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FLAG = FLavour Lattice Averaging Group

Effort by the international lattice QCD community to provide the wider high
energy physics community with lattice results for quantities of phenomenological
interest, satisfying clearly defined quality criteria

Original focus was on flavour physics, but now FLAG includes also sections on
αs, nucleon matrix elements and scale setting.

FLAG website: flag.unibe.ch

FLAG has 31 members in 8 WG’s, membership by invitation, FLAG aims to
have representatoin from the main collaborations.
Working group on αs: L. Del Debbio, P. Petreczky and S. Sint

Reports appear every 2-3 years; FLAG requires acceptance by/publication in a
peer reviewed journal by a cutoff date; for FLAG 2024 this was 30 April 2024;
Possibility of occasional web updates (by section), if there are significant new
results.

FLAG 2024 report: https://arxiv.org/abs/2411.04268

FLAG 2021 report: https://arxiv.org/abs/2111.09849,
published in Eur. Phys. J. C 82 (2022) 10, 869

N.B. Anyone using FLAG results should cite the original sources which enter the
relevant average.

flag.unibe.ch
https://arxiv.org/abs/2411.04268
https://arxiv.org/abs/2111.09849
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FLAG 2024 plots
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Some general observations on determinations of αs(mZ)

FLAG 24 average: αs(mZ) = 0.1183(7), the uncertainty is 0.6%

All but one determinations: Nf = 2 + 1, combined with 4-loop matching across
charm and bottom thresholds

A 1% error on αs requires ∆Λ(Nf=3)
MS

< 5%

⇒ isospin breaking due to electromagnetism & mu 6= md is not yet relevant for αs!

All but 2 categories affected predominantly by systematics, in particular:

Perturbative truncation errors: requires µ� ΛMS

continuum limit: requires µ� 1/a

Note: given the very good quantitative perturbative description of decoupling across
charm and bottom threshold [cf. Athenodorou et al (ALPHA ’18)] the determination
of αs is equivalent to a non-perturbative result for the Λ-parameter with Nf = 3, 4
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Reminder: definition of effective coupling, αeff

Starting point for all αs determinations: Euclidean short distance quantity Q, that

can be measured in a lattice simulation

has a perturbative expansion, Q = c0 + c1α+ c2α2 + . . ..

We associate an effective coupling to Q, by normalizing

αeff = (Q− c0)/c1

Advantage: no need to refer to a particular scale, αeff is measured, possibly after
chiral and continuum extrapolations (exception: couplings at 1/a, e.g. from
small Wilson loops).

Loop counting: Relate to the MS scheme:

αeff = αMS + d1α
2
MS

+ d2α
3
MS

+ d3α
4
MS

+ . . .

If dk are known up to k = nl the loop order is nl. Currently best cases have
nl = 3 (plus partial information on nl = 4 for static potential/force)
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FLAG qualilty criteria for αs (unchanged since FLAG 2019)

Renormalization scale

F all points in the analysis have αeff < 0.2

◦ all points have αeff < 0.4 and at least 1 with αeff < 0.25

� otherwise

Continuum limit: at a reference point of αeff = 0.3 (or less) require

F three lattice spacings with µa < 1/2 and full O(a) improvement, or three lattice
spacings with µa ≤ 1/4 and 2-loop O(a) improvement, or µa ≤ 1/8 and 1-loop
O(a) improvement

◦ three lattice spacings with µa < 3/2 reaching down to µa = 1 and full O(a)
improvement, or three lattice spacings with µa ≤ 1/4 and 1-loop O(a)
improvement

� otherwise

plus convention for µ in different quantities (e.g. µ = q in momentum space
observables, or µ = 1/L for step-scaling)

Perturbative behaviour: assessed in terms of the Λ-parameter, s. below.
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The QCD Λ-parameter vs. αs(µ) = ḡ2(µ)/4π

The coupling αs(µ) can be traded for its associated Λ-parameter:

Λ = µϕ(ḡ(µ)) = µ
[
b0ḡ

2(µ)
]− b1

2b20 e
− 1

2b0ḡ2(µ) exp
{
−
∫ ḡ(µ)

0
dg

[ 1
β(g)

+
1

b0g3 −
b1

b20g

]}
exact solution of Callan-Symanzik equation:

(
µ ∂
∂µ

+ β(ḡ) ∂
∂ḡ

)
Λ = 0

Number Nf of massless quarks is fixed.

If the coupling ḡ(µ) non-perturbatively defined so is its β-function!

β(g) has asymptotic expansion β(g) = −b0g3 − b1g5 − b2g7..

b0 = (11− 2
3Nf)/(4π)2, b1 = (102− 38

3 Nf)/(4π)4, . . .

b0,1 are universal, scheme-dependence starts with 3-loop coefficient b2.

Scheme dependence of Λ almost trivial:

g2
X(µ) = g2

Y(µ) + cXYg
4
Y(µ) + ... ⇒

ΛX
ΛY

= ecXY/2b0

⇒ can use ΛMS as reference (even though the MS-scheme is purely perturbative!)
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The QCD Λ-parameter and αs(µ) = ḡ2(µ)/4π

Λ = µϕ(ḡ(µ)) = µ
[
b0ḡ

2(µ)
]− b1

2b20 e
− 1

2b0ḡ2(µ) exp
{
−
∫ ḡ(µ)

0
dg

[ 1
β(g)

+
1

b0g3 −
b1

b20g

]}
Continuum relation, exact at any scale µ:

require large µ to evaluate integral perturbatively
require small µ to match hadronic scale

⇒ problem of large scale differences:

The scale µ must reach the perturbative regime: µ� Λ
lattice cutoff must still be larger: µ� a−1

spatial volume must be large enough to contain pions: L� 1/mπ

Taken together a naive estimate gives

L/a� µL� mπL� 1 ⇒ L/a ' O(103)

⇒ widely different scales cannot be resolved simultaneously on a single lattice!
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FLAG criterion on perturbative behaviour

Λ-parameter in mass-independent renormalization scheme:

ΛMS = µϕ (ḡ(µ))

ϕ (ḡ) =
[
b0ḡ

2
]− b1

2b20 e−
1

2b0ḡ2 exp
{
−
∫ ḡ

0
dg

[ 1
β(g)

+
1

b0g3 −
b1

b20g

]
︸ ︷︷ ︸

=I[ḡ;β]

}

At large µ, use β-function truncated to nl loops (β(nl), with known bnl−1)

I[g;β]
g→0
' I[g, β(nl)] +O

(
g2nl)

)
⇒ Λestimated

MS
/ΛMS = 1 +O (αnl (µ))

Perturbative behaviour

F verified over a range of a factor 4 change in αnleff (= parametric uncertainty in Λ)
without power corrections or alternatively αnleff < 1

2 ∆αeff/(8πb0α2
eff) is reached.

∆Λ|∆α = ∆α
∂Λ
∂α

=
2π∆α
−gβ(g)

Λ ≈
∆α

8πb0α2 Λ

◦ verified over a range of a factor (3/2)2 change in αnleff possibly fitting with
power corrections or alternatively αnleff < ∆αeff/(8πb0α2

eff) is reached.

� otherwise
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The step scaling solution

Widely different scales cannot be resolved simultaneously on a single lattice

⇒ break calculation up in steps [Lüscher, Weisz, Wolff ’91; Jansen et al. ’95]:
1 define ḡ2(L) that runs with the space-time volume, i.e. µ = 1/L
2 construct the step-scaling function

σ(u) = ḡ
2(2L)

∣∣
u=ḡ2(L)

for a range of values u ∈ [umin, umax]
3 iteratively step up/down in scale by factors of 2:

ḡ
2(Lmax) = umax ≡ u0, uk = σ(uk+1) = ḡ

2(2−kLmax), k = 0, 1, ...

4 match to hadronic input at a hadronic scale Lmax, i.e. FKLmax = O(1)
5 once arrived in the perturbative regime Lpert = 2−nLmax one now knows
un = ḡ2(Lpert); determine LpertΛ and combine to obtain Λ/FK .
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Lattice approximants Σ(u, a/L) for σ(u)

choose g0 and L/a = 4, measure
ḡ2(L) = u (this sets the value of u)

double the lattice and measure

Σ(u, 1/4) = ḡ2(2L)

now choose L/a = 6 and tune g′0
such that ḡ2(L) = u is satisfied

double the lattice and measure

Σ(u, 1/6) = ḡ2(2L)

σ(u) = lima/L→0 Σ(u, a/L).

change u and repeat...
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Continuum limit σ(u) = lima/L→0 Σ(u, a/L)
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Non-perturbative running of αs in Nf = 3 QCD
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Result for Λ

The Λ-parameter can now be evaluated at a very high perturbative scale µPT
with µhad/µPT known (a power of 2 if related by step-scaling).

The remaining uncertainty is parametrically ∝ α2(µPT) if the β-function is

known to 3-loop order

Note: observation of this dependence requires data over a large range of scales,
so that α2 varies significantly!

The result
Λ(3)

MS
= 341(12)MeV

translates to αs(mZ) = 0.11852(84) (with 4-loop matching across charm and
bottom thresholds)
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ΛMS from vacuum polarization, Cali 20

CA,V(x) =
∑
µ

〈
JµA,V(x)JµA,V(0)

〉
=

6
π4(x2)3

(
1 + α

π
+O(α2)

)

αeff(µ = 1/|x|) = π[(x2)3(π4/6)CA,V(x)− 1]

use |x| = 0.13− 0.19 fm, CLS, lattice spacings a = 0.039− 0.076 fm,
αeff = 0.235− 0.308, extrapolated to chiral limit.

Non-perturbatively O(a) improved with 3 lattice spacings at
µ−1 = |x| = 0.13fm with aµ < 1/2 and αeff ≈ 0.3

⇒ F for continuum extrapolation

HOWEVER: 1-loop subtraction (using NSPT) of hypercubic lattice artifacts
crucial!
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ΛMS from light quark current 2-point functions in position space (Cali 20)

Result ΛNf=3
MS

= 342(17) MeV from weighted average over |x| = 0.13− 0.19 fm:

Apply FLAG criteria:

Perturbative behaviour: α3
eff covers a range of 2.2 close to (3/2)2. Also the

error ∆αeff ≈ 4− 6% are comfortably larger than the relative parametric
uncertainty of Λ, with the stronger criterion still ok, so F

Renormalization scale: αeff reaches 0.235 < 0.25 ⇒ ◦
Conclusion: F in continuum limit and perturbative behaviour and ◦ for the
renormalization scale.
⇒ passes all FLAG criteria!
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Discussion of Cali 20 and vacuum polarization category

Nevertheless the error estimate seems rather optimistic:

Cali 20 show that vector and axial vector correlators yield compatible results
within errors

⇒ absence of chirality breaking effects, however, one may expect other
non-perturbative effects at these low energies.

Cali 20 convert to the αMS by solving numerically the truncated expansion

αeff(µ = 1/|x|) = α
MS

(µ) + c1α
2
MS

(µ) + c2α
3
MS

(µ) + c3α
4
MS

(µ)

If one instead inverts perturbatively, one obtains ΛMS in the range
409− 468 MeV, i.e. 15− 30% higher!

The difference decreases roughly proportionally to the expected α3
eff.

FLAG decision for pre-range of vacuum polarization category:

Systematic error as the difference 54 MeV between ΛMS estimates at
µ = 1.5 GeV

⇒ take Λ(3)
MS

= 342(54) MeV as range for vacuum polarization. ,
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FLAG estimate for αs
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ΛMS = 338(10) MeV ⇒ αs(mZ) = 0.1183(7)
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Summary FLAG 2024

From FLAG 2021 to FLAG 2024 estimate moves slightly from αs = 0.1184(8)
to αs = 0.1183(7), with error reduction due to the decoupling method.

The current FLAG criteria (unchanged since FLAG 2019) are not very stringent,
as the example of Cali 20 illustrates.

In addition to the FLAG criteria, scale variations were performed, as a further
way to assess perturbative truncation errors (cf. review by Del Debbio and
Ramos ’20).

Systematic errors dominate most result, mainly due to using perturbation theory
at low scales.

⇒ some improvement might come from using elements of the step-scaling solution
or similar ideas.

Decoupling method works very well: non-perturbative decoupling of Nf = 3
quarks in combination with step-scaling in the Nf = 0 theory (s. below).

⇒ Side effect of the decoupling method: need for reliable results for Nf = 0 (pure
SU(3) gauge theory) which acquire physical significance (cf. FLAG 2024 report).



22/ 40

ALPHA’s new results since FLAG 2024: arXiv:2501.06633 [hep-ph]

Work in collaboration with M. Dalla Brida, R. Höllwieser, F. Knechtli, T. Korzec,
A. Ramos, R. Sommer:

Significant update and improvement of ALPHA 17 (step-scaling with Nf = 3)

Step scaling at low energy: larger lattice sizes at selected values
⇒ improved control over continuum limit

Improved treatement of O(a) boundary effects in SF coupling (high energy
running)
hadronic scale setting much improved.

Significant update and improvement of ALPHA 22 (decoupling Nf = 3→ 0 &
step scaling with Nf = 0)

Complete elimination of a major O(am) uncertainty (bg-counterterm
determination).
Common scale setting with Nf = 3 step-scaling

Overlap due to common scale setting is small

⇒ Combine results!
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Decoupling across charm and bottom thresholds

Step scaling method for Λ(3)
MS

completely avoids the use of perturbation theory
at low energy. PT is used only at O(100) GeV & can be tested over a wide
range.

The result is Λ(3)
MS
/µhad in terms of a hadronic scale µhad.

But αs(mZ) requires to get from Nf = 3 to Nf = 5 across charm and bottom
thresholds! ⇒ How good is PT for this step?

Standard matching procedure known to 4 loops and converges very well: use
5-loop β-function and 4-loop decoupling relations at µ = m? = m̄(m?) for
m?c = 1.275 GeV and m?b = 4.171 GeV; reduce loop order one by one.

scale variations by a factor 2 give similar uncertainties.

3 4 5

0.1175

0.1180

0.1185

0.1190

0.1195

Order

α
s
(m

Z
)

Total error in αs(mZ)

References: [Bernreuther and Wetzel ’82;
Grozin et al. ’11; Chetyrkin et al.’05; Schröder
and Steinhauser ’05; Kniehl et al. ’06; Gerlach,
Herren and Steinhauser ’18]
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Non-perturbative effects of decoupling of charm

[Athenodorou et al.(ALPHA) ’18]

PT assumes that power corrections ∝ Λ2
MS
/M2 are small.

These terms are observable-dependent, not universal!

Non-perturbative test in the charm region, decoupling from Nf = 2 to Nf = 0,
with 2 different quantities.

⇒ Slopes are very small, effect on ΛMS of order of 0.05% per quark of charm mass;

Allow for 10 times larger non-perturbative charm decoupling effects; still
negligible compared to total error!

0.0 0.1 0.2 0.3 0.4 0.5 0.6

2.80

2.85

2.90

2.95

3.00

(Λ(2)/M)2

L
1
/S

(M
)
×

1
/P

(Λ
/M

)

S = w0

Fit
S =

√
t0

Fit
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Decoupling of heavy quarks

Consider QCD with Nf = 3 heavy quarks of RGI mass M

M = ms(µ)
[
2b0ḡ2

s(µ)
]− d0

2b0 exp

−
ḡs(µ)∫
0

[
τs(x)
βs(x) −

d0
b0x

]
dx

 ,

with ms(µ) the running mass in scheme s.

At scales µ�M , the fundamental theory (Nf = 3-flavour QCD) can be
described by an effective theory, Nf = 0 QCD (i.e. pure Yang-Mills theory):

ḡ
(3)
s (µ/Λ(3)

s ,M) = ḡ
(0)
s (µ/Λ(0)) + O(µ2/M2) , (1)

in PT this leads to

[ḡ(0)
MS

(µ)]2 = C

(
ḡ

(3)
MS

(m?)
)

[ḡ(3)
MS

(m?)]2, m? = m
MS

(m?),

and for µ = m? one finds C(x) = 1 + c2x4 + c3x6 + c4x8 + . . . .

Reformulation with P = ϕ
(0)
MS

(
g?
√
C(g?)

)
/ϕ

(3)
MS

(g?), g? = g
(3)
MS

(m?):

Λ(3)
MS
µdec

=
Λ(0)

MS

Λ(0)
s

× lim
M/µdec→∞

ϕ
(0)
s

(
ḡ

(3)
s (µdec,M)

)
P

(
M
µdec

/
Λ(3)

MS
µdec

)
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Coupling definitions

Set-up such that it benefits from various previous projects: running quark mass
[Campos et al ’18], Nf = 3 coupling [ALPHA’17]

Definition of massless renormalized couplings: use gradient flow GF scheme in
finite volume

ḡ2
GF(µ) = N−1

3∑
k,l=1

t2〈tr {Gkl(t, x)Gkl(t, x)} δQ,0〉
〈δQ,0〉

∣∣∣∣∣
x0=T/2, c=

√
8t/L

µ=1/L,T=L,M=0

use both T = L (GF scheme) and T = 2L (GFT scheme) with projection to
topological charge Q = 0 sector (part of scheme definition)

1-parameter families of schemes, parameter c =
√

8t/L

T = 2L chosen to suppress both cutoff effects linear in a and large mass effects
linear in 1/M from Euclidean time boundaries.
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Numerical set-up

Lines of constant physics:

ḡ2
GF(µdec) = 3.949 ⇒ µdec = 789(15)MeV

Varying L/a = 1/(aµdec) between L/a = 12− 48 defines a sequence of values
β = 6/g2

0 ∈ [4.3, 5.2]

Define range of values z = M/µdec ∈ {1.972, 4, 6, 8, 10, 12} up to O(a2) effects
(non-trivial!) and find corresponding bare mass values.

At these values of the bare parameters choose T = 2L and compute the
couplings in a massive scheme

ḡ
(3)
GFT,c(µdec, z)

require aM to be small and z = ML = M/µdec � 1

⇒ potentially a difficult multiscale problem; using µ = 1/L alleviates part of it.
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O(a) improvement, rôle of bg

Lattice QCD with Wilson quarks is affected by lattice artefacts of O(a), due to
explicit chiral symmetry breaking.

⇒ can be restored by tuning the corresponding counterterms in the action and
composite fields

In particular amqtr(FµνFµν) rescales the bare gauge coupling g2
0 With

mq = m0 −mcr(g2
0), the O(a) improved bare coupling is

g̃2
0 = g2

0(1 + bg(g2
0)amq),

and the O(a) improved RGI mass can be written as

M = ZM (g̃2
0)mq(1 + bm(g2

0)amq), ZM =
M

m(µ)︸ ︷︷ ︸
RG running

×Zm(g̃2
0 , aµ)

Variation of the quark mass at fixed lattice spacing at fixed g̃2
0 . This requires bg,

given to 1-loop order by,

bg(g2
0) = 0.01200×Nfg

2
0 + O(g4

0)

⇒ in ALPHA ’22 we assumed an uncertainty of bg of the same size as the one-loop
term.
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Continuum extrapolations
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Data for z = M/µdec ∈ {1.972, 4, 6, 8, 10, 12} (here with c = 0.36), extrapolated to
a = 0 using

individual fits for each z-value (bg-uncertainty not included in error bars):

ḡ2(zi, a) = Ci + pi [αMS(a−1)]Γ̂(aµdec)2

fit form motivated by Symanzik expansion with RG improvement
[Balog et al. ’09; Husung et al.’19]

2 cuts in (aM)2 < 0.16, 0.25, fits are carried out for various Γ̂ ∈ [−1, 1] (lines in
plot for Γ̂ = 0.
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Continuum extrapolations
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Data for z = M/µdec ∈ {1.972, 4, 6, 8, 10, 12} (here with c = 0.36), extrapolated to
a = 0 using

global fits (bands in plot, contain bg-uncertainty);

ḡ2(zi, a) = Ci + p1[αMS(a−1)]Γ̂(aµdec)2 + p2[αMS(a−1)]Γ̂
′
(aMi)2 .

fit form motivated by Symanzik and large mass expansions.

2 cuts in (aM)2 < 0.16, 0.25, with fixed Γ̂ ∈ [−1, 1] and Γ̂′ ∈ [−1/9, 1]

z = 1.972 seems to be at the edge of large mass regime; precautioniary
measure: cut z > 2 and include z = 1.972 with different slope parameter
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Combining with pure gauge theory results [Dalla Brida & Ramos ’19]

The continuum values of the massive couplings g(3)
GFT(µdec,M) can now be

matched with the corresponding g(0)
GFT(µdec), up to power corrections 1/M .

The step-scaling procedure in pure gauge theory gives us the function ϕ(0)
GF(g)

Λ(0)
MS
µdec

=
Λ(0)

MS

Λ(0)
GF

× ϕ(0)
GF

(
ḡ

(0)
GF (µdec)

)
.

⇒ requires matching GFT,c with the T = L, c = 0.3 scheme GF

ḡ
(0)
GF(µ) = χc

(
ḡ

(0)
GFT,c(µ)

)
⇒ define g = χc

(
ḡ

(3)
GFT,c(µ,M)

)
as input to ϕ(0)

GF(g)

Combining all this at µ = µdec, solve equation for target ρ,

ρ× P (z/ρ)︸ ︷︷ ︸
PT + O

(
α4

MS
(m?)

) =
Λ(0)

MS
µdec

, ρ =
Λ(3)

MS,eff

µdec
=

Λ(3)
MS
µdec

+ O(1/z2)

Corrections O(1/z) from boundaries strongly suppressed due to T = 2L.
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Decoupling limit extrapolation
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Extrapolate continuum results for z →∞:

Λ(3)
MS, eff

= Λ(3)
MS

+
B

z2

[
αMS(m?)

]Γ̂m
Extrapolation at

fixed c ∈ [0.3, 0.42] (here c = 0.36)

fixed Γ̂m ∈ [0, 1] (here Γ̂m = 0, variation with Γ̂m is used as error estimate)
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Result from decoupling, ALPHA ’22
Our best estimate:

Λ(3)
MS

= 336(10)(6)bg (3)Γ̂mMeV = 336(12)MeV ⇒ αs(mZ) = 0.11823(84)

Total error is of the same size as in ALPHA ’17 (341(12)MeV)

only 28% common (squared) error with ALPHA ’17 ⇒ combine:
Λ(3)

MS
= 339.5(9.6) ⇒ αs(mZ) = 0.1184(7) (statistics dominated!)

Clear path to further error reduction:

Improve determination of Λ(0)
MS
/µdec

Improve physical scale setting from CLS ensembles
Improve continuum extrapolation of SSF at low energies
Non-perturbative determination of bg

⇒ all these improvements are done or underway.
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Improvement 1: ALPHA 17 SSF for GF coupling (low energy running)

old data: significant cutoff effects, small lattices (L/a = 8) given smaller weight:
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Improvement 1: ALPHA 17 SSF for GF coupling (low energy running)

with new data from ALPHA coll. HQET project (courtesy Fritzsch, Kuberski,
Heitger): very nice confirmation & improvement of old continuum extrapolations!
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Nonperturbative result for bg, ALPHA ’24



37/ 40

Improvement 2. The continuum extrapolation of massive couplings
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Previous determination, ALPHA ’22

Most of error from estimate of
bg − b1−loop

g

This is a systematic!

Even so, error in ḡ2(µ,M) was
subdominant (assuming 100
percent error on 1-loop bg).

NP determination of bg (ALPHA ’24)

Much more precise continuum
values

Completely removes largest
systematic effect in αs from the
decoupling method.
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Scale setting (cf. 2501.06633 [hep-ph] for references)

Match to the gradient flow scale
√
t0, as determined by all major collaborations in

terms of mΩ, Fπ , FK , . . .: Define: ḡ2(µhad) = 11.31 and determine (with√
t0/t?0 = 1.0003(30) and

√
t0 = 0.1434(18)fm)

t?0 × µhad = 0.146(11)⇒ µhad = 200.5(3.0) MeV,

0.142 0.144 0.146 0.148
RBC/UKQCD14B

RQCD22

CLS21

BMW12A

CalLat20A

MILC15

HPQCD13A

ETM21

Nf = 2 + 1

Nf = 2 + 1 + 1

√
t?0 [fm]

Used Uncertainty
Weighted Average
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Conclusions

Re-analysis with major improvements by the ALPHA collaboration

Updated/improved Nf = 3 step-scaling result: Λ(3)
MS

= 347(11) MeV

⇒ corroborated earlier continuum extrapolations, new scale determination

Decoupling result with major improvement: Λ(3)
MS

= 341.9(9.6) MeV Eliminated
main source of systematic errors (bg), better scale determination

Combined result, taking into account correlation from common scale setting

Λ(3)
MS

= 343.9(8.4) MeV ⇒ αs(mZ) = 0.11872(56) [0.47%]

⇒ error is 0.47% while still being statistics dominated!

Some further error reduction still feasible:

Reduce error in Nf = 0 step-scaling; straightforward, just needs to be done.
Some error reduction in Nf = 3 step-scaling at high energies (significant
computational costs!)
The scale setting error is chosen generously to cover all values from the
literature, which show some inconsistencies at the level of the quoted errors. This
situation should be resolved by the wider lattice community!

Substantial error reduction requires a thorough re-evaluation; only sensible if the
total error remains statistics dominated!
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Question to the perturbative QCD and experimental communities:

Determination of a fundamental parameter such as αs(mZ) in many different
ways is important;

Question: Can we learn more from the data, by changing perspective?

What if the value αs(mZ) = 0.11872(56) by ALPHA coll. were used as input
parameter?

Advantages:

Small error, statistics dominated, easy to propagate.
Error is completely uncorrelated to other collider data entering e.g. the pdf’s; full
data sets can be used.

One could study non-perturbative effects, test factorization assumption and
constrain pdf’s.


