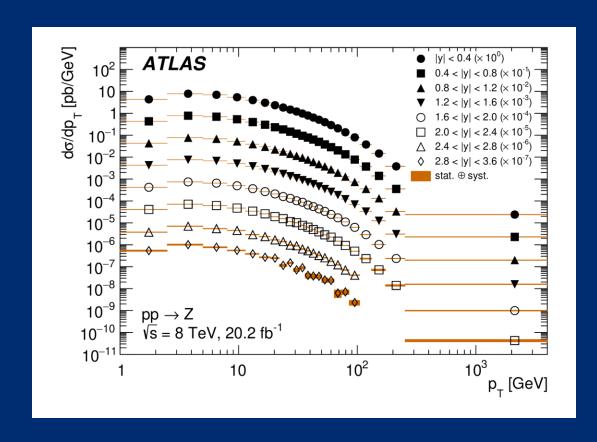


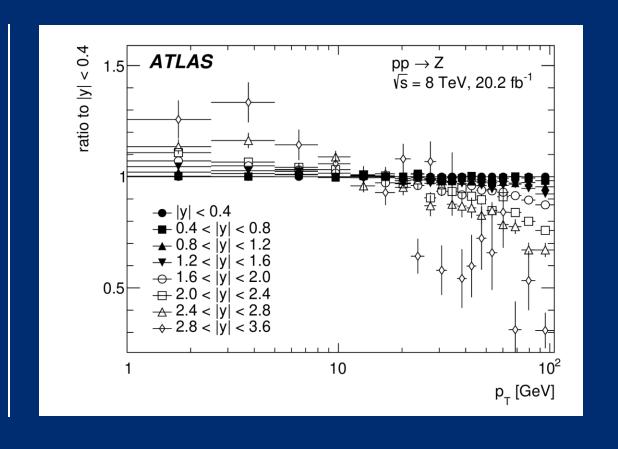


Z transverse momentum p_T

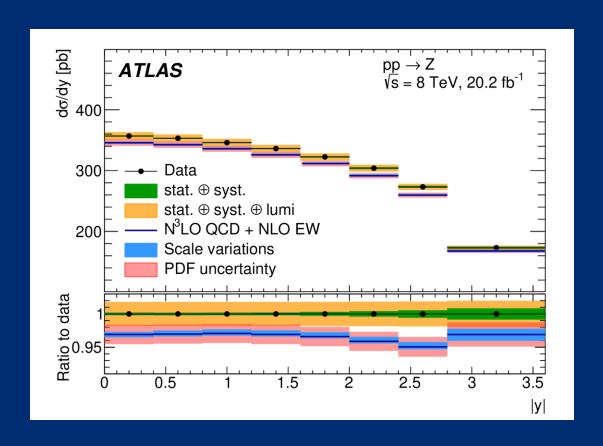
- Z bosons in hadron-hadron collisions recoil against QCD ISR - ISR gluons will boost the Z in the transverse plane
- The Sudakov factor is responsible for the existence of a peak in the Z-boson p_T distribution, at values of approximately 4 GeV
- The position of the peak is sensitive to $\alpha_s(m_7)$

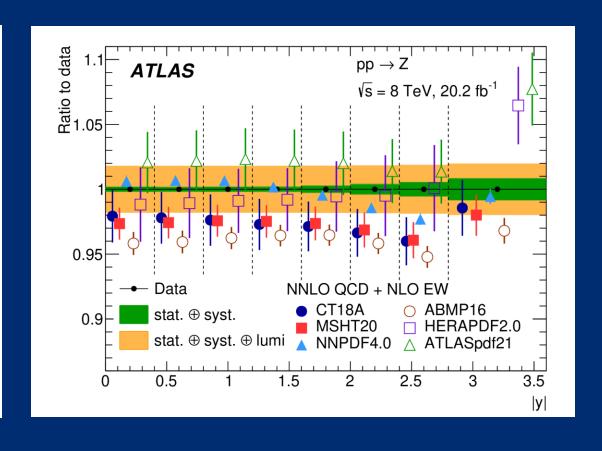
Precise measurement of Z p_T , \sqrt{s} =8TeV, 20.2fb⁻¹


- 15.3M Z dilepton decays (Drell-Yan ee,µµ)
- $80 < m_{\parallel} < 100 \text{ GeV}, |y| < 3.6$
- Double differential pT, y cross section
- Interpretation of fiducial cross sections hampered by breakdown of fixed order perturbation theory ⇒ Full phase space measurement
- Analytical integration over decay angles to correct for fiducial cuts directly at theory level.

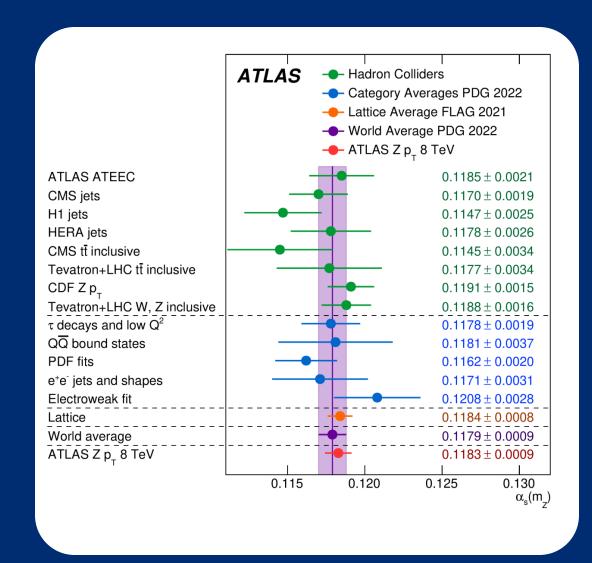

$$\frac{\mathrm{d}\sigma}{\mathrm{d}p_{\mathrm{T}}\,\mathrm{d}y\,\mathrm{d}m\,\mathrm{d}\cos\theta\,\mathrm{d}\phi} = \frac{3}{16\pi} \frac{\mathrm{d}\sigma^{U+L}}{\mathrm{d}p_{\mathrm{T}}\,\mathrm{d}y\,\mathrm{d}m}$$

$$\times \left\{ (1 + \cos^{2}\theta) + \frac{1}{2} A_{0}(1 - 3\cos^{2}\theta) + A_{1} \sin 2\theta \cos\phi + \frac{1}{2} A_{2} \sin^{2}\theta \cos 2\phi + A_{3} \sin\theta \cos\phi + A_{4} \cos\theta + A_{5} \sin^{2}\theta \sin 2\phi + A_{6} \sin 2\theta \sin\phi + A_{7} \sin\theta \sin\phi \right\}.$$


Precise measurement of Z p_T



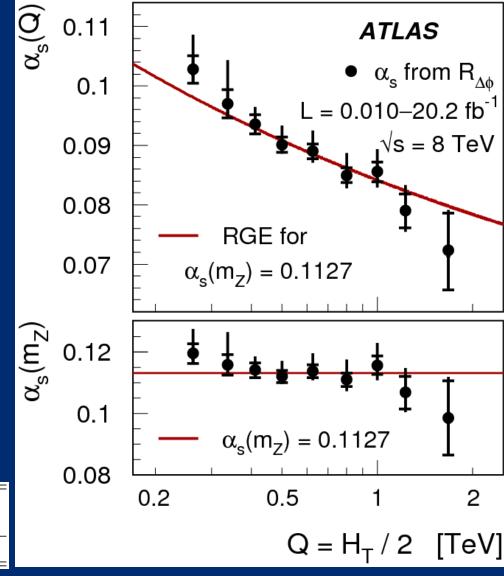
Precise measurement of Z p_T



α_s extraction in ATLAS

Theory–data comparison based on minimizing a $\chi^2(\Omega_S)$ function

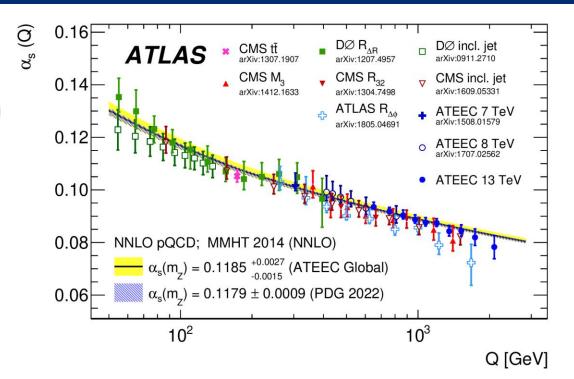
$$\chi^2(lpha_s) = \sum_{i,j} (D_i - T_i(lpha_s)) \, (C^{-1})_{ij} \, (D_j - T_j(lpha_s))$$


- Sources of uncertainties entering C
 - Experimental: statistical and systematics (luminosity, JES, unfolding, ...)
 - Theoretical: PDF uncertainties, scale variations (μ_r , μ_f), hadronization/UE corrections, PDF- α_s correlation
- Use PDF sets with explicit α_S dependence
- Scale uncertainties estimated by μ_r , μ_f variations and propagated to α_s
- PDF uncertainty propagated either via replicas or eigenvector sets

$R_{\Delta \Phi}$ $\alpha_{\rm S}$ extraction

- pQCD calculations carried out using NLOJET++ interfaced to FASTNLO
 - NLO (LO) predictions for 3 (4) jet quantities depending on $\Delta \Phi$ max
- $\mu_r = \mu_f = H_T/2$
- Several global PDF (MMHT2014, CT14, NNPDF2.3, ABMP16 (NNLO), HERAPDF2.0)
- Bins $0 < y^* < 0.5$ and $0.5 < y^* < 1.0$ for $\Delta \phi$ max $< 7 \pi/8$ selected
- α_S (Q) with Q=H_T/2 extracted through χ 2 min. in 9 intervals in the range 262 < Q < 1675 GeV
- Single minimization to obtain the statistical, experimental, non pert. and MMHT2014 PDF uncertainty
- Additional minimization for the PDF set and scale uncertainties

$\overline{\alpha_{\rm S}(m_Z)}$	Total	Statistical	Experimental	Non-perturb.	MMHT2014	PDF set	$\mu_{ ext{R,F}}$
	uncert.		$\operatorname{correlated}$	corrections	uncertainty		variation
0.1127	$^{+6.3}_{-2.7}$	± 0.5	$^{+1.8}_{-1.7}$	$^{+0.3}_{-0.1}$	$^{+0.6}_{-0.6}$	$^{+2.9}_{-0.0}$	$+5.2 \\ -1.9$


TEEC α_s extraction

Fits in each $H_{T,2}$ interval separately

$$\chi^{2}(\alpha_{s}, \vec{\lambda}) = \sum_{\text{bins}} \frac{(x_{i} - F_{i}(\alpha_{s}, \vec{\lambda}))^{2}}{\Delta x_{i}^{2} + \Delta \xi_{i}^{2}} + \sum_{k} \lambda_{k}^{2}, \quad F_{i}(\alpha_{s}, \vec{\lambda}) = \psi_{i}(\alpha_{s}) \left(1 + \sum_{k} \lambda_{k} \sigma_{k}^{(i)}\right)$$

TEEC has better exp. precision, but the value determined from ATEEC (shown here) exhibits better precision (TEEC in backup)

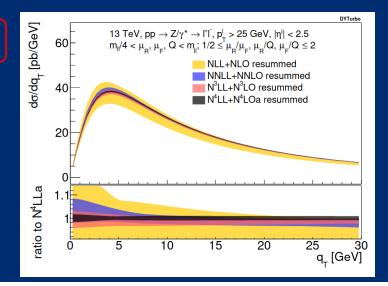
Both central values are correlated with ρ = 0.86 ± 0.02 (exp.)

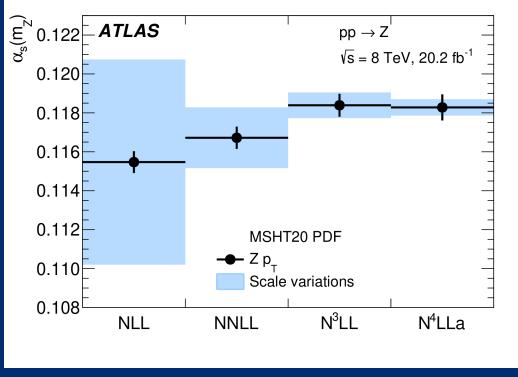
PDF	$\alpha_s(m_Z)$ value	$\chi^2/N_{\rm dof}$
MMHT 2014	$0.1185 \pm 0.0005 \text{ (stat.)} \pm 0.0008 \text{ (sys.)}^{+0.0022}_{-0.0002} (\mu) \pm 0.0011 \text{ (PDF)} \pm 0.0004 \text{ (NP)} \pm 0.0001 \text{ (mod.)}$	110 / 117
CT14	$0.1200 \pm 0.0006 \text{ (stat.)} \pm 0.0009 \text{ (sys.)}^{+0.0027}_{-0.0001} (\mu) \pm 0.0016 \text{ (PDF)} \pm 0.0005 \text{ (NP)} \pm 0.0001 \text{ (mod.)}$	110 / 117
NNPDF 3.0	$0.1199 \pm 0.0006 \pm \text{ (stat.)} \\ 0.0009 \text{ (sys.)} \\ ^{+0.0027}_{-0.0002} (\mu) \pm 0.0017 \text{ (PDF)} \\ \pm 0.0005 \text{ (NP)} \\ \pm 0.0001 \text{(mod.)} $	108 / 117

$Z p_T \alpha_S$ extraction

Theory calculation with DYTurbo at N⁴LLa and N³LO

Predictions depend on 3 scales – μ_r , μ_f and Q (resummation scale) – central value set to quadratic sum of m_{ll} and p_T of the Z boson

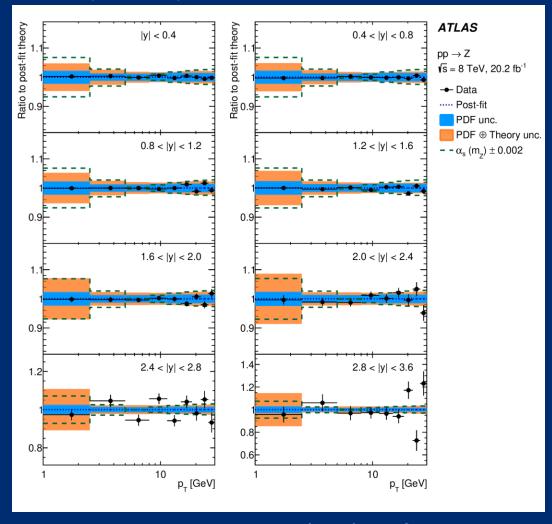

N3LO MSHT20 PDF set - only PDF set at this order


Minimization in xFitter framework

N_{data} = 72 data points in the (pt,y) double differential distribution

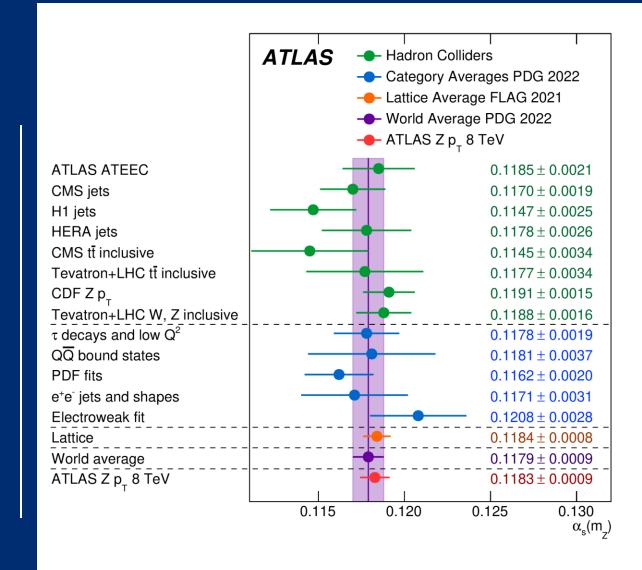
$$\chi^{2}(\beta_{\exp}, \beta_{\text{th}}) = \sum_{i=1}^{N_{\text{data}}} \frac{\left(\sigma_{i}^{\exp} + \sum_{j} \Gamma_{ij}^{\exp} \beta_{j, \exp} - \sigma_{i}^{\text{th}} - \sum_{k} \Gamma_{ik}^{\text{th}} \beta_{k, \text{th}}\right)^{2}}{\Delta_{i}^{2}} + \sum_{j} \beta_{j, \exp}^{2} + \sum_{k} \beta_{k, \text{th}}^{2}.$$

$Z p_T \alpha_S$ extraction


Uncertainties in units of 10⁻³

Experimental uncertainty	± 0.44		
PDF uncertainty	± 0.51		
Scale variation uncertainties	± 0.42		
Matching to fixed order	0	-0.08	
Non-perturbative model	+0.12	-0.20	
Flavour model	+0.40	-0.29	
QED ISR	± 0.14		
N ⁴ LL approximation	± 0.04		
Total	+0.91	-0.88	

Observable not suitable for inclusion in PDF fits \rightarrow no correlation with $\alpha_s(m_z)$ determinations from PDF fits → also tried simultaneous PDF+ α_S fit



Ratio to post-fit predictions

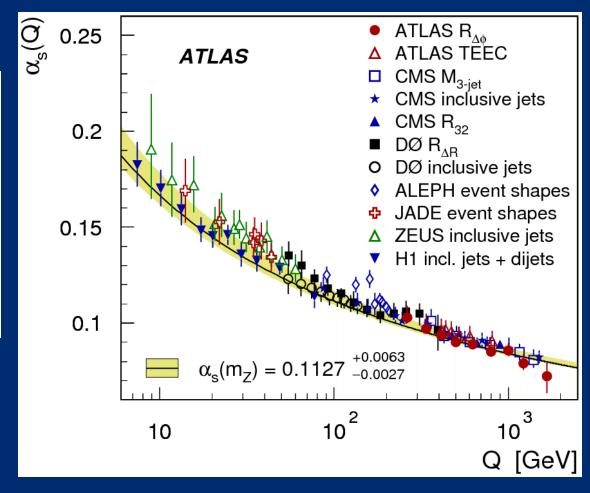
Summary

- α_{ς} is the least precisely known fundamental coupling, with precision limited compared to electroweak parameters — motivating diverse and independent extractions
- **Hadron collider measurements** achieve competitive precision, thanks to high statistics, sophisticated techniques, and careful observable selection optimizing sensitivity to α_s .
- **Reducing uncertainties requires:**
 - **Experimentally**: choosing observables with minimal non-perturbative and PDF sensitivity;
 - **Theoretically:** improving perturbative predictions (NNLO, resummation) and reducing scale and PDF-related uncertainties.

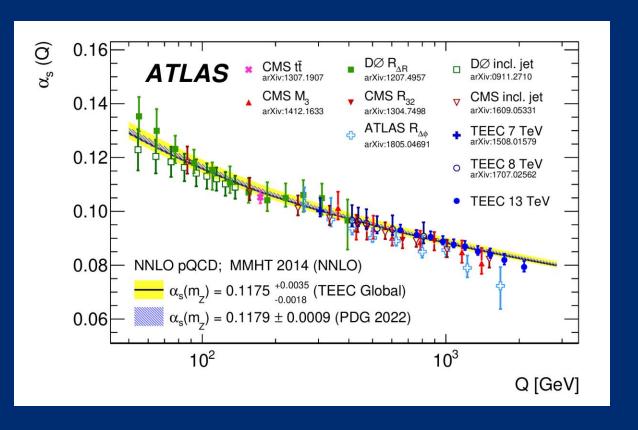
Thank you for your attention

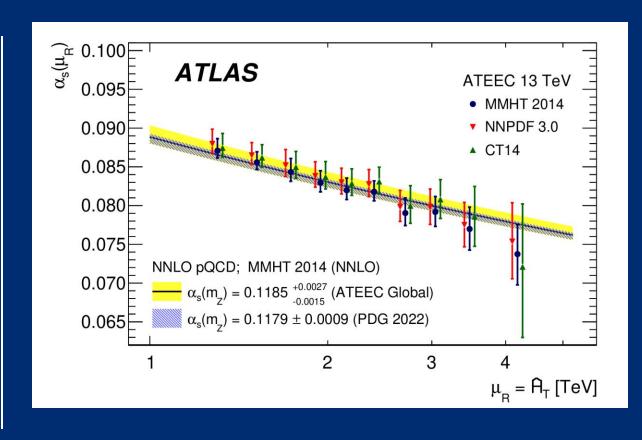
Zdenek Hubacek

zdenek.hubacek@cern.ch

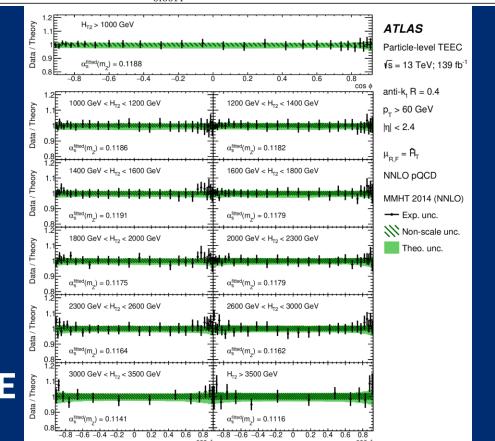


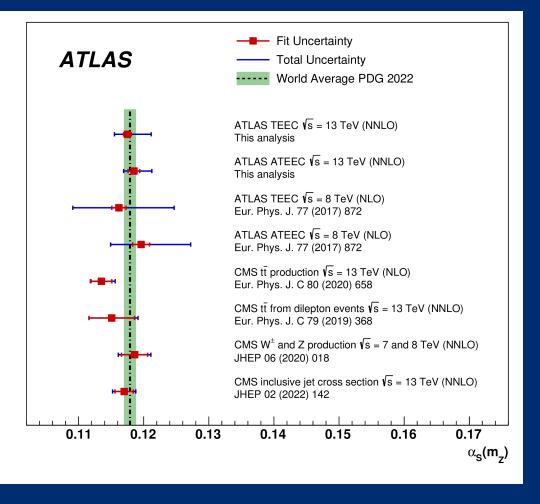
Backup


$R_{\Delta \Phi}$ $\alpha_{\rm S}$ extraction


\overline{Q}	$\alpha_{\mathrm{S}}(Q)$	Total	Stat.	Exp.	Non-perturb.	MMHT2014	PDF	$\mu_{ ext{R,F}}$
[GeV]		uncert.		correlated	corrections	uncertainty	set	variation
262.5	0.1029	$^{+6.0}_{-2.8}$	± 1.6	$^{+1.6}_{-1.7}$	$^{+0.4}_{-0.4}$	$^{+0.4}_{-0.4}$	$^{+1.4}_{-0.9}$	$+5.3 \\ -0.2$
337.5	0.0970	$^{+8.0}_{-2.6}$	± 1.8	$^{+1.5}_{-1.5}$	$^{+0.4}_{-0.4}$	$^{+0.3}_{-0.3}$	$^{+3.0}_{-0.5}$	$^{+7.0}_{-0.7}$
412.5	0.0936	$^{+4.0}_{-2.2}$	± 0.9	$^{+1.3}_{-1.3}$	$^{+0.3}_{-0.3}$	$^{+0.3}_{-0.3}$	$^{+2.6}_{-1.4}$	$^{+2.5}_{-0.2}$
500.0	0.0901	$^{+3.7}_{-1.5}$	± 0.6	$^{+1.2}_{-1.2}$	$^{+0.2}_{-0.2}$	$^{+0.3}_{-0.3}$	$^{+1.9}_{-0.3}$	$^{+2.9}_{-0.6}$
625.0	0.0890	$^{+3.9}_{-1.8}$	± 0.5	$^{+1.1}_{-1.1}$	$^{+0.1}_{-0.1}$	$^{+0.3}_{-0.4}$	$^{+1.7}_{-0.3}$	$+3.3 \\ -1.3$
800.0	0.0850	$^{+5.9}_{-2.2}$	± 0.6	$^{+1.0}_{-1.1}$	$^{+0.1}_{-0.1}$	$^{+0.4}_{-0.4}$	$^{+4.6}_{-0.2}$	$+3.5 \\ -1.8$
1000	0.0856	$^{+4.0}_{-2.7}$	± 1.2	$^{+1.1}_{-1.1}$	$^{+0.1}_{-0.1}$	$^{+0.4}_{-0.4}$	$^{+1.4}_{-0.4}$	$+3.4 \\ -2.0$
1225	0.0790	$^{+4.6}_{-3.5}$	± 2.5	$^{+1.2}_{-1.2}$	$^{+0.1}_{-0.1}$	$^{+0.5}_{-0.5}$	$^{+1.6}_{-0.4}$	$+3.2 \\ -1.9$
1675	0.0723	+7.0 -8.6	±6.1	+1.3 -1.2	$< \pm 0.1$	+0.5 -0.5	$+1.7 \\ -5.1$	$+2.8 \\ -1.6$

TEEC α_s extraction





TEEC α_s extraction

TEEC

PDF	$\alpha_s(m_Z)$ value	$\chi^2/N_{\rm dof}$
MMHT 2014	$0.1175 \pm 0.0001 \text{ (stat.)} \pm 0.0006 \text{ (sys.)}^{+0.0032}_{-0.0011} (\mu) \pm 0.0011 \text{ (PDF)} \pm 0.0002 \text{ (NP)} \pm 0.0005 \text{ (mod.)}$	318 / 251
CT14	$0.1196 \pm 0.0001 \text{ (stat.)} \pm 0.0006 \text{ (sys.)}^{+0.0035}_{-0.0010} (\mu) \pm 0.0016 \text{ (PDF)} \pm 0.0002 \text{ (NP)} \pm 0.0006 \text{ (mod.)}$	262 / 251
NNPDF 3.0	$0.1191 \pm 0.0001 \text{ (stat.)} \pm 0.0006 \text{ (sys.)}_{-0.0011}^{+0.0040} (\mu) \pm 0.0020 \text{ (PDF)} \pm 0.0003 \text{ (NP)} \pm 0.0007 \text{(mod.)}$	300 / 251

