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Javier Jiménez-López (UAH) Extracting the Strong Coupling 2 / 38



The Electron-Ion Collider
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The Electron-Ion Collider

propagator term in the cross section and the modest
integrated luminosity (∼0.5 fb−1 per experiment). The
large x region in global fits is therefore constrained to a
large extent by measurements from fixed target experi-
ments, e.g., BCDMS and NMC [41,42]. However, there are
uncertainties in the theoretical description of the fixed
target data due to their low hadronic final state invariant
masses,4 values where it becomes difficult to disentangle
perturbative corrections from powerlike effects. The EIC is
thus particularly promising in the high x region, where it is
expected to provide data that are both high precision and
theoretically clean.
eA pseudodata were produced analogously, considering

the nucleus to be Au, and per-nucleon integrated luminos-
ities of 4.4 fb−1, 79 fb−1 and 79 fb−1 for 5 × 41 GeV, 10 ×
110 GeV and 18 × 110 GeV, respectively. The locations in
the (x;Q2) kinematic plane of the EIC pseudodata used in
this analysis are shown in Fig. 2, together with shaded areas
representing the regions presently covered and considered
in existing global nPDF fits [13,14]. Note that we are
interested in the uncertainties while the central values are
irrelevant for this study. Therefore, the same PDF set
HERAPDF2.0NNLO [1] used for the proton is employed
for eA, corresponding to a central value of the nuclear

modification factor (defined as the ratio of each parton
density in a proton bound inside a nucleus to that in a free
proton) equal to 1.

III. EIC IMPACT ON PROTON PDFs

A. Comparison with HERA-only PDFs

The results presented in this section are obtained
from global QCD fits at NNLO, performed in the
HERAPDF2.0 framework [1] using xFitter, an open
source QCD fit platform [43]. Fits with identical con-
figurations are performed to HERA data only, corre-
sponding to HERAPDF2.0NNLO in [1], and also with the
additional inclusion of the simulated EIC pseudodata
described in Sec. II. To avoid regions that may be
strongly affected by higher twist or resummation
effects, a cut on the squared hadronic final state
invariant mass, W2¼Q2ð1−xÞ=x> 10GeV2 is included
for the EIC data. No such cut was required in the
HERAPDF2.0NNLO fit as the kinematic range of
the data included there is such that W2 ≳ 270 GeV2.
The central values of the PDFs with and without the EIC
pseudodata coincide by construction, so the uncertainties
can be compared directly.
The impact of the EIC pseudodata on the experimental

uncertainties in the HERAPDF2.0NNLO fits is illustrated
in Figs. 3 and 4. Relative uncertainties are shown for the
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FIG. 1. The locations in the (x;Q2) plane of the HERA (black
solid points) and EIC (open symbols) ep neutral current inclusive
DIS data points included in the analysis.

6�10 5�10 4�10 3�10 2�10 1�10 1

1�10

1

10

210

310

410

510

610

x

)2 (GeV2Q

EIC eAu 18X110 GeV

EIC eAu 10X110 GeV
EIC eAu 5X41 GeV

Present
�DIS+DY+

dAu@
RHIC

pPb@LHC

pPb@LHC

FIG. 2. The locations in the (x;Q2) plane of the eAu EIC
neutral current inclusive DIS data points included in the analysis
(open symbols), compared to the region (hatched areas) covered
at present by DIS and Drell-Yan fixed target experiments on
nuclear targets, and by dijet, electro-weak boson and D-meson
production in pPb collisions at the LHC.

4The hadronic final state invariant mass W is related
to the other standard DIS kinematic variables through W2 ¼
Q2ð1 − xÞ=x.
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The Altarelli-Martinelli relation
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The Altarelli-Martinelli relation

The gluon PDF plays a crucial role in unveiling the inner structure of
the proton.

Even though it is common to obtain it via PDF sets, such as HERAPDF
or NNPDF, there is a deep connection between the longitudinal
structure function FL and xg(x, Q2).
This was formalized by Altarelli and Martinelli. Unfortunately, it is not
exactly solvable but it is approximated by:

xg(x, Q2) ≈ 1.77 3π

2αs(Q2)FL(x, Q2) (1)

Then, we need:
➤ FL extracted at EIC.
➤ The strong coupling constant at different energies.
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Extracting FL at EIC
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Outcome of the DESY 2024 Summer Student Program

Phys. Rev. D 111, 056014
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The longitudinal structure function FL

The reduced cross-section of NC DIS for Q2 ≪ M2
Z is:

σr(x, Q2, y) = F2(x, Q2) − y2

Y+
FL(x, Q2) (2)

where:

➤ x: Bjorken scaling variable,
➤ y: inelasticity,
➤ Q2: virtuality of the process,
➤ Y+ = 1 + (1 − y)2.
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Table 1. Different categories of processes measured at an EIC (Initial state: colliding electron (𝑒), proton
(𝑝), and nuclei (𝐴). Final state: scattered electron (𝑒′), neutrino (𝜈), photon (𝛾), hadron (ℎ), and hadronic
final state (𝑋)). Key kinematic variables are indicated in magenta.

Neutral-current Inclusive DIS: 𝑒+ 𝑝/A −→ 𝑒′+𝑋; for this
process, it is essential to detect the scattered electron, 𝑒′, with
high precision. All other final state particles (𝑋) are ignored.
The scattered electron is critical for all processes to determine
the event kinematics. The key kinematic variable in this
process are 𝑥 and𝑄2where 𝑥 is themomentum fraction of the
quark (w.r.t. the nucleon) on which the photon scatters. 𝑄2

is the squared momentum transfer to the electron 𝑄2 = −𝑞2,
equal to the virtuality of the exchanged photon. Large values
of 𝑄2 provide a hard scale to the process, which allows one
to resolve quarks and gluons in the proton.

p
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x
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⎫
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Charged-current Inclusive DIS: 𝑒+ 𝑝/A −→ 𝜈+𝑋; at high
enough momentum transfer 𝑄2, the electron-quark interac-
tion is mediated by the exchange of a𝑊± gauge boson instead
of the virtual photon. In this case the event kinematic cannot
be reconstructed from the scattered electron, but needs to be
reconstructed from the final state particles. p

e ν

W

X
⎫
⎬
⎭

Semi-inclusive DIS: 𝑒 + 𝑝/A −→ 𝑒′ + ℎ±,0 + 𝑋 , which
requires measurement of at least one identified hadron in
coincidence with the scattered electron.

e eʹ

γ∗
h, …
⎫

⎬
⎭

p X

Exclusive DIS: 𝑒+ 𝑝/A −→ 𝑒′+ 𝑝′/𝐴′+𝛾/ℎ±,0/𝑉𝑀 , which
require the measurement of all particles in the event with
high precision. A key kinematic variable for this process is
𝑡 = (𝑝′− 𝑝)2, the invariant square of the momentum transfer
of the scattered proton or ion, which is crucial for all parton
imaging studies. p

e eʹ

γ∗

h,γ

pʹ

t

– 3 –

As x and Q2 are known ⇒ FL and F2 can be obtained with a linear fit.

This is the well-known Rosenbluth-type separation technique, used by
multiple research groups.
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Pseudo-data simulation
The extraction was done with the 5 main beam configurations:

e-beam energy (GeV) p-beam energy (GeV)
√

s (GeV) Integrated lumi (fb−1)
18 275 141 15.4
10 275 105 100
10 100 63 79.0
5 100 45 61.0
5 41 29 4.4

➤ Reduced cross-sections generated with HERAPDF2.0 NNLO.
➤ Smearing procedure for two different uncertainty scenarios:

➢ Conservative scenario: 1.9 % of correlated systematics and
3.4 % of uncorrelated systematics =⇒ total uncertainty of
3.9 %,

➢ Optimistic scenario: total uncertainty of 1 %.
Note that the uncertainty due to the normalisation between different
beam energies is not considered.
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Example fits
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MC replica method

In order to sample the distribution of possible outcomes for FL values
and uncertainties, 1000 replicas of the data set are analysed.

The method was adapted from: Diffractive longitudinal structure
function at the Electron Ion Collider, Phys. Rev. D 105, 074006

For each pseudo generated data point:
➤ Performed Gaussian smearing 1000 times,
➤ Bins whose absolute uncertainty where larger than 0.3 are not

considered.

➢ This criterion removes around 30 % of the points for the
conservative scenario and 20 % for the optimistic scenario.

➢ These points might be recovered when real data is available.
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Example replicas
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Averaging over MC replicas

In order to get a final measurement of FL and it’s uncertainties, we
apply the following averaging procedure:

v = S1 / N

(∆v)2 = S2 − S2
1 / N

N − 1

(3)

where:

Sn =
N∑

i=1
vn

i (4)

and vi stands for extracted value of FL in the i-th MC replica.
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FL averaged over 1000 MC replicas
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FL uncertainties with the MC replica method

Conservative scenario Optimistic scenario

Great precision on FL measurements, further improved by the
optimistic scenario
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FL(Q2): comparison with HERA

HERA and EIC data cannot be directly compared (x is very different for
both).
However, we can compare uncertainties (plots are in the same scale):
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Possible beam energy configurations at EIC

Ep [GeV]
41 100 120 165 180 275

E
e

[G
eV

] 5 29 45 49 57 60 74
10 40 63 69 81 (85) 105
18 54 85 93 109 114 141

➤ S-5 is the baseline and is illustrated in green,
➤ S-9 is obtained by adding the red values,
➤ S-17 is obtained by adding the rest except for 10 × 180 [GeV2].
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Possible improvements

➤ FL measurements will improve significantly with more beam
configurations available.

➤ The greatest improvement comes from reducing the uncertainties
rather than adding more beam energies.
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The strong coupling constant αs
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The strong coupling constant αs

The strong coupling constant can be calculated as a function of the
energy scale µ, in the MS renormalization scheme, solving the
following differential equation:

µ2 d

dµ2 α
(nf )
s (µ) = −

∑
i≥0

β
(nf )
i

α
(nf )
s (µ)

π

i+2

(5)

where nf is the number of active flavours and the coefficients β
(nf )
i

have been taken from: Phys. Rev. Lett. 118, 082002.

The initial condition to solve the ODE was:

αs(µ = MZ) = 0.1180 ± 0.0009 (6)

One might also find this paper interesting: RunDec: a Mathematica package
for running and decoupling of the strong coupling and quark masses
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5-loop order αs(µ)
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Javier Jiménez-López (UAH) Extracting the Strong Coupling 23 / 38



Results for the gluon density xg(x, Q2) at EIC
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xg(x, Q2) at EIC
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Figure 10:The gluon densityxg(x,Q2) averaged overx in the region1.5 ≤ Q2 ≤ 800 GeV2

(solid points). The average value ofx for eachQ2 is given above each data point. The inner
error bars represent the statistical uncertainties, the full error bars include the statistical and
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tainties. The shaded regions represent the prediction fromthe HERAPDF1.5 NLO QCD fit. The
dashed line corresponds toxg as obtained by applying equation8 to theFL prediction based on
the HERAPDF1.5 NLO QCD fit.
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Conservative scenario 5-loop correction results

δ xg(x, Q2) = 3
2

1.77π

αs(Q2)

√
α2

s(Q2) (δFL)2 + F 2
L (δαs(Q2))2 (7)

The results for xg(x, Q2) are still preliminary and a final version will be
given in the future
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Early measurements of FL at EIC
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FL with only 1 fb−1 (Full HERA statistics)
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FL averaged bins for low luminosity (conservative
scenario)
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FL uncertainties for low luminosity
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Note: only measurements whose uncertainty is lower than 0.3 are
shown.

As more configurations are added, the phase space region where the
uncertainties are under our threshold grows
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FL averaged over x for low luminosity
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Even with a restricted amount of beam configurations, FL can be
precisely extracted at EIC
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Kinematic phase space for low luminosity
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Considered energies Con FL Opt FL Con LL Opt LL
5 × 100, 10 × 100 and
10 × 275 [GeV2]

65 + 79 90 + 54 66 + 78 90 + 54

5×100, 10×100, 10×275
and 18 × 275 [GeV2]

99 + 78 128 + 49 101 + 76 127 + 50

5×41, 5×100, 10×100,
10 × 275 and 18 × 275
[GeV2]

137 + 58 156 + 39 134 + 61 157 + 38

In the table, green stands for measurements whose uncertainty is
lower than 0.3 and red for those whose uncertainty is higher than 0.3.

The measurements with uncertainties higher than our threshold might
be recovered once we have real experimental data or by extracting FL

using (y, Q2) bins instead
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Conclusions and final remarks

The upcoming Electron–Ion Collider (EIC) will revolutionize our ability
to probe the longitudinal structure function and, through it, the gluon
content of the proton. In particular:

➤ EIC will extract FL with unprecedented precision across a vast,
previously unexplored kinematic domain,

➤ FL measurements will, provide an almost direct determination of
the gluon density xg(x, Q2),

➤ FL measurements will be possible even in the first few years of
operation if we have, at least, three different configurations
available.
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Thank you for your time !

Please, feel free to email me if you have further
questions: javier.jimenezlopez240203@gmail.com
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Obtaining FL as a function of Q2

To obtain FL(Q2), an average was made over x of FL for the 1000 MC
samples.
The average value of FL was obtained as:

FL =
∑N

i=1 ωiF
(i)
L∑N

i=1 ωi

,

where ωi are the weights defined as:

ωi = 1[
∆F

(i)
L

]2 .

Then, the uncertainty for FL is:

δavg =
√

1∑N
i=1 ωi

.

The same procedure was applied to x using the weights already
calculated for FL.
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Decoupling relation in the MS scheme

As the Appelquist-Carazzone decoupling theorem does not hold the
MS scheme, the decoupling must be done ”by hand” every time the
number of active flavours changes during the calculation.

α
(nf −1)
s (µ0) = ζ2

g α
(nf )
s (µ0)

(
ζMS

g

)2
= 1 + α

(nf )
s (µ)

π

(
−1

6L

)
+
(

α
(nf )
s (µ)

π

)2(
11
72 − 11

24L + 1
36L2

)

+
(

α
(nf )
s (µ)

π

)3 [
564731
124416 − 82043

27648ζ3 − 955
576L + 53

576L2

− 1
216L3 + (nf − 1)

(
− 2633

31104 + 67
576L − 1

36L2
)]

with L = log
(

µ2
0

m2
h

)
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β
(nf )
i coefficients

β
(nf )
0 = 1

4

[
11 − 2

3nf

]
,

β
(nf )
1 = 1

16

[
102 − 38

3 nf

]
,

β
(nf )
2 = 1

64

[2857
2 − 5033

18 nf + 325
54 n2

f

]
,

β
(nf )
3 = 1

256

[
149753

6 + 3546ζ3 +
(

−1078361
162 − 6508

27 ζ3

)
nf

+
(50065

162 + 6472
81 ζ3

)
n2

f + 1093
729 n3

f

]
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β
(nf )
i coefficients

β
(nf )
4 = 1

45

{8157455
16 + 621885

2 ζ3 − 88209
2 ζ4 − 288090ζ5

+ nf

[
−336460813

1944 − 4811164
81 ζ3 + 33935

6 ζ4 + 1358995
27 ζ5

]
+ n2

f

[25960913
1944 + 698531

81 ζ3 − 10526
9 ζ4 − 381760

81 ζ5

]
+ n3

f

[
−630559

5832 − 48722
243 ζ3 + 1618

27 ζ4 + 460
9 ζ5

]
+n4

f

[1205
2916 − 152

81 ζ3

]}
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