

Measurements of the strong coupling at HERA Extracting the Strong Coupling at the EIC and other Future Colliders

Florian Lorkowski

florian.lorkowski@physik.uzh.ch

University of Zürich

May 5, 2025

Motivation Deep inelastic scattering

 $\gamma/Z/W$

 e/ν

α_{s} from HERA

- Florian Lorkowski 2025-05-05
- Motivation DIS Jet production Kinematics Experiments HERAPDF Jets at ZEUS

Summarv

Deep inelastic scattering

- Inclusive deep inelastic scattering (DIS) measurements in lepton-hadron collisions (*ep* → *e'X*) are essential to determine the parton distribution functions (PDFs) of the proton (*xf*)
- Neutral (NC) and charged current (CC) DIS cross sections (at leading order):

Motivation Deep inelastic scattering

 $\gamma/Z/W$

 e/ν

α_{s} from HERA

- Florian Lorkowski 2025-05-05
- Motivation DIS Jet production Kinematics Experiments HERAPDF Jets at ZEUS Summary

Deep inelastic scattering

- ⇒ Directly sensitive to quark-distributions
- Through higher orders and scaling violations in DGLAP equations, sensitive to product of gluon distribution xg and strong coupling constant α_s
- From higher-order corrections, the two can be disentangled to some extent, but they remain strongly correlated

$$\left(\frac{2\pi\alpha^2}{x_{Bj}Q^4}\right)^{-1} \frac{d^2 \sigma_{NC}^{\pm}}{dx_{Bj}dQ^2} = \underbrace{Y_+ F_2^{NC}(x_{Bj}, Q^2)}_{\sim xq + x\bar{q}} \mp \underbrace{Y_- x_{Bj}F_3^{NC}(x_{Bj}, Q^2)}_{\sim xq - x\bar{q}} - \underbrace{Y^2 F_L^{NC}(x_{Bj}, Q^2)}_{\sim xg \times \alpha_s}$$
$$\frac{G_F^2}{4\pi x_{Bj}} \frac{M_W^4}{(Q^2 + M_W^2)^2}\right)^{-1} \frac{d^2 \sigma_{CC}^{\pm}}{dx_{Bj}dQ^2} = \underbrace{Y_+ F_2^{CC}(x_{Bj}, Q^2)}_{\sim xQ + x\bar{u}} \mp \underbrace{Y_- x_{Bj}F_3^{CC}(x_{Bj}, Q^2)}_{\sim xQ - x\bar{u}} - \underbrace{Y^2 F_L^{CC}(x_{Bj}, Q^2)}_{\sim xQ \times \alpha_s}$$

 $\sim xU + x\overline{D}$

 $\sim xU - x\overline{D}$

Motivation Inclusive jet production

α_{s} from HERA

Florian Lorkowski 2025-05-05

Motivation DIS Jet production Kinematics Experiments HERAPDF Jets at ZEUS Summary

Jet measurements

- Already at leading order,[†] jet production is directly sensitive to strong coupling independently of gluon distribution
- Jet production also constrains gluon distribution
- \Rightarrow Jet production is sensitive to a different combination of gluon PDF and α_{s}

[†]Leading order in the Breit frame, see slide A1

Motivation Inclusive jet production

α_{s} from HERA

- Florian Lorkowski 2025-05-05
- Motivation DIS Jet production Kinematics Experiments HERAPDF Jets at ZEUS Summary

Jet measurements

- Already at leading order,[†] jet production is directly sensitive to strong coupling independently of gluon distribution
- Jet production also constrains gluon distribution
- ⇒ Jet production is sensitive to a different combination of gluon PDF and α_s
- \Rightarrow DIS + jet data allows simultaneous determination of PDFs and $\alpha_{\rm s}$

[†]Leading order in the Breit frame, see slide A1

Motivation Kinematics

α_{s} from HERA

- Florian Lorkowski
- **Motivation** Jet production Experiments HERAPDE Jets at ZEUS Summarv

Jet production in DIS

- $e(k) + P(P) \rightarrow e/\nu(k') + p'(p') + X$
- Kinematic guantities ►
 - $Q^2 = -q^2$
 - Momentum transfer $x_{\rm Bj} = rac{Q^2}{2P \cdot q}$
 - $y = \frac{P \cdot q}{P \cdot k}$
 - $s = rac{Q^2}{x_{
 m Bi} y}$
- Biorken scaling parameter Inelasticity

Boson virtuality/

- - Centre-of-mass energy squared
- ► In DIS: $Q^2 \gg \lambda_{OCD}$
 - \rightarrow boson acts as point-like probe of hadron

p'... Scattered hadronic system X... Proton remnant

Motivation HERA and ZEUS

α_{s} from HERA

- Florian Lorkowski 2025-05-05
- Motivation DIS Jet production Kinematics Experiments HERAPDF Jets at ZEUS Summary

HERA accelerator

- World's only lepton-hadron collider so far
- Located at DESY in Hamburg, Germany
- Two run periods:
 - ▶ HERA I: 1992 2000
 - ▶ HERA II: 2003 2007
- Circular collider of length 6336 m
- Collide electrons/positrons with protons at up to $\sqrt{s} = 318 \text{ GeV}$
- Two general purpose particle detectors: H1 and ZEUS

HERAPDF HERA data

α_{s} from HERA

- Florian Lorkowski 2025-05-05
- Motivation HERAPDF HERA data HERAPDF2.0 Datasets Parameterisation Model parameters Strong coupling Impact on PDFs Jets at ZEUS Summary
- In 2015, released combined dataset of inclusive DIS from H1 and ZEUS[†]
 - Includes NC and CC measurements
 - Electron and positron beams
 - All four different centre-of-mass energies from HERA I and HERA II
- Supersedes all previous combinations of DIS data at HERA
- One of the most important datasets from the HERA collider

[†]EPJC 75, 580 (2015). arXiv:1506.06042

HERAPDF HERAPDF2.0

α_{s} from HERA

- Florian Lorkowski 2025-05-05
- Motivation HERAPDF HERA data HERAPDF2.0 Datasets Parameterisation Model parameters Strong coupling Impact on PDFs Jets at ZEUS Summary
- Based on this dataset, determined the HERAPDF2.0 family of PDF sets using only HERA data at LO, NLO and NNLO
- Most prominent members:
 - HERAPDF2.0 NLO
 - HERAPDF2.0 NNLO
 - HERAPDF2.0Jets NLO $PDF + \alpha_s$ fit

PDF fits

- In 2017, NNLO QCD predictions of inclusive jet and dijet production became available[†]
- This talk: HERAPDF2.0Jets NNLO completes the HERAPDF2.0 family[‡]
- Simultaneous PDF + $\alpha_{s}(M_{Z}^{2})$ fit \rightarrow determine $\alpha_{s}(M_{Z}^{2})$ at NNLO

[†]JHEP 2017, 18 (2017). arXiv:1703.05977 [‡]EPJC 82, 243 (2022). arXiv:2112.01120

HERAPDF Datasets

NNLO

Used points

NLO

α_{s} from HERA	Dataset	L	
Florian Lorkowski	Dataset	[pb ⁻¹]	
2025-05-05	HERA combined inclusive DIS	_	
Motivation	HERA combined charm data	_	
HERAPDF	H1 HERA I jets at low Q^2	43.5	
HERA data	H1 HERA I jets at high Q^2	65.4	
Datasets	H1 HERA II inclusive jets at high Q^2	351	
Parameterisation	H1 HERA II dijets at high Q ²	351	
Model parameters	H1 HERA II trijets at high Q ²	351	
Impact on PDFs	H1 HERA II inclusive jets at low Q^2	290	
Jets at ZEUS	H1 HERA II dijets at low Q^2	290	
Summary	ZEUS HERA I inclusive jets at high Q ²	38.6	
	ZEUS HERA I+II dijets at high Q^2	374	

Some newly published data points could be added since previous NLO analysis

Some data points had to be excluded since NNLO predictions are unavailable/unreliable

HERAPDF Parameterisation

α_{s} from HERA

- Florian Lorkowski 2025-05-05
- Motivation HERAPDF HERA data HERAPDF2.0 Datasets Parameterisation Model parameters Strong coupling Impact on PDFs Jets at ZEUS Summary

- Parameterise $g, u_v, d_v, \bar{U}, \bar{D}$
- Established HERAPDF functional form of PDFs $xf(x) = A_f x^{B_f} (1-x)^{C_f} (1+D_f x + E_f x^2)$
- Identify relevant parameters; optimal parameterisation is the same as at NLO

$$\begin{aligned} xg(x) &= A_g x^{B_g} (1-x)^{C_g} - A'_g x^{B'_g} (1-x)^{C'_g} \\ xu_v(x) &= A_{u_v} x^{B_{u_v}} (1-x)^{C_{u_v}} (1+E_{u_v} x^2) \\ xd_v(x) &= A_{d_v} x^{B_{d_v}} (1-x)^{C_{d_v}} \\ x\bar{U}(x) &= A_{\bar{U}} x^{B_{\bar{U}}} (1-x)^{C_{\bar{U}}} (1+D_{\bar{U}} x) \\ x\bar{D}(x) &= A_{\bar{D}} x^{B_{\bar{D}}} (1-x)^{C_{\bar{D}}} \end{aligned}$$

- A_g , A_{u_v} and A_{d_v} fixed by sum rules
- Fix $C'_g = 25, B_{\bar{U}} = B_{\bar{D}}, A_{\bar{U}} = A_{\bar{D}}(1 f_s)$
- \Rightarrow 14 free PDF parameters + $\alpha_{\rm s}(M_Z^2)$

HERAPDF Model parameters

Florian Lorkowski 2025-05-05	4
	IS
Motivation	$m_{\rm c}$
HERAPDF	$m_{\rm b}$
HERA data	Q^2
HERAPDF2.0	
Datasets	
Parameterisation	μ_{f0}^2
Model parameters	/
Strong coupling	р
Impact on PDFs	
Jets at ZEUS	μ_{t}^{2}
Summary	, ²
	Lur

	ſ	Jets NLO	Jets NNLO			
Model parameters						
f _s		0.4 ± 0.1				
m _c [GeV	/]	1.47 ± 0.06	1.41 ^{+0.04} _symmetrise			
m _b [GeV	/]	4.5 ± 0.25	$\textbf{4.2}\pm\textbf{0.10}$			
Q_{\min}^2 [GeV	²]	$3.5 {}^{+1.5}_{-1.0}$				
Parameterisation						
μ_{f0}^2 [GeV	²]	1.9 ± 0.3	$1.9^{+\text{symmetrise}}_{-0.3}$			
Additional		all missing <i>D</i> and <i>E</i> parameters				
parameters		$(D_g, E_g, D_{u_v}, D_{d_v}, E_{d_v}, E_{\bar{U}}, D_{\bar{D}}, E_{\bar{D}})$				
Scales						
$\mu_{\rm f}^2$ $\mu_{\rm r}^2$		Q^2	$0^{2} + n^{2}$			
		$(Q^2+ ho_{\perp}^2)/2$	$Q^- + P_{\perp}$			
Theory related						
Hadronisation		repeat fit	included in fit			
Statistics		not available	included in fit			

- Model parameters determined similar to previous analysis
- Charm and bottom mass updated using new combined HERA data on heavy quarks
- Perform certain variations one-sided and symmetrise
 avoid double-counting of uncertainty
- Treat hadronisation uncertainty as systematic uncertainty of data
- Include statistical uncertainty of theoretical predictions

α_{s} from HERA

Florian Lorkowski 2025-05-05

Motivation HERAPDF HERA data HERAPDF2.0 Datasets Parameterisation Model parameters Strong coupling Impact on PDFs Jets at ZEUS Summary

HERAPDF2.0Jets NLO

 $\alpha_{s}(M_{Z}^{2}) = 0.1183 \pm 0.0009$ (exp./fit) ± 0.0005 (model/param.) $^{+0.0037}_{-0.0030}$ (scale) ± 0.0012 (hadr.)

HERAPDF2.0Jets NNLO

 $\alpha_{\rm s}(M_Z^2) =$ 0.1156 \pm 0.0011 (exp./fit) $^{+0.0001}_{-0.0002}$ (model/param.) \pm 0.0029 (scale)

- Preferred value at NNLO is smaller that at NLO, as expected from other analyses
- Experimental/fit uncertainty reduced (compared to exp./fit⊗hadr. at NLO), mostly due to improved treatment of hadronisation uncertainty
- Model/parameterisation uncertainty reduced mostly due to symmetrisation of model uncertainties

α_{s} from HERA

Florian Lorkowski 2025-05-05

Motivation HERAPDF HERA data HERAPDF2.0 Datasets Parameterisation Model parameters Strong coupling Impact on PDFs Jets at ZEUS Summary

HERAPDF2.0Jets NLO

 $\alpha_{\rm s}(M_Z^2) = 0.1183 \pm 0.0009$ (exp./fit) ± 0.0005 (model/param.) $^{+0.0037}_{-0.0030}$ (scale) ± 0.0012 (hadr.)

HERAPDF2.0Jets NNLO

 $\alpha_{\rm s}(M_Z^2) = 0.1156 \pm 0.0011$ (exp./fit) $^{+0.0001}_{-0.0002}$ (model/param.) ± 0.0029 (scale)

- Preferred value at NNLO is smaller that at NLO, as expected from other analyses
 - Experimental/fit uncertainty reduced (compared to exp./fit⊗hadr. at NLO), mostly due to improved treatment of hadronisation uncertainty
- Model/parameterisation uncertainty reduced mostly due to symmetrisation of model uncertainties

α_{s} from HERA

Florian Lorkowski 2025-05-05

Motivation HERAPDF HERA data HERAPDF2.0 Datasets Parameterisation Model parameters Strong coupling Impact on PDFs Jets at ZEUS Summary

HERAPDF2.0Jets NLO

 $\alpha_{\rm s}(M_Z^2) = 0.1183 \pm 0.0009$ (exp./fit) ± 0.0005 (model/param.) $^{+0.0037}_{-0.0030}$ (scale) ± 0.0012 (hadr.)

HERAPDF2.0Jets NNLO

 $\alpha_{\rm s}(M_Z^2) = 0.1156 \pm 0.0011$ (exp./fit) $^{+0.0001}_{-0.0002}$ (model/param.) ± 0.0029 (scale)

- Preferred value at NNLO is smaller that at NLO, as expected from other analyses
- Experimental/fit uncertainty reduced (compared to exp./fit⊗hadr. at NLO), mostly due to improved treatment of hadronisation uncertainty
- Model/parameterisation uncertainty reduced mostly due to symmetrisation of model uncertainties

 α_{s} from HERA

Florian Lorkowski 2025-05-05

Motivation HERAPDF HERA data HERAPDF2.0 Datasets Parameterisation Model parameters Strong coupling Impact on PDFs Jets at ZEUS Summary HERAPDF2.0Jets NLO (scale half correlated)

 $\alpha_{s}(M_{Z}^{2}) = 0.1183 \pm 0.0009$ (exp./fit) ± 0.0005 (model/param.) $\frac{+0.0037}{0.0030}$ (scale) ± 0.0012 (hadr.)

HERAPDF2.0Jets NNLO (scale fully correlated)

 $lpha_{
m s}(M_Z^2) = 0.1156 \pm 0.0011$ (exp./fit) $^{+0.0001}_{-0.0002}$ (model/param.) ± 0.0029 (scale)

HERAPDF2.0Jets NNLO (scale half correlated)

 $\alpha_{\rm s}(M_Z^2) = 0.1156 \pm 0.0011$ (exp./fit) $^{+0.0001}_{-0.0002}$ (model/param.) \pm 0.0022 (scale)

- Preferred value at NNLO is smaller that at NLO, as expected from other analyses
- Experimental/fit uncertainty reduced (compared to exp./fit⊗hadr. at NLO), mostly due to improved treatment of hadronisation uncertainty
- Model/parameterisation uncertainty reduced mostly due to symmetrisation of model uncertainties
- Scale uncertainty significantly reduced (when evaluated similar to NLO)

HERAPDF Impact on PDFs

H1 and ZEUS

- At fixed α_s, PDF central values do not change significantly[†]
- Most notable effect in α_s-free fit: normalisation of gluon distribution increased

[†]See slide A2

HERAPDF Impact on PDFs

α_{s} from HERA

Florian Lorkowski 2025-05-05

Motivation HERAPDF HERA data HERAPDF2.0 Datasets Parameterisation Model parameters Strong coupling Impact on PDFs Jets at ZEUS Summary

- At fixed α_s, PDF central values do not change significantly[†]
- Most notable effect in α_s-free fit: normalisation of gluon distribution increased
- Quark uncertainties similar to the previous fit without jet data
- Gluon uncertainty notably reduced, also due to procedural improvements

[†]See slide A2

Jets at ZEUS Cross-section definition

- α_{s} from HERA
- Florian Lorkowski 2025-05-05
- Motivation HERAPDF Jets at ZEUS Definition Cross sections QED radiation Fit strategy Strong coupling Running coupling Summary
- Inclusive jets (count each jet individually, rather than each event)
- ▶ Use entire HERA II dataset (347 pb⁻¹)
- ▶ Jets clustered using k_⊥ algorithm and p_⊥-weighted scheme (massless jets) in Breit frame
- Phase space

 $\begin{array}{rrrr} 150\,{\rm GeV}^2 < & Q^2 & < 15\,000\,{\rm GeV}^2 \\ 0.2 < & y & < 0.7 \\ 7\,{\rm GeV} < \rho_{\perp,{\rm Breit}} < 50\,{\rm GeV} \\ -1 < & \eta_{\rm lab} & < 2.5 \end{array}$

- Hadron-level jets
- Including electroweak contributions
- QED Born level

Jets at ZEUS

Measured inclusive-jet cross sections

- •ZEUS 347 pb⁻¹ NNLO (grid@scale@PDF@had.) let-energy-scale uncertainty 0.8 0.7 0.6 0.5 P ...Breit (GeV)
- Measured cross sections are compatible with previous measurement from H1 collaboration[†] and uncertainties are comparable[‡]
- Measurements are compatible with NNLO QCD predictions[§]
- Inner error bars: unfolding uncertainty; outer error bars: total uncertainty

[†]EPJC 75, 65 (2015). arXiv:1406.4709

[‡]For both measurements, uncertainties appear larger due to negative correlations

[§]Matrix elements from NNLOJET (JHEP 2017, 18 (2017). arXiv:1703.05977), PDFs: HERAPDF2.0Jets NNLO (EPJC 82, 243 (2022). arXiv:2112.01120)

 (GeV^2)

Jets at ZEUS QED radiation

α_{s} from HERA Trea

- Florian Lorkowski 2025-05-05
- Motivation HERAPDF Jets at ZEUS Definition Cross sections OED radiation Fit strategy Strong coupling Running coupling Summary

Treatment of QED radiation

- Predictions for jet production available at QED Born-level (running coupling included, but no radiative corrections)
- In the data, have initial- and final-state QED radiation, especially on the electron line
- Standard procedure: apply 'correction' to the data, to convert it to QED Born-level
- Usually, this cannot be undone, such that data can only ever be compared to QED Born-level predictions
- This analysis: apply correction in a reversible way and provide additional, alternative correction that facilitates more comprehensive comparisons
- $\rightarrow\,$ Data can be compared to NNLO QCD+NLO EW predictions, when they become available in the future †

QED Born-level

QED radiation

[†]DIS at NLO EW already available: CPC 94, 2 p.128 (1996). arXiv:hep-ph/9511434

Jets at ZEUS Fit strategy

α_{s} from HERA

- Florian Lorkowski 2025-05-05
- Motivation HERAPDF Jets at ZEUS Definition Cross sections QED radiation Fit strategy Strong coupling Running coupling Summary

- Simultaneous fit of PDF parameters and $\alpha_s(M_Z^2)$ at NNLO
- Datasets used
 - HERA combined inclusive DIS[†]
 - ZEUS HERA I inclusive jets at high Q^{2‡}
 - ZEUS HERA I+II dijets at high Q^{2§}
 - ZEUS HERA II inclusive jets at high Q²
- Inclusion of additional jet data is expected to reduce uncertainty of α_s(M²_Z)
- Statistical correlations between ZEUS HERA II jet datasets taken into account via correlation matrix
- Use settings similar to HERAPDF2.0Jets NNLO (parameterisation, scales, cuts, model parameters, treatment of hadronisation and theory grid uncertainty)

arXiv::hep-ex/0208037 §EPJC 70, 965 (2010) arXiv::1010.6167

α_{s} from HERA

Florian Lorkowski 2025-05-05

Motivation HERAPDF Jets at ZEUS Definition Cross sections QED radiation Fit strategy Strong coupling Running coupling Summary

For reference, HERAPDF2.0Jets NNLO found

 $\alpha_{\rm s}(M_Z^2) = 0.1156 \pm 0.0011$ (exp./fit) $^{+0.0001}_{-0.0002}$ (model/param.) ± 0.0029 (scale)

ZEUS analysis

 $\alpha_{\rm s}(M_Z^2) = 0.1143 \pm 0.0017 \text{ (exp./fit)} \stackrel{+0.0006}{-0.0007} \text{(model/param.)} \stackrel{+0.0012}{-0.0005} \text{(scale)}$

- Central value is compatible with HERAPDF and with PDG world average
- Increased experimental uncertainty, due to fewer jet datasets used
- Significantly decreased scale uncertainty, due to absence of low- Q^2 jet data
 - Cross-section scale-dependence assumed as fully correlated between all jet measurements
 - ► When fitting points far away from each other in phase space, the cross-section scale-dependence can be much less correlated or even anti-correlated

α_{s} from HERA

Florian Lorkowski 2025-05-05

Motivation HERAPDF Jets at ZEUS Definition Cross sections QED radiation Fit strategy Strong coupling Running coupling Summary

For reference, HERAPDF2.0Jets NNLO found

 $\alpha_{\rm s}(M_Z^2) = 0.1156 \pm 0.0011$ (exp./fit) $^{+0.0001}_{-0.0002}$ (model/param.) ± 0.0029 (scale)

ZEUS analysis

 $\alpha_{\rm s}(M_Z^2) = 0.1143 \pm 0.0017$ (exp./fit) $^{+0.0006}_{-0.0007}$ (model/param.) $^{+0.0012}_{-0.0005}$ (scale)

- Central value is compatible with HERAPDF and with PDG world average
- Increased experimental uncertainty, due to fewer jet datasets used
- Significantly decreased scale uncertainty, due to absence of low- Q^2 jet data
 - Cross-section scale-dependence assumed as fully correlated between all jet measurements
 - ► When fitting points far away from each other in phase space, the cross-section scale-dependence can be much less correlated or even anti-correlated

α_{s} from HERA

Florian Lorkowski 2025-05-05

Motivation HERAPDF Jets at ZEUS Definition Cross sections QED radiation Fit strategy Strong coupling Running coupling Summary

For reference, HERAPDF2.0Jets NNLO found

 $\alpha_{\rm s}(M_Z^2) = 0.1156 \pm 0.0011$ (exp./fit) $^{+0.0001}_{-0.0002}$ (model/param.) ± 0.0029 (scale)

ZEUS analysis

 $\alpha_{s}(M_{Z}^{2}) = 0.1143 \pm 0.0017$ (exp./fit) $^{+0.0006}_{-0.0007}$ (model/param.) $^{+0.0012}_{-0.0005}$ (scale)

- Central value is compatible with HERAPDF and with PDG world average
- Increased experimental uncertainty, due to fewer jet datasets used
- ▶ Significantly decreased scale uncertainty, due to absence of low-Q² jet data
 - Cross-section scale-dependence assumed as fully correlated between all jet measurements
 - When fitting points far away from each other in phase space, the cross-section scale-dependence can be much less correlated or even anti-correlated

α_{s} from HERA

- Florian Lorkowski 2025-05-05
- Motivation HERAPDF Jets at ZEUS Definition Cross sections QED radiation Fit strategy Strong coupling Running coupling Summary
- Alternative treatment: assume scale dependence is half correlated between all measurements
- Despite absence of low-Q² jet data in the fit, additional reduction is significant

 $lpha_{s}(M_{Z}^{2}) = 0.1143 \pm \dots + \stackrel{0.0012}{_{-0.0005}}$ (scale) \downarrow $lpha_{s}(M_{Z}^{2}) = 0.1142 \pm \dots + \stackrel{0.0006}{_{-0.0006}}$ (scale)

 Reduced scale uncertainty leads to one of the most precise collider measurements of α_s(M²_Z)[†]

- Florian Lorkowski 2025-05-05
- Motivation HERAPDF Jets at ZEUS Definition Cross sections QED radiation Fit strategy Strong coupling Running coupling Summary

- ► Upper panel: \(\chi_2^2(\alpha_s(M_Z^2))\)-scan, alongside result from \(\alpha_s(M_Z^2)\)-free fit \(\to \) excellent agreement\)
- Lower panel: analogous figure from HERAPDF2.0Jet NNLO
- Need better treatment of scale uncertainty, so that we can combine small scale uncertainty from ZEUS with small experimental uncertainty from HERAPDF
- Even more relevant when including EIC data, as this further increases the range in phase space

 α_{s} from HERA

Florian Lorkowski

Motivation HERAPDF

Definition

Cross sections

QED radiation

Strong coupling

Summary

Jets at ZEUS Running coupling

Strong coupling depends on the scale at which it is evaluated. At one-loop:

$$\alpha_{s}(\mu^{2}) = \frac{\alpha_{s}(\mu_{0}^{2})}{1 + \alpha_{s}(\mu_{0}^{2})b_{0}\log\left(\frac{\mu^{2}}{\mu_{0}^{2}}\right)}$$

- 'Measure' this curve to test if QCD is the correct theory to describe the strong interaction
 - Assign each jet point a scale
 - Form subsets of jet points with similar scales
 - For each subset, perform a single-parameter α_s fit using fixed PDFs

Jets at ZEUS Running coupling

- Florian Lorkowski 2025-05-05
- Motivation HERAPDF Jets at ZEUS Definition Cross sections QED radiation Fit strategy Strong coupling Running coupling Summary

Strong coupling depends on the scale at which it is evaluated. At one-loop:

$$\alpha_{\rm s}(\mu^2) = \frac{\alpha_{\rm s}(\mu_0^2)}{1 + \alpha_{\rm s}(\mu_0^2)b_0\log\left(\frac{\mu^2}{\mu_0^2}\right)}$$

- 'Measure' this curve to test if QCD is the correct theory to describe the strong interaction
 - Assign each jet point a scale
 - Form subsets of jet points with similar scales
 - For each subset, perform a single-parameter α_s fit using fixed PDFs
- Observe no deviation from QCD prediction

Summary

α_{s} from HERA

Florian Lorkowski 2025-05-05

Motivation HERAPDF Jets at ZEUS Summary

HERAPDF2.0Jets NNLO[†]

- Completed HERAPDF2.0 family, one of the major legacies of HERA
- Improvements due to additional exp. inputs, procedural changes and transition to NNLO
- A new value of α_s(M²_Z) has been determined with notable reduction of all uncertainties

Inclusive-jet measurement at ZEUS[‡]

- Cross sections are compatible and competitive with corresponding H1 measurement
- Achieved very precise \(\alpha\)s(M²_Z) measurement due to reduced theoretical uncertainty
- Scale dependence of strong coupling found to be consistent with QCD prediction

[†]EPJC 82, 243 (2022). arXiv:2112.01120 [‡]EPJC 83, 1082 (2023). arXiv:2309.02889

Summary Announcement

α_{s} from HERA

- Florian Lorkowski 2025-05-05
- Motivation HERAPDF Jets at ZEUS Summary

- These analyses are only possible due to NNLO QCD corrections to DIS[†]
- Recently: first public release of the NNLOJET code[‡]
- Efficient and easy-to-use tool to compute NNLO cross sections
- Supports single jet and dijet production in neutral-current and charged-current DIS at up to NNLO in QCD

[†]JHEP 2017, 18 (2017). arXiv:1703.05977 [‡]arXiv:2503.22804 https://nnlojet.hepforge.org

Motivation Breit frame

- Single jets may arise purely from QED, which is less interesting for the study of QCD
- ► To suppress these events: require minimum transverse momentum in Breit frame

In the **Breit frame**, the parton and boson collide head-on

Florian Lorkowski 2025-05-05

Motivation Breit frame HERAPDF Jets at ZEUS

 α_{s} from HERA

Florian Lorkowski

Motivation

Breit frame HERAPDF Jets at ZEUS

Motivation Breit frame

- Single jets may arise purely from QED, which is less interesting for the study of QCD
- ► To suppress these events: require minimum transverse momentum in Breit frame

- Lowest order process: produce two jets of equal transverse momentum ("dijet")
- Inclusive jets: count each jet individually; events can contribute multiple times

HERAPDF Updated PDF fit

- Fit performed at fixed α_s(M_Z²) = 0.118, as was used for HERAPDF2.0 NNLO
- As expected, PDF central values do not change significantly when including jet data
- The same effect was already observed at NLO

HERAPDF Goodness of fit

- Cross sections calculated using fitted PDFs are in very good agreement with the input measurements
- Fit achieved a χ^2 /d.o.f. = 1614/1348 = 1.197 (cf. without jets: 1363/1131 = 1.205), indicating that the jets do not introduce additional tension compared to fit with inclusive data only

Jets at ZEUS Simulation

- Reconstructed jets corrected to hadron level via two-dimensional matrix unfolding procedure using response matrices obtained from Monte Carlo samples
 - ARIADNE: colour-dipole model
 - LEPTO: leading-log parton cascade
- After reweighting, the models give a good description of the data across the entire phase space
- Performed cross-check using bin-by-bin correction; results are very consistent

Jets at ZEUS Systematic uncertainties

α_{s} from HERA

Florian Lorkowski 2025-05-05

Motivation HERAPDF Jets at ZEUS Simulation Systematics Correlation matrix

- Systematic uncertainty mostly dominated by jet-energy scale (uncertainty of MC detector simulation)
- In high-p⊥,Breit or high-Q² region, other uncertainties become relevant/dominant
- Unfolding uncertainty appears large in low-statistics region
- Bins with large unfolding uncertainty usually strongly anti-correlated

Jets at ZEUS Correlation matrix

Inclusive-jet bin