Current analysis on extracting α_{s} from Spin Structure functions at ePIC

- Win Lin
- **Stony Brook University**
- Extracting the Strong Coupling at the EIC and other Future Colliders 05/03/2025

Center for Frontiers in Nuclear Science

Analysis with updated detector design

Analysis with different event generators

CLASDIS

- *ep* polarized DIS for fixed target
 experiment
- Spectators were generate
 separately then re-weighted for
 nuclear effect
- Used DJANGOH for radiative effect

https://doi.org/10.1103/PhysRevD.110.074004

DJANGOH

- *ep* polarized DIS with QED and QCD radiative effect
- For e^3 He, spectators were also

generated separately

https://doi.org/10.1016/j.physletb.2021.136726

 A_1^p from ep DIS:

$$A_1(x, Q^2) \equiv \frac{\sigma_{1/2} - \sigma_{3/2}}{\sigma_{1/2} + \sigma_{3/2}} = \frac{A_{\parallel}}{D(1 + \eta\xi)} - \frac{\eta A_{\perp}}{d(1 + \eta\xi)}$$

-
$$\mathscr{L} = 10 \text{ fb}^{-1}$$
, $P_e = P_n = 70\%$

– Data split evenly between A_{\parallel} and A_{\perp}

$$\delta A_{\parallel,\perp} = \frac{1}{\sqrt{NP_eP_N}}$$

- Bin A_1^n calculated from: Doi: 10.2172/824895
- Statistical uncertainty only, correction not yet applied

	12 (<i>X</i> ^{<i>B</i>})	► $x_B = 0.0001$	<i>ECCE</i> Simulation DJANGOH <i>ep</i> , 10 fb ⁻¹	
	3 × log	$x_B = 0.0002$	 ∮ 5x41 GeV ∮ 10x100 GeV 	
	ן ק ^ר 10 ע	$\Rightarrow \Rightarrow \Rightarrow \Rightarrow x_B = 0.0005$	▶ 18x275 GeV	
		$x_{B} = 0.0008$		

Species	Energy (GeV)	Luminosity/year (fb-1)	Electron polarization	p/A polariz
e+Ru or e+Cu	10 x 115	0.9	NO (Commissioning)	N/A
e+D e+p	10 x 130	11.4 4.95 - 5.33	LONG	NO TRANS
e+p	10 x 130	4.95 - 5.33	LONG	TRANS and/o
e+Au e+p	10 x 100 10 x 250	0.84 6.19 - 9.18	LONG	N/A TRANS and/o
e+Au e+3He	10 x 100 10 x 166	0.84 8.65	LONG	N/A TRANS and/o

A_1^n from e^3 He DIS:

 A_1^n can be extracted indirectly via $A_1^{^{3}\text{He}}$:

$$A_1^n = \frac{1}{P_n} \frac{F_2^{^{3}\text{He}}}{F_2^n} (A_1^{^{3}\text{He}} - 2P_p \frac{F_2^p}{F_2^{^{3}\text{He}}} A_1^p)$$

 $P_p = -0.028 \pm 0.004$

A_1^n from e^3 He DIS:

 A_1^n can be extracted indirectly via $A_1^{^{3}\text{He}}$:

$$A_1^n = \frac{1}{P_n} \frac{F_2^{^{3}\text{He}}}{F_2^n} (A_1^{^{3}\text{He}} - 2P_p \frac{F_2^p}{F_2^{^{3}\text{He}}} A_1^p)$$

~
()
\mathbf{M}
$\mathbf{\nabla}$

	Ē	200
600	y [n	150
00		100
200		50

A_1^n from e^3 He DIS:

$$A_1(x,Q^2) \equiv \frac{\sigma_{1/2} - \sigma_{3/2}}{\sigma_{1/2} + \sigma_{3/2}} = \frac{A_{\parallel}}{D(1 + \eta\xi)} - \frac{\eta A_{\perp}}{d(1 + \eta\xi)}$$

-
$$\mathscr{L} = 8.65 \text{ fb}^{-1}, P_e = P_n = 70\%$$

– Data split evenly between A_{\parallel} and A_{\perp}

$$\delta A_{\parallel,\perp} = \frac{1}{\sqrt{NP_eP_N}}$$

$$A_1^{^{3}\text{He}} = P_n \frac{F_2^n}{F_2^{^{3}\text{He}}} A_1^n + 2P_p \frac{F_2^p}{F_2^{^{3}\text{He}}} A_1^p$$

- Bin A_1^n calculated from: Doi: 10.2172/824895
- $F_2^{^3\text{He}} = F_2^D + F_2^p$, all F_2 's are taken from <u>JAM22</u>
- Correction not yet applied

10

A_1^n in early EIC science

$$A_1(x,Q^2) \equiv \frac{\sigma_{1/2} - \sigma_{3/2}}{\sigma_{1/2} + \sigma_{3/2}} = \frac{A_{\parallel}}{D(1 + \eta\xi)} - \frac{\eta A_{\perp}}{d(1 + \eta\xi)}$$

-
$$\mathscr{L} = 8.65 \text{ fb}^{-1}, P_e = P_n = 70\%$$

– Data split evenly between A_{\parallel} and A_{\perp}

$$\delta A_{\parallel,\perp} = \frac{1}{\sqrt{N}P_e P_N}$$

- Bin A_1 calculated from: Doi: 10.2172/824895
- Statistical uncertainty only, correction not yet applied

11

- $A_1 \approx g_1/F_1$ with F_1 calculated from <u>JAM22</u>
- Statistical + F_1 uncertainties. Other uncertainties and corrections are not yet applied

g_1^p and g_1^n

- $A_1 \approx g_1/F_1$ with F_1 calculated from <u>JAM22</u>
- Statistical + F_1 uncertainties. Other uncertainties and corrections are not yet applied

$$\Gamma_{1}^{p-n} \equiv \int_{0}^{1^{-}} (g_{1}^{p} - g_{1}^{n}) dx$$

https://doi.org/10.1016/j.physletb.2021.136726

Thank you!

https://doi.org/10.1016/j.physletb.2021.136726

