Extraction of the Strong Coupling from HERA and EIC inclusive data

Zuhal Seyma Demiroglu (CFNS, Stony Brook University) on behalf of the authors of Eur. Phys. J. C 83, 1011 (2023) May 5, 2025

Extracting the Strong Coupling at the EIC and Other Future Colliders Workshop

Motivation

- The strong coupling is the least precisely known of the fundamental couplings.
 - Critical input for SM precision tests and BSM sensitivity.
 - Current uncertainty dominated by theory limitations, especially at low and moderate Q².
 - DIS-based extractions: limited by scale uncertainties and limited phase space.
 - HERA data alone not sufficient for sub-permille precision.

Why EIC?

- EIC will allow us to probe the non-linear, non-perturbative regime of QCD where mass, spin, and confinement emerge.
- Exploration of gluon saturation at small-*x*, especially in nuclei, where universal behavior is expected.
- EIC covers high-x, moderate-Q² phase space crucial for strong coupling studies.
- Unique facility:
 - Polarized lepton and hadron beams
 - Broad range of beam energies and ion species
 - High luminosity: $\mathcal{L} = 10^{33} 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$

Datasets

HERA data

- H1 and ZEUS combined
 - inclusive DIS NC, CC cross sections [EPJC(2015)75:580]
 - Inclusive jet and dijets measurements [EPJC(2022)82:243]
- Integrated luminosity of 1 fb⁻¹.

EIC (Projected data)

- Simulated data with HERAPDF2.0 NNLO, uncertainties from ATHENA detector proposal [JINST 17 P10019]
- 1 year of data taking. Uncertainties:
 - uncorrelated 1.9% 2.75%,
 - fully correlated normalization 3.4%.

Experiment	Q^2 (GeV ²)	$y = Q^2/sx$ range	\sqrt{s} (GeV)
HERA (NC)	0.045 – 50000	0.005 – 0.95	225, 251, 301, 319
HERA (CC)	200 – 50000	0.037 – 0.76	319
EIC (NC)	100	0.001 – 0.95	29, 45, 63, 105, 141
EIC (CC)	100	0.001 – 0.95	141

Kinematic Coverage

Fit settings for $\alpha_s(M_Z^2)$

- Used HERAPDF20_NNLO_ALPHAS_116 LHAPDF set
- Simultaneous proton PDF and strong coupling fit using xFitter, with minimization provided by MINUIT.
- $Q^2 > 3.5 \text{ GeV}^2$ (ln 1/x resummation issue), $W^2 = Q^2(1-x)/x > 10 \text{ GeV}^2$ (higher twist effects)
- 14 free parameters in the PDF parameterization (HERAPDF2.0 approach)

$$\begin{aligned} xg(x) &= A_g x^{B_g} (1-x)^{C_g} - A'_g x^{B'_g} (1-x)^{25} \\ xu_v(x) &= A_{u_v} x^{B_{u_v}} (1-x)^{C_{u_v}} \Big[1 + E_{u_v} x^2 \Big] \\ xd_v(x) &= A_{d_v} x^{B_{d_v}} (1-x)^{C_{d_v}} \\ x\overline{U}(x) &= A_{\overline{U}} x^{B_{\overline{U}}} (1-x)^{C_{\overline{U}}} (1+D_{\overline{U}} x) \\ x\overline{D}(x) &= A_{\overline{D}} x^{B_{\overline{D}}} (1-x)^{C_{\overline{D}}} \end{aligned}$$

- PDFs are parameterized at a starting scale for QCD evolution of $\mu_{f,0}^2 = 1.9 \text{ GeV}^2$
- Strangeness fraction: $f_s = \frac{x\bar{s}}{x\bar{d}+x\bar{s}} = 0.4$
- QCD fit;
 - α_s scan: Fix α_s , fit PDFs, and scan χ^2 vs α_s
 - Free α_s : simultaneously fit both PDFs and α_s

CFNS Workshop · May 5-7, 2025

Uncertainties

Model Uncertainties

Parameter	Central Value	Downward variation	Upwards variation
Q_{min}^2 [GeV ²]	3.5	2.5	5.0
f_s	0.4	0.3	0.5
M_c [GeV]	1.41	1.37	1.45
M_b [GeV]	4.20	4.10	4.30

Parametrization uncertainties

- Adding additional parameters
- Vary the starting scale, $\mu_{f,0}^2$, by $\pm 0.3 \text{ GeV}^2$

Scale uncertainties

- Vary μ_F and μ_R by a factor of 2.
 - Central scale: $\mu_F^2 = \mu_R^2 = Q^2$ for inclusive DIS, $\mu_F^2 = \mu_R^2 = Q^2 + p_T^2$ for inclusive jet, $\mu_F^2 = \mu_R^2 = Q^2 + \langle p_T \rangle_2^2$ for dijets
- No scale variations for inclusive DIS only.

QCD fits with HERA inclusive DIS + jet data and EIC inclusive DIS

• A simultaneous NNLO fit is performed using HERA inclusive DIS and jet data, and EIC inclusive DIS projections, to extract the PDFs and $\alpha_s(M_Z^2)$.

HERA inclusive DIS + jet data, NNLO: $\alpha_s(M_z^2) = 0.1156 \pm 0.0011 (exp)^{+0.0001}_{-0.0002} (model + param)$ $\pm 0.0029 (scale)$

HERA inclusive DIS + jet data and EIC inclusive DIS, NNLO:

 $\alpha_s(M_z^2) = 0.1160 \pm 0.0004 \ (exp)^{+0.0003}_{-0.0002} (model + param) \\ \pm 0.0005 (scale)$

QCD Fit Using Inclusive DIS data from HERA and EIC

• A simultaneous NNLO fit is performed using inclusive DIS data from HERA and projected measurements from EIC to extract the PDFs and $\alpha_s(M_Z^2)$.

 $\alpha_s(M_z^2) = 0.1159 \pm 0.0004 \ (exp)^{+0.0002}_{-0.0001} (model + param)$

Robustness of $\alpha_s(M_z^2)$ with respect to Q_{min}^2 cuts

• Minimal variation in $\alpha_s(M_z^2)$ across a range of Q_{min}^2 cuts.

CFNS Workshop · May 5-7, 2025

Comparison to other $\alpha_s(M_Z^2)$ **results**

• Using only **inclusive DIS data from HERA and EIC**, we extract $\alpha_s(M_Z^2)$ with **potentially** world-leading precision in a simultaneous NNLO fit of PDFs and strong coupling.

CFNS Workshop · May 5-7, 2025

Scale Uncertainties

- Scale uncertainties arise due to missing higher orders beyond NNLO.
- Expected to be small for inclusive data, generally omitted in global fits.
- Migration to N³LO will reduce these further.
- Global PDF fitting groups (e.g. NNPDF collaboration, arXiv:1906.10698, arXiv:2401.10319) are actively developing systematic frameworks to incorporate MHOUs into global fits.
 - These methodologies are crucial for achieving precision extractions of $\alpha_s(M_Z^2)$ and PDFs.

Our current step: Implementing Theory Uncertainties in xFitter

- Generate theory predictions under scale variations (μ_F and μ_R)
- Build a theory covariance matrix.

$$S_{ij} = \frac{1}{N} \sum_{m=1}^{N} (T_i^{(m)} - T_i^{(0)}) (T_j^{(m)} - T_j^{(0)})$$

- Add to experimental covariance matrix (NNPDF collaboration, arXiv:1002.4407)
- Use in χ^2 minimization in xFitter.

Conclusion

• Precision:

- Including EIC inclusive DIS projected data leads to a total uncertainty below 0.4%.
- This improves the precision of current world averages (both experimental and lattice).

• Theory:

- We are working with global fitting experts to assign a meaningful **scale uncertainty**, accounting for missing higher order contributions (MHOU) beyond NNLO.
- Properly including MHOU will be critical to match this high level of precision.

• Future:

- Adding EIC inclusive jet and dijet pseudodata to the QCD analysis has potential to further improve the strong coupling determination.

♦ Projected EIC data enables sub-0.4% precision in $\alpha_s(M_Z^2)$ – potentially world-leading

Acknowledgements

- We are very grateful to
 - many colleagues in the EIC experimental community for their immense effort in working on all aspects of the project over many years.
 - Néstor Armesto, Andrea Barontini, Thomas Cridge, Stefano Forte, Lucian Harland-Lang, Anna M. Staśto and Robert S. Thorne for their very valuable discussions about the theory uncertainties.
 - Valerio Bertone and Francesco Giuli for their help with the APFEL program.
 - Christopher Schwan for his help with the PineAPPL tool.
 - Alexander Glazov for his help with the xFitter.

Thank You!

Backup