

xFitter N³LO fits

S. Glazov, Stony Brook University, May 2025

What is xFitter

Quantitative comparison of the data and QCD predictions aimed to determine theory parameters involves a number of steps. **xFitter** binds them together.

Status of xFitter project

- xFitter
- Project is in active development on https://gitlab.cern.ch/fitters/xfitter
 - Stable release 2.2.0 ("future freeze")
 - Nightly "master" branch built is validated vs several public results
 - Nightly docker image

docker run -it gitlab-registry.cern.ch/fitters/xfitter:master bash

- Many updates of the functionality and productivity
 - Added interfaces to ploughshare, hoppet, PineAPPL, CIJET
 - Added N³LO FONLL for APFEL++, updates of DYTurbo interface
 - Numerical improvements: parallel derivatives in CERES, parallel profiling, parallel asymmetric Hessian uncertainties evaluation (based on J. Pumlin *Phys.Rev.D* 65 (2001) 014013)

Example analyses for the last year

Many analyses using xFitter in the last year. Examples are SMEFT analysis of Z boson couplings using forward-backward DY production at LHC (EPJC 84 (2024) 1277) and CMS analysis of inclusive jet production to extract α_s (arXiv:2412.16665)

Analysis of DIS data at N³LO: settings

Model variations:			
q^2_{0}	1.9±0.2		
q ² _{min}	3.5±1.0		
m _c	1.47±0.06		
m _b	4.50±0.25		
f _s	0.40±0.08		

HERAPDF2.0 parameterisation: $xg(x,\mu_0^2) = A_g x^{B_g} (1-x)^{C_g} - A'_g x^{B'_g} (1-x)^{C'_g}$ $xu_v(x,\mu_0^2) = A_{u_v} x^{B_{u_v}} (1-x)^{C_{u_v}} \left[1 + E_{u_v} x^2 \right]$ $xd_v(x,\mu_0^2) = A_{d_v} x^{B_{d_v}} (1-x)^{C_{d_v}}$ $x\bar{u}(x,\mu_0^2) = A_{\bar{u}} x^{B_{\bar{u}}} (1-x)^{C_{\bar{u}}} \left[1 + D_{\bar{u}} x \right]$ $x\bar{d}(x,\mu_0^2) = A_{\bar{d}} x^{B_{\bar{d}}} (1-x)^{C_{\bar{d}}} \quad xs(x,\mu_0^2) = x\bar{s}(x,\mu_0^2) = r_s x\bar{d}(x,\mu_0^2) \qquad r_s = \frac{f_s}{1-f}$ Alternative gluon parameterisation: $xf(x,\mu_0^2) = A x^B (1-x)^C \left[1 + Dx + Ex^2 \right] \left[1 + F \log x + G \log^2 x + H \log^3 x \right]$

- HERAI+II inclusive (arXiv:1506.06042) and charm+bottom data (arXiv:1804.01019)
- N³LO evolution as implemented in APFEL (arXiv:1708.00911) (based on code in HOPPET, arxiv:0804.3755)
- **Exact** (DESY 24--037) and approximate N³LO matching conditions provided to HOPPET and implemented in APFEL (benchmark: arXiv:2404.15711)
- FONLL VFNS implemented in xFitter, checked with fortran APFEL for N²LO

Determination of the PDFs using HERA data

At HERA photon exchange dominates, the best PDF determined is *u(x)*.

At low x, contribution of c(x) is sizable too (up to 30% of F_2)

Gluon is measured from q^2 dependence of the structure function F_2

Lower accuracy at high *x*, *d*_v(*x*) and *u*_v(*x*) separated using charged-current data

N³LO with approx. matching vs N²LO and N¹LO

- Implement approximate N³LO based on arXiv:2207.04739
- Similar pattern as observed in the past: N³LO gluon is more negative at low x for the starting scale, χ^2 /dof is the worst.

N³LO with approximate matching uncertainties

Approximate matching conditions have uncertainties for transition matrix elements. Large impact on gluon/charm due to $-2000 < a_{gg,H} < -700$ $A_{gg,H}^{(3)} = A_1 \ln^2(1-x) + A_2 \ln(1-x) + A_3 x^2 + A_4 \ln x + A_5 x + a_{gg,H} \frac{\ln x}{x}$

Exact N³LO vs approximate N³LO

_			Preliminary	
$\begin{cases} Q^2 = 1.9 \text{ GeV}^2 \\ \cancel{M} \text{ N3LO} \\ (\cancel{M} \text{ N3LO} \\ ((\cancel{M} \text{ N3LO} \\ (((\cancel{M} \text{ N3LO} \\ (((\cancel{M} \text{ N3LO} \\ (((((((M) \text{ N3LO} \\ (((((M) \text{ N3LO} \\ (((((M) \text{ N3LO} \\ (((((M) \text{ N3LO} \\ ((((((M) \text{ N3LO} \\ ((((((M) \text{ N3LO} \\ ((((((((M) \text{ N3LO} \\ ((((((((((((((((((((((((((((((((((($	$ \begin{array}{c} 0.4 \\ Q^2 = 3.0 \text{ GeV}^2 \\ $	Dataset	N3LO	aN3LO
4 AN3LO_aggH1	H aN3LO_aggH1	HERA1+2 NCep 82	20 66 / 70	68 / 70
aN3LO_aggH2	0.2 algebra and algebra al	HERA1+2 NCep 40	50 222 / 204	215 / 204
		HERA1+2 CCep	48 / 39	48 / 39
	0.1	HERA1+2 NCem	224 / 159	223 / 159
		HERA1+2 CCem	59 / 42	61 / 42
-2		HERA1+2 NCep 52	75 215 / 254	215 / 254
		HERA1+2 NCep 92	20 471 / 377	476 / 377
Preliminary	Preliminary	Correlated χ^2	106	103
	-0.2	Log penalty χ^2	+9.9	+14
$\begin{bmatrix} - & - & - & - & - & - & - & - & - & - $	10^{-4} 10^{-3} 10^{-2} 10^{-1} 1	Total χ^2 / dof	1422 / 1131	1422 / 1131

Fit using exact N³LO matching conditions, shown with full experimental plus model uncertainties. Large difference vs aN³LO central fit for the gluon and charm, however within uncertainties of aN³LO. Fit quality to the data is about the same

Compare xc(x) vs q^2 between approximate and exact N³LO (for the same PDFs), exact N³LO fit and N²LO fit. Significant differences at low x

N¹LO, N²LO vs N³LO with exact matching

Fits with alternative gluon parameterisation, consistent results to HERAPDF style. N³LO gluon is the hardest, also largest at small *x*. For x=0.01, all orders agree.

Comparison to most accurate √s=920 GeV data

All fixed-order fits do not describe data very well at lowest x/highest inelasticity y, with N³LO improving slightly vs N²LO. For intermediate Q², N³LO is further above the data, driving increase in correlated χ^2

Heavy flavour uncertainties

Additional uncertainties arise from approximate treatment of massive coefficient functions. Implemented based on arXiv:2401.12139. In addition, extra uncertainties from numerical approximations of splitting functions (small).

 \rightarrow significant uncertainty due to small-x parameter variation, dominant compared to other sources.

F₂ charm predictions (N2LO and N3LO)

		Preliminary	
Dataset	N ³ LO	N ² LO	N^2L0 (fortranAPFEL)
HERA c	41 / 47	50 / 47	50 / 47
HERA b	15/26	20 / 26	20 / 26
Correlated χ^2	43	61	61
Log penalty χ^2	+8.6	-5.35	-5.34
Total χ^2 / dof	108 / 59	125 / 59	125 / 59
χ^2 p-value	0.00	0.00	0.00

- Compare predictions of the N2LO and N3LO fit to the inclusive data vs charm from combined H1ZEUS analysis arXiv:1804.01019
- Better χ^2 /dof for the N³LO fit

N³LO pdfs with full uncertainties

0.04 0.02

-0.02

-0.04

-0.06 -0.08

10-4

Preliminary

 10^{-2}

10⁻¹

 10^{-3}

- charm and bottom data, including model and theory uncertainties.
- Leading model uncertainty: *m_c* variation

$N^{3}LO$ uncertainties at $Q^{2} = M_{7}^{2}$

At higher scales, large uncertainties for valence quarks at low *x*. Significant theory uncertainty for gluon at x < 0.01. Charm and bottom uncertainties stem from m_c and m_B variations

Comparison to aN³LO sets

Comparison with NNPDF4.0 and MSHT20an3lo sets show large disagreements. The sets agree for u_v only. For d_v , xFitter set deviates, while for g and c, MSHT set is an outlier. For b, NNPDF deviates from the other sets.

Impact on predictions at the LHC

Predictions at NLO, N²LO and N³LO for *ggH, Z* computed using **n3loxs** (arXiv:2209.06138). PDF uncertainties for N³LO include theory uncertainties

 \rightarrow good convergence for *H*, not so good for *Z*

Summary and Outlook

- xFitter
- DIS-only analysis with consistent N³LO for the evolution and coefficient functions
- First analysis including exact matching conditions
- Residual uncertainties from heavy flavour coefficient functions
- Visible impact on PDFs and predictions for the LHC
- \rightarrow further studies including effect of small *x* resummation

Uncertainties of small x masive coefficient function

Low x uncertainties in heavy flavour coefficient structure functions lead to sizable variation of F_2^{cc} and F_2^{bb} structure functions. In the FONLL prescription, important for sub-threshold regions.