

Spin overview

Yoshitaka Hatta BNL/RIKEN BNL

Polarized-ion meeting, March 10-12, 2024, CFNS

Contents

- Longitudinal spin
- Transverse spin
- GPD
- BSM connections

An Assessment of U.S.-Based Electron-Ion Collider Science

Committee on U.S.-Based Electron-Ion Collider Science Assessment

Board on Physics and Astronomy

Division on Engineering and Physical Sciences

A Consensus Study Report of

The National Academies of SCIENCES • ENGINEERING • MEDICIN

Finding 1: An EIC can uniquely address three profound questions about nucleonsprotons—and how they are assembled to form the nuclei of atoms:

- How does the mass of the nucleon arise?
- How does the spin of the nucleon arise?
- What are the emergent properties of dense systems of gluons?

EIC: the world's first polarized ep collider

Unprecedented kinematical coverage for polarized DIS.

High luminosity, high polarization

Tremendous physics opportunities for spin-related topics

Light ions can also be polarized.

Longitudinal spin

The proton spin problem

The proton has spin ½.

The proton is not an elementary particle.

$$\stackrel{\bullet}{\rightarrow} \quad \frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta G + L^q + L^g$$
$$= \frac{1}{2}\Delta\Sigma + L^q_{kin} + J_g$$

Jaffe-Manohar sum rule

 $\Delta\Sigma=1$ in the naïve quark model

$\Delta\Sigma\,$ from polarized DIS

 μ^{-}

Longitudinal double spin asymmetry in polarized DIS

`Spin crisis'

In 1987, EMC (European Muon Collaboration) announced a very small value consistent with zero

$\Delta \Sigma = 0.12 \pm 0.09 \pm 0.14$!?

Recent value from NLO QCD global analysis

$$\Delta \Sigma = 0.25 \sim 0.3$$

Evidence of nonzero gluon helicity
$$\Delta G = \int_0^1 dx \Delta G(x)$$

A major achievement of the RHIC spin program!

$$\int_{0.05}^{1} dx \Delta G(x, Q^2 = 10 \text{GeV}^2) = 0.20_{-.07}^{+.06} \qquad \text{DSSV}$$
$$\int_{0.05}^{0.2} dx \Delta G(x, Q^2 = 10 \text{GeV}^2) = 0.17 \pm 0.06 \qquad \text{NNPDF}$$
$$\int_{0.05}^{1} dx \Delta G(x, Q^2 = 10 \text{GeV}^2) = 0.23 \pm 0.03 \qquad \text{JAM}$$

Huge uncertainty from the small-x region \rightarrow EIC Renewed interest in the small-x resummation of helicity PDFs

Regge intercept at small-x, revisited

Bartels, Ermolaev, Ryskin (1996)

Borden, Kovchegov (2023)

$$\Delta \gamma_{GG}^{BER}(\omega) = \frac{4\,\bar{\alpha}_s}{\omega} + \frac{8\,\bar{\alpha}_s^2}{\omega^3} + \frac{56\,\bar{\alpha}_s^3}{\omega^5} + \frac{504\,\bar{\alpha}_s^4}{\omega^7} + \dots$$
$$\Delta \gamma_{GG}^{us}(\omega) = \frac{4\,\bar{\alpha}_s}{\omega} + \frac{8\,\bar{\alpha}_s^2}{\omega^3} + \frac{56\,\bar{\alpha}_s^3}{\omega^5} + \frac{496\,\bar{\alpha}_s^4}{\omega^7} + \dots$$

Discrepancy at 4-loops!

$$\Delta q(x), \Delta G(x) \sim \frac{1}{x^{\alpha}}$$

$$\alpha_{BER} \approx 3.664 \sqrt{\frac{\alpha_s N_c}{2\pi}} \qquad \alpha_{BK} \approx 3.661 \sqrt{\frac{\alpha_s N_c}{2\pi}}$$

NNLO global analysis for helicity PDF

Borsa, Stratmann, Vogelsang, de Florian, Sassot (2024)

TABLE I. Partial and total χ^2 obtained in the fits						
	Total	DIS	SIDIS	pp-jets	pp-pions	pp-W
NLO	627.2	302.7	127.6	111.1	63.5	22.3
NNLO	607.5	294.3	122.9	104.0	66.0	20.3
Data points	673	368	114	91	78	22

of the integrals. Remarkably, when combining the two contributions according to their role for the proton spin, one finds a result approaching 1/2 toward lower x_{\min} .

An elephant in the room: Orbital angular momentum

$$\frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta G + L^q + L^g$$

No experimental measurement of OAM so far Spin sum rule cannot be complete without understanding OAM

Helicity is not a conserved quantity. Even if OAM is zero at one scale, it is nonzero at other scales.

$$\frac{d}{d\ln Q^2} \left(\frac{1}{2} \Delta \Sigma(Q^2) + \Delta G(Q^2) + L_q(Q^2) + L_g(Q^2) \right) = 0$$

What exactly is OAM in QCD?

$$L = x \times p$$

canonical momentum
$$-i\partial^{\mu}$$

kinetic momentum $-iD^{\mu}$

Canonical OAM Jaffe, Manohar (1990)

$$\Delta L_q = \frac{1}{2E(2\pi)^3 \delta^3(0)} \left\langle p_{\infty}^0, s^0 \middle| \int \mathrm{d}^3 x \, i \psi^\dagger (\mathbf{x} \times \nabla)^3 \psi \middle| p_{\infty}^0, s^0 \right\rangle,$$

$$\Delta L_g = \frac{1}{2E(2\pi)^3 \delta^3(0)} \left\langle p_{\infty}^0, s^0 \middle| \int \mathrm{d}^3 x \, \mathrm{Tr} \{ E^k (\mathbf{x} \times \nabla)^3 A^k \} \middle| p_{\infty}^0, s^0 \right\rangle.$$

Originally formulated in the light-cone gauge Gauge invariant completion of the Jaffe-Manohar sum rule established.

OAM at small-x

Suppose a quark emits a very soft gluon.

Nothing happens to the quark.

From angular momentum conservation, gluon's helicity and OAM must cancel.

$$\frac{d}{d\ln Q^2} L_g(x) = \frac{\alpha_s}{2\pi} \int_x^1 \frac{dz}{z} (-2C_F + \cdots) \Delta q(x/z)$$
$$\frac{d}{d\ln Q^2} \Delta G(x) = \frac{\alpha_s}{2\pi} \int_x^1 \frac{dz}{z} (+2C_F + \cdots) \Delta q(x/z)$$

Helicity-OAM cancellation at small-x

If
$$\Delta G(x) \sim \frac{1}{x^{\alpha}}$$
, then $L_g(x) \approx -\frac{2}{1+\alpha} \Delta G(x)$

EIC may find a sizable contribution to ΔG from the small-x region.

If so, there will be even larger L_g from the same x-region with an opposite sign.

Can EIC seriously address OAM?

Accessing OAM at the EIC: Kovchegov, Manley (2024) Longitudinal double spin asymmetry in diffractive dijet

$$L^z \sim b_\perp \times k_\perp$$

 $d\sigma^{h_p h_l} \sim h_p h_l \cos(\phi_{l_\perp} - \phi_{\Delta_\perp}) \operatorname{Re}(iA_L^{2*}A_T^{3i} - iA_T^{2i*}A_L^3)$

Bhattacharya, Boussarie, YH (2022,2024);

Nuclear magic number

 $\frac{3s}{2d}$

1g

 $\begin{array}{c} 2d_{3/2} \ 4\\ 3s_{1/2} \ 2\\ 1g_{7/2} \ 8\\ 2d_{5/2} \ 6 \end{array}$

 $1g_{9/2} \ 10 \ 50$

Spin-orbit coupling

Interaction between the spin and orbital angular momentum of the same particle

Quark spin-orbit correlation

Polarized quark GTMD

Meissner, Metz, Schlegel (2008)

$$\tilde{f}_{q}(x,\xi,k_{\perp},\Delta_{\perp}) = \int \frac{d^{3}z}{2(2\pi)^{3}} e^{ixP^{+}z^{-}-ik_{\perp}\cdot z_{\perp}} \langle p's' | \bar{q}(-z/2)W_{\pm}\gamma^{+}\gamma_{5}q(z/2) | ps \rangle$$

$$= \frac{-i}{2M} \bar{u}(p's') \left[\frac{\epsilon_{ij}k_{\perp}^{i}\Delta_{\perp}^{j}}{M^{2}} G_{1,1}^{q} + \frac{\sigma^{i+}\gamma_{5}}{P^{+}} (k_{\perp}^{i}G_{1,2}^{q} + \Delta_{\perp}^{i}G_{1,3}^{q}) + \sigma^{+-}\gamma_{5}G_{1,4}^{q} \right] u(ps)$$

Quark spin-orbit correlation

$$C_q = \int dx \int d^2 k_\perp \frac{k_\perp^2}{M^2} G_{1,1}^q(x,k_\perp,0) \sim \langle S^z L^z \rangle \qquad \text{Lorce, Pasquini (2011)}$$

 $C_q > 0 \,\,$ if helicity and OAM are aligned, $\,\,\,C_q < 0 \,\,$ if they are anti-aligned

Twist structure of spin-orbit correlation

YH, Schoenleber (2024)

$$C_{q}(x) = x \int_{x}^{\epsilon(x)} \frac{dx'}{x'^{2}} x' \Delta q(x') - x \int_{x}^{\epsilon(x)} \frac{dx'}{x'^{2}} q(x')$$

$$-x \int_{x}^{\epsilon(x)} dx_{1} \int_{-1}^{1} dx_{2} \frac{\Psi_{qF}(x_{1}, x_{2})}{x_{1} - x_{2}} P \frac{3x_{1} - x_{2}}{x_{1}^{2}(x_{1} - x_{2})}$$

$$-x \int_{x}^{\epsilon(x)} dx_{1} \int_{-1}^{1} dx_{2} \tilde{\Psi}_{qF}(x_{1}, x_{2}) P \frac{1}{x_{1}^{2}(x_{1} - x_{2})},$$

$$C_{g}(x) = x \int_{x}^{\epsilon(x)} \frac{dx'}{x'^{2}} x' \Delta G(x') - 2x \int_{x}^{\epsilon(x)} \frac{dx'}{x'^{2}} G(x') - 4x \sum_{q} \int_{x}^{\epsilon(x)} \frac{dx'}{x'^{3}} \int dX \tilde{\Psi}_{qF}(X, x') + 4x \int_{x}^{\epsilon(x)} dx_{1} \int dx_{2} P \frac{\tilde{N}_{F}(x_{1}, x_{2})}{x_{1}^{3}(x_{1} - x_{2})} + 4x \int_{x}^{\epsilon(x)} dx_{1} \int dx_{2} \frac{N_{F}(x_{1}, x_{2})}{x_{1}^{3}(x_{1} - x_{2})} P \frac{2x_{1} - x_{2}}{x_{1} - x_{2}}$$

2 spin sum rules, 2 momentum sum rules!

Spin
$$\frac{1}{2} = \frac{1}{2} \sum_{q} (A_{q+\bar{q}} + B_{q+\bar{q}}) + \frac{1}{2} (A_g + B_g)$$
 Ji (1996)
 $= \frac{1}{2} \Delta \Sigma + \Delta G + L_q + L_g$ Jaffe, Manohar (1990)

Momentum

$$1 = \sum_{q} A_{q+\bar{q}} + A_{g}$$
 Feynman (1969)
$$= -3C_{q}^{(2)} - \frac{3}{2}C_{g}^{(2)} + \frac{3}{2}\int_{-1}^{1} dx dx' \left[\Lambda_{q}(x,x') + \frac{2x\tilde{\Lambda}_{q}(x,x') + \tilde{\Lambda}_{G}(x,x')}{x - x'}\right]$$
 YH, Schoenleber (2024)

Spin-orbit correlation at small-x

Bhattacharya, Boussarie, YH (2024)

$$\frac{i}{x} \int \frac{d^3 z}{(2\pi)^3 P^+} e^{ixP^+ z^- - ik_{\perp} \cdot z_{\perp}} \langle p' | 2 \text{Tr}[W_+ \tilde{F}^{+\mu}(-z/2) W_{\pm} F^+_{\ \mu}(z/2)] | p \rangle = -i \frac{\epsilon_{ij} k^i_{\perp} \Delta^j_{\perp}}{M^2} C_g^{[+\pm]}(x,\xi,k_{\perp},\Delta_{\perp}),$$

Approximate $e^{ixP^+z^-} pprox 1$ (eikonal approximation)

$$C_g(x) = -G(x)$$
 g $C_q(x) = -\frac{1}{2}q(x)$ $q_{-\frac{1}{2}}^{+1}$

Quantum entanglement of spin and OAM

Bhattacharya, Boussarie, YH (2024)

$$s^z=\pm 1$$
 qubit (Alice) $l^z=\pm 1$ qubit (Bob)

Perfect spin-orbit anti-correlation at small-x \rightarrow **`Bell states'**

$$|\Psi^{+}\rangle = \frac{1}{\sqrt{2}} \left(|+\rangle_{s}|-\rangle_{l} + |-\rangle_{s}|+\rangle_{l}\right), \qquad |\Psi^{-}\rangle = \frac{1}{\sqrt{2}i} \left(|+\rangle_{s}|-\rangle_{l} - |-\rangle_{s}|+\rangle_{l}\right)$$

Every single quark and gluon at small-x is a maximally entangled Bell state

$$\langle S^z \rangle = \langle L^z \rangle = 0$$
 but $\langle S^z L^z \rangle = -1$

Quantum entanglement of the spin and orbital angular momentum of photons using metamaterials

new platform for quantum optics. We present the use of a dielectric metasurface to generate entanglement between the spin and orbital angular momentum of photons. We demonstrate the genera-

In QCD, maximal entanglement is a default property of soft partons!

Transverse spin

Transverse Single Spin Asymmetry (SSA)

Quest for a phase

Find part of the cross section linear in spin $\vec{S} \rightarrow \text{interference}$ terms

Naively purely imaginary, vanish after adding the c.c. part

An extra factor of $\,i\,$ is needed to make the asymmetry nonzero.

Origins of SSA

Collinear factorization

- Efremov-Teryaev-Qiu-Sterman function
- Twist-three fragmentation functions
- Three-gluon correlator
-

kt factorization

- Sivers function
- Collins function
-

$$\frac{1}{k^2 + i\epsilon} = \frac{\mathcal{P}}{k^2} - \frac{\mathbf{i}}{\kappa} \delta(k^2)$$

Global analysis of SSA

At the moment, the only viable way to generate O(10%) asymmetry seems to be twist-3 FFs convoluted with the transversity distribution.

→ Constraints on the nucleon tensor charge. connection to nucleon EDM Cammarota, Gamberg, Kang, Miller, Pitonyak, Prokudin, Rogers, Sato (2020)

Simultaneous fit of

e+e- (BELLE, BaBar, BESIII) SIDIS (COMPASS, HERMES, Jlab) ← input from EIC in future Drell-Yan (COMPASS, STAR) pp (STAR, PHENIX, BRAHMS)

Folklore

"Perturbative QCD contribution to SSA is negligible because it's proportional to the quark mass"

$$A_N \sim \alpha_s \frac{m_q}{p_T \operatorname{or} \sqrt{s}} \sim 10^{-4}$$

No real pQCD calculation beyond this parametric estimate for 40 years.

pQCD contribution to SSA at the EIC

Benic, YH, Kaushik, Li (2021, 2024)

GPD

Generalized Parton Distribution (GPD)

Off-forward generalization of PDF Muller, Robaschik, Geyer, Dittes, Horejsi (1994)

$$P^{+} \int \frac{dy^{-}}{2\pi} e^{ixP^{+}y^{-}} \langle P'S' | \bar{\psi}(0) \gamma^{\mu} \psi(y^{-}) | PS \rangle$$

$$= H_{q}(x, \Delta) \bar{u}(P'S') \gamma^{\mu} u(PS) + E_{q}(x, \Delta) \bar{u}(P'S') \frac{i\sigma^{\mu\nu} \Delta_{\nu}}{2m} u(PS)$$
Integrate over $x \rightarrow$ elemag form factors $F_{1,2}$
Multiply by x and integrate over $x \rightarrow$ gravitational form factors
$$\langle P' | \bar{\psi} \gamma^{+} iD^{+} \psi | P \rangle = \langle T_{q}^{++} \rangle$$
Fourier transform $\Delta_{\perp} \leftrightarrow b_{\perp}$
 \rightarrow 2D distribution of partons in impact parameter space

1.0

0.5 x

Proton spin from GPDs

$$J_{q,g} = \frac{1}{2} \int_0^1 dx x (H_{q,g}(x) + E_{q,g}(x))$$

GPD from Deeply Virtual Compton Scattering (DVCS) and other exclusive processes

$$i \int d^4 y e^{iqy} \langle P' | T\{J^{\mu}(y)J^{\nu}(0)\} | P \rangle$$

= $g_{\perp}^{\mu\nu} \int \frac{dx}{2} \left(\frac{1}{x+\xi-i\epsilon} + \frac{1}{x-\xi+i\epsilon} \right) H_q(x,\xi,\Delta) \bar{u}(P')\gamma^+ u(P) + \cdots$

EIC offers an unprecedented kinematical coverage for DVCS. Rapid theory progress in precision Braun, Schoenleber,...

Extraction of GPD E's, especially gluon GPD $E_g(x)$ challenging

GPD E_g from J/ψ single spin asymmetry

 $A_N \sim \frac{Im(\mathcal{H}_g^* \mathcal{E}_g)}{|\mathcal{H}_g|^2}$

Koempel, Kroll, Metz, Zhou (2012) Lansberg, Massacrier, Szymanowski, Wagner (2018)

Will be measured by the STAR collaboration in UPC Can be continued at the EIC

BSM connections

Electric dipole moment (EDM)

If nonvanishing, both P and CP are violated. CKM mechanism gives a too small value of nucleon EDM,

CP violation from BSM physics? Various CP-violating operators studied

Theta term

. . .

$$\frac{\partial \alpha_s}{8\pi} F \tilde{F}$$

- Quark EDM operator $m_q ar{\psi}_q F^{\mu
 u} \sigma_{\mu
 u} i \gamma_5 \psi_q$
- Weinberg operator $f_{abc}\tilde{F}^a_{\mu\nu}F^{\mu\rho}_bF^{\nu}_{c\rho}$

EDM is a vector, must be proportional to nucleon spin Any connection to high energy QCD spin physics at EIC?

Lepton electric/magnetic dipole moment from SSA

Beam spin asymmetry in $e^{\uparrow}p \rightarrow eX$

Very small SM backgrounds

Constraints on SMEFT parameters relevant to electron electric/magnetic dipole moments

$$\mathcal{O}_{eW} = (\bar{l}\sigma^{\mu\nu}e)\tau^{I}\varphi W^{I}_{\mu\nu},$$
$$\mathcal{O}_{eB} = (\bar{l}\sigma^{\mu\nu}e)\varphi B_{\mu\nu},$$

Boughezal, de Florian, Petriello, Vogelsang (2023)

Weinberg operator $f_{abc}\tilde{F}^a_{\mu\nu}F^{\mu\rho}_bF^{\nu}_{c\rho}$ contribution to EDM

Bigi, Uraltsev (1991)

Reducible contribution

$$d_{p,n} \sim \mu_{p,n} \frac{\langle p' | w \mathcal{O}_W | p \rangle}{m_N \bar{u}(p') i \gamma_5 u(p)}$$

Connecting Weinberg operator to higher-twist effect in polarized DIS YH (2021)

Exact identity

$$gf_{abc}\tilde{F}^{a}_{\mu\nu}F^{\mu\alpha}_{b}F^{\nu}_{c\alpha} = -\partial^{\mu}(\tilde{F}_{\mu\nu}\overleftrightarrow{D}_{\alpha}F^{\nu\alpha}) - \frac{1}{2}\tilde{F}_{\mu\nu}\overleftrightarrow{D}^{2}F^{\mu\nu}$$

$$\langle p'|\mathcal{O}_W|p\rangle \approx i\Delta^{\mu}\langle p|\bar{\psi}g\tilde{F}_{\mu\nu}\gamma^{\nu}\psi|p\rangle + \cdots$$

-4

This matrix element enters the twist-4 correction in polarized DIS Shuryak, Vainshtein (1982)

First moment of g1

$$\int_{0}^{1} g_{1}^{p,n}(x,Q^{2}) dx = (\pm \frac{1}{12}g_{A} + \frac{1}{36}a_{8})(1 - \frac{\alpha_{s}}{\pi} + \mathcal{O}(\alpha_{s}^{2})) + \frac{1}{9}\Delta\Sigma(1 - \frac{33 - 8N_{f}}{33 - 2N_{f}}\frac{\alpha_{s}}{\pi} + \mathcal{O}(\alpha_{s}^{2})) \\ - \frac{8}{9Q^{2}} \Big[\{\pm \frac{1}{12}f_{3} + \frac{1}{36}f_{8}\} \left(\frac{\alpha_{s}(Q_{0}^{2})}{\alpha_{s}(Q^{2})}\right)^{-\frac{\gamma_{NS}^{0}}{2\beta_{0}}} + \frac{1}{9}f_{0} \left(\frac{\alpha_{s}(Q_{0}^{2})}{\alpha_{s}(Q^{2})}\right)^{-\frac{1}{2\beta_{0}}(\gamma_{NS}^{0} + \frac{4}{3}N_{f})} \Big],$$

,

An estimate of EDM

reducible contribution

$$d \sim \mu \frac{\langle p' | w \mathcal{O}_W | p \rangle}{m_N \bar{u}(p') i \gamma_5 u(p)}$$

 f_0 from instanton model. Balla, Polyakov, Weiss (1998)

$$-12w' e \text{ MeV} < d_p < -32w' e \text{ MeV}$$
 $22w' e \text{ MeV} < d_n < 8.4w' e \text{ MeV}$

Can we extract f_0 at the EIC? New physics may be hidden in higher twist effects

YH (2021)

Polarized Ion opportunities

- Polarized EMC effect
- New PDFs for spin-1 nuclei $b_1(x)$
- Spatial imaging

$\cos(2\Phi)\,$ asymmetry in exclusive J/psi production

Mantysaari, Salazar, Schenke, Shen, Zhao (2024)

 \rightarrow Talk by Ian

Summary

- •Spin is one of the core science cases of EIC
- •Impressive progress in precision calculations with helicity PDFs.
- •OAM is the key to complete the spin sum rule. Lagging far behind in both theory and experiment. Real challenge at the EIC.
- •Unique opportunities for BSM physics sensitive to spin
- Even richer physics with polarized nuclei

Backup

Physical meaning of the new momentum sum rule

YH, Schoenleber (2024)

$$1 = -3C_q^{(2)} - \frac{3}{2}C_g^{(2)} + \frac{3}{2}\int_{-1}^{1} dx dx' \left[\Lambda_q(x, x') + \frac{2x\tilde{\Lambda}_q(x, x') + \tilde{\Lambda}_G(x, x')}{x - x'}\right]$$

kinetic energy potential energy

$$\langle p'|\bar{q}\gamma^+F^{+i}q|p\rangle \approx i\Delta^i \int dxdx'\Lambda_q(x,x')$$

Transverse force & potential

$$F_a^{+i} = \frac{1}{\sqrt{2}} (\vec{E} + \vec{v} \times \vec{B})_a^i$$

color Lorentz force
Burkardt (2008)

$$\tilde{F}_a^{+i} = -\frac{1}{\sqrt{2}} (\vec{B} - \vec{v} \times \vec{E})_a^i$$

dual color Lorentz force

Force \rightarrow gradient of a potential

$$\frac{3}{2}\int dxdx'\Lambda_q(x,x') = \int d^2b_{\perp}V_q(b_{\perp})$$

0.8 0.6 0.4 0.2

° p

-0.6

-0.8