# Search for Exotic Glue in Nuclei

Gluonic Transversity in Polarized DIS

J. Maxwell



Polarized Ion Sources & Beams for the EIC Stony Brook, NY March 10th, 2025



### Outline

 Double Helicity-Flip Structure Function Lattice Calculations Measurement Approaches
Jefferson Lab Measurement JLab Polarized Target
Gluonometry at the EIC Polarized Ion Beams



### Outline

 Double Helicity-Flip Structure Function Lattice Calculations Measurement Approaches
Jefferson Lab Measurement JLab Polarized Target
Gluonometry at the EIC Polarized Ion Beams



• Understanding glue is a key challenge of NP and central goal of EIC

#### Studying gluons is tricky

- Gluon does not couple to photon
- Probed indirectly by electron scattering from nuclei



- A nuclear glue effect, free from contributions of any nucleon, could offer invaluable view of nuclear structure
- "Nuclear Gluonometry" (Jaffe, Manohar, 1989) offers a probe sensitive only to gluonic states in the nucleus:  $\Delta(x,Q^2)$

• Understanding glue is a key challenge of NP and central goal of EIC

#### Studying gluons is tricky

- Gluon does not couple to photon
- Probed indirectly by electron scattering from nuclei



- A nuclear glue effect, free from contributions of any nucleon, could offer invaluable view of nuclear structure
- "Nuclear Gluonometry" (Jaffe, Manohar, 1989) offers a probe sensitive only to gluonic states in the nucleus:  $\Delta(x,Q^2)$

| Volume 223, number 2                                                                                                          | PHYSICS LETTERS B                                                                                                                                                               | 8 June 1989                                                                                 |
|-------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
|                                                                                                                               |                                                                                                                                                                                 |                                                                                             |
|                                                                                                                               |                                                                                                                                                                                 |                                                                                             |
| NUCLEAR GLUONOMETR                                                                                                            | Y☆                                                                                                                                                                              |                                                                                             |
| R.L. JAFFE and Aneesh MAN                                                                                                     | OHAR                                                                                                                                                                            |                                                                                             |
| Center for Theoretical Physics, Labord<br>Cambridge, MA 02139, USA                                                            | ttory for Nuclear Science and Department of Physics, Masse                                                                                                                      | achusetts Institute of Technology,                                                          |
| Received 24 March 1989                                                                                                        |                                                                                                                                                                                 |                                                                                             |
| We identify a new leading twist str<br>targets (such as nuclei) with spin $\ge 1$ .<br>state of protons and neutrons, thereby | ucture function in QCD which can be measured in deep<br>The structure function measures a gluon distribution in th<br>providing a clear signature for exotic gluonic components | elastic scattering from polarized<br>te target and vanishes for a bound<br>s in the target. |

• "Nuclear Gluonometry" (Jaffe, Manohar, 1989) offers a probe sensitive **only** to gluonic states in the nucleus:  $\Delta(x, Q^2)$ 

| PHYSICAL REVIEW D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <b>VOLUME 42, NUMBER 5</b>                                                                                                             | 1 SEPTEMBER 1990         |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|--------------------------|--|--|--|
| Size and scaling of the double-helicity-flip hadronic structure function                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                        |                          |  |  |  |
| Center for Theore<br>Massach                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Eric Sather<br>tical Physics, Laboratory for Nuclear Science and Departm<br>usetts Institute of Technology, Cambridge, Massachusetts 0 | ent of Physics,<br>12139 |  |  |  |
| Lyman Labora                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Carl Schmidt<br>tory of Physics, Harvard University, Cambridge, Massachu<br>(Received 24 May 1990)                                     | setts 02138              |  |  |  |
| Recently, Jaffe and Manohar identified a new leading-twist structure function $\Delta(x, Q^2)$ , which can<br>be measured in deep-inelastic scattering from polarized targets with spin $\geq 1$ . We calculate the scal-<br>ing behavior of $\Delta(x, Q^2)$ in QCD, both by computing the anomalous dimensions of the associated<br>operators and by finding the splitting function for the appropriate parton density. We also estimate<br>the size of the lowest moment of $\Delta(x, Q^2)$ in the bag model. In an appendix we give the complete<br>cross section for electroproduction from a spin-1 target of arbitrary polarization. |                                                                                                                                        |                          |  |  |  |

• "Nuclear Gluonometry" (Jaffe, Manohar, 1989) offers a probe sensitive **only** to gluonic states in the nucleus:  $\Delta(x, Q^2)$ 

### Double Helicity-Flip Structure Function $\Delta(x, Q^2)$

- As we go from spin-1/2 to spin-1, we need new leading twist structure functions:
  - Same quark and gluonic operators from spin-½ scattering give  $b_1, b_2$
  - Another tower of gluonic operators that gives rise one more:  $\Delta$
- $\Delta(x, Q^2)$ : double helicity flip amplitude  $A_{+-,-+}$ 
  - Photon helicity flip of two
  - Unavailable to bound nucleons or pions
  - Purely gluonic observable
- Unpolarized e, transversely polarized nuclei spin  $\geq 1$
- Moments calculable in Lattice QCD



### Double Helicity-Flip Structure Function $\Delta(x, Q^2)$

- As we go from spin-½ to spin-1, we need new leading twist structure functions:
  - Same quark and gluonic operators from spin-½ scattering give  $b_1, b_2$
  - Another tower of gluonic operators that gives rise one more:  $\Delta$
- $\Delta(x, Q^2)$ : double helicity flip amplitude  $A_{+-,-+}$ 
  - Photon helicity flip of two
  - Unavailable to bound nucleons or pions
  - Purely gluonic observable
- Unpolarized e, transversely polarized nuclei spin  $\geq 1$
- Moments calculable in Lattice QCD



### Double Helicity-Flip Structure Function $\Delta(x, Q^2)$

Hadrons: Gluonic Transversity (parton model interpretation)

$$\Delta(x,Q^2) = -\frac{\alpha_s(Q^2)}{2\pi} \mathrm{Tr} \mathcal{Q}^2 x^2 \int_x^1 \frac{dy}{y^3} [g_{\hat{x}}(y,Q^2) - g_{\hat{y}}(y,Q^2)]$$

- $g_{\hat{x},\hat{y}}(y,Q^2)$ : probability of finding a gluon with momentum fraction y linearly polarized in  $\hat{x},\hat{y}$  direction in a target polarized in  $\hat{x}$  direction
- "How much more momentum of a transversely polarized particle is carried by gluons aligned rather than perpendicular."

#### Nuclei: Exotic Glue

• Gluons not associated with individual nucleons in the nucleus

#### Lattice Calculations

## Lattice QCD Guidance for $\Delta$

- In 2016, initial calculations for first moment of  $\Delta$  on spin-1  $\phi$  ( $s\bar{s}$ )
  - $m_{\pi} = 405 \,\mathrm{MeV}$
  - Gave definitive signal<sup>1</sup>
- Following year, first moment of  $\Delta$  calculated on non-physical d
  - $m_{\pi} = 806 \,\mathrm{MeV}$
  - Again definitive signal was seen<sup>2</sup>
- Results have generated significant interest in an observable mostly ignored since 1989

<sup>1</sup>Detmold, Shanahan, P.Rev.D 94, 2016 <sup>2</sup>NPLQCD Collab, P.Rev.D 96, 2017



#### Lattice Calculations

## Lattice QCD Guidance for $\Delta$

- In 2016, initial calculations for first moment of  $\Delta$  on spin-1  $\phi~(s\bar{s})$ 
  - $m_{\pi} = 405 \,\mathrm{MeV}$
  - Gave definitive signal<sup>1</sup>
- Following year, first moment of  $\Delta$  calculated on non-physical d
  - $m_{\pi} = 806 \,\mathrm{MeV}$
  - Again definitive signal was seen<sup>2</sup>
- Results have generated significant interest in an observable mostly ignored since 1989

<sup>1</sup>Detmold, Shanahan, P.Rev.D 94, 2016 <sup>2</sup>NPLQCD Collab, P.Rev.D 96, 2017



#### Lattice Calculations

## Lattice QCD Guidance for $\Delta$

- In 2016, initial calculations for first moment of  $\Delta$  on spin-1  $\phi~(s\bar{s})$ 
  - $m_{\pi} = 405 \,\mathrm{MeV}$
  - Gave definitive signal<sup>1</sup>
- Following year, first moment of  $\Delta$  calculated on non-physical d
  - $m_{\pi} = 806 \,\mathrm{MeV}$
  - Again definitive signal was seen<sup>2</sup>
- Results have generated significant interest in an observable mostly ignored since 1989

<sup>1</sup>Detmold, Shanahan, P.Rev.D 94, 2016 <sup>2</sup>NPLQCD Collab, P.Rev.D 96, 2017



## Measuring $\Delta(x,Q^2)$ via DIS

- Transversely aligned, spin-1 target and unpolarized electron incident from -z
- In the Bjorken limit, double helicity component of the hadronic tensor  $W^{\Delta=2}_{\mu\nu,\alpha\beta}(E,E')$  becomes (dropping higher twist structure functions)<sup>1</sup>:

$$\lim_{Q^2 \to \infty} \frac{d\sigma}{dx \, dy \, d\phi} = \frac{e^4 ME}{4\pi^2 Q^4} \left( xy^2 F_1(x, Q^2) + (1-y)F_2(x, Q^2) - \frac{x(1-y)}{2} \Delta(x, Q^2) \cos 2\phi \right)$$

<sup>1</sup>Jaffe, Manohar, Phys Letters B 223 (2) (1989).

For a spin-1 target polarized at angle  $\theta_m$  from the *z*-axis and electron incident from -z, target spin  $\lambda_m = (1, 0, -1)$ :

$$\frac{d\sigma}{dx\,dy\,d\phi}(\lambda_m) = \frac{2y\alpha^2}{Q^2} \left(F_1 + \frac{2}{3}a_mb_1 + \frac{1-y}{xy^2}\left(F_2 + \frac{2}{3}a_mb_2\right) - \frac{1-y}{y^2}c_m\sin^2\theta_m\Delta(x,Q^2)\cos(2\phi)\right)$$

with

$$a_m = \frac{1}{4}c_m(3\cos^2\theta_m - 1)$$
$$c_m = 3|\lambda_m| - 2$$

Differences of cross sections:  $N_+, N_0, N_-$  for  $\lambda_m = (1, 0, -1)$ 

For a spin-1 target polarized at angle  $\theta_m$  from the *z*-axis and electron incident from -z, target spin  $\lambda_m = (1, 0, -1)$ :

$$\frac{d\sigma}{dx\,dy\,d\phi}(\lambda_m) = \frac{2y\alpha^2}{Q^2} \left(F_1 + \frac{2}{3}a_mb_1 + \frac{1-y}{xy^2}\left(F_2 + \frac{2}{3}a_mb_2\right) - \frac{1-y}{y^2}c_m\sin^2\theta_m\Delta(x,Q^2)\cos(2\phi)\right)$$

with

$$a_m = \frac{1}{4}c_m(3\cos^2\theta_m - 1)$$
$$c_m = 3|\lambda_m| - 2 \quad \Rightarrow \quad c_m = (1, -2, 1)$$

Differences of cross sections:  $N_+, N_0, N_-$  for  $\lambda_m = (1, 0, -1)$ 

#### Average over Polarization: $N_+ + N_- + N_0 \Rightarrow \bar{\sigma}$

• 
$$c_+ + c_0 + c_- = 0$$

$$\frac{d\bar{\sigma}}{dx\,dy\,d\phi} = \frac{2y\alpha^2}{Q^2} \left(F_1 + \frac{1-y}{xy^2}F_2\right)$$

- Of course, no  $\Delta$  dependence
- $\Delta$  also cancels out of vector polarization difference  $(N_+ - N_0) + (N_0 - N_-) = N_+ - N_-$ •  $c_+ - c_- = 0$

Tensor Polarization: 
$$(N_+ - N_0) - (N_0 - N_-) \Rightarrow \Delta \sigma$$

• 
$$c_+ - 2c_0 + c_- = 6$$

$$\frac{d\Delta\sigma}{dx\,dy\,d\phi} = \frac{2y\alpha^2}{Q^2} \left( (3\cos^2\theta_m - 1)(b_1 + \frac{1-y}{xy^2}b_2) - \frac{1-y}{y^2} 6\sin^2\theta_m \Delta(x, Q^2)\cos(2\phi) \right)$$

- Tensor structure functions  $b_1$ ,  $b_2$  contribute significantly
- Unless!  $(3\cos^2\theta_m 1) = 0 \Rightarrow \theta_m = 54.7^\circ$

Tensor Polarization: 
$$(N_+ - N_0) - (N_0 - N_-) \Rightarrow \Delta \sigma$$

• 
$$c_+ - 2c_0 + c_- = 6$$

$$\frac{d\Delta\sigma}{dx\,dy\,d\phi} = \frac{2y\alpha^2}{Q^2} \left( (3\cos^2\theta_m - 1)(b_1 + \frac{1-y}{xy^2}b_2) - \frac{1-y}{y^2} 6\sin^2\theta_m \Delta(x,Q^2)\cos(2\phi) \right)$$

- Tensor structure functions  $b_1$ ,  $b_2$  contribute significantly
- Unless!  $(3\cos^2\theta_m 1) = 0 \Rightarrow \theta_m = 54.7^\circ$

Difference of Polarized and Unpolarized:  $N_+ - \bar{N} = N_+ - \frac{1}{3}(N_+ + N_- + N_0) = \frac{1}{3}(N_+ - N_0) \Rightarrow \hat{\sigma}$ 

• 
$$c_+ - c_0 = 1$$

$$\frac{d\hat{\sigma}}{dx\,dy\,d\phi} = \frac{2y\alpha^2}{Q^2} \left(\frac{1}{6}(3\cos^2\theta_m - 1)(b_1 + \frac{1-y}{xy^2}b_2) - \frac{1-y}{y^2}\sin^2\theta_m\Delta(x,Q^2)\cos(2\phi)\right)$$

• Again tensor structure functions  $b_1$ ,  $b_2$  contribute significantly unless  $\theta_m = 54.7^{\circ}$ 

$$(3\cos^2\theta_m - 1)\left(b_1 + \frac{1-y}{xy^2}b_2\right) - \frac{1-y}{y^2}\sin^2\theta_m\Delta(x,Q^2)\cos(2\phi)$$

I Leverage  $\cos(2\phi)$  to isolate  $\Delta(x,Q^2)$  dependence

Need azimuthal detector acceptance

- 2 Form tensor asymmetry:  $\mathcal{A} = \frac{1}{A} \frac{N_+ + N_- 2N_0}{N_+ + N_- + 2N_0}$ 
  - $\theta_m = 54.7^\circ$  to cancel  $b_1$ ,  $b_2$  dependence
  - Change polarization to produce N<sub>+</sub>, N<sub>-</sub> and N<sub>0</sub> yields

(3) Form difference of vector polarized and unpolarized cross sections

- $heta_m = 54.7^\circ$  to cancel  $b_1$ ,  $b_2$  dependence
- Lose cancellation of acceptances, efficiencies

$$(3\cos^2\theta_m - 1)\left(b_1 + \frac{1-y}{xy^2}b_2\right) - \frac{1-y}{y^2}\sin^2\theta_m\Delta(x,Q^2)\cos(2\phi)$$

1 Leverage  $\cos(2\phi)$  to isolate  $\Delta(x, Q^2)$  dependence

- Need azimuthal detector acceptance
- 2 Form tensor asymmetry:  $\mathcal{A} = \frac{1}{A} \frac{N_+ + N_- 2N_0}{N_+ + N_- + 2N_0}$ 
  - $\theta_m = 54.7^\circ$  to cancel  $b_1$ ,  $b_2$  dependence
  - Change polarization to produce  $N_+$ ,  $N_-$  and  $N_0$  yields
- ③ Form difference of vector polarized and unpolarized cross sections
  - $\theta_m = 54.7^\circ$  to cancel  $b_1$ ,  $b_2$  dependence
  - Lose cancellation of acceptances, efficiencies

$$\underbrace{(3\cos^2\theta_m = 1)\left(b_1 \pm \frac{1-y}{xy^2}b_2\right)}_{y^2} - \frac{1-y}{y^2}\sin^2\theta_m\Delta(x,Q^2)\cos(2\phi)$$

1 Leverage  $\cos(2\phi)$  to isolate  $\Delta(x, Q^2)$  dependence

- Need azimuthal detector acceptance
- 2 Form tensor asymmetry:  $\mathcal{A} = \frac{1}{A} \frac{N_+ + N_- 2N_0}{N_+ + N_- + 2N_0}$ 
  - $\theta_m = 54.7^\circ$  to cancel  $b_1$ ,  $b_2$  dependence
  - Change polarization to produce  $N_+$ ,  $N_-$  and  $N_0$  yields
- ③ Form difference of vector polarized and unpolarized cross sections
  - $\theta_m = 54.7^\circ$  to cancel  $b_1$ ,  $b_2$  dependence
  - Lose cancellation of acceptances, efficiencies

$$\underbrace{(3\cos^2\theta_m = 1)\left(b_1 \pm \frac{1-y}{xy^2}b_2\right)}_{y^2} - \frac{1-y}{y^2}\sin^2\theta_m\Delta(x,Q^2)\cos(2\phi)$$

1 Leverage  $\cos(2\phi)$  to isolate  $\Delta(x, Q^2)$  dependence

- Need azimuthal detector acceptance
- 2 Form tensor asymmetry:  $\mathcal{A} = \frac{1}{A} \frac{N_+ + N_- 2N_0}{N_+ + N_- + 2N_0}$ 
  - $\theta_m = 54.7^\circ$  to cancel  $b_1$ ,  $b_2$  dependence
  - Change polarization to produce  $N_+$ ,  $N_-$  and  $N_0$  yields
- **3** Form difference of vector polarized and unpolarized cross sections
  - $\theta_m = 54.7^\circ$  to cancel  $b_1$ ,  $b_2$  dependence
  - Lose cancellation of acceptances, efficiencies

#### Transverse Polarized Target Nuclei

- Need a spin >1 nucleus, but this is a **multi-nucleonic** effect
  - Expected larger in compact nuclei (like EMC effect?)
  - Perhaps explains enhanced LQCD signal with larger  $m_{\pi}$ , more compact d?
- Deuteron? Should be investigated, but may not offer best chance for discovery.
  - Expect two nucleons to good approximation
- Something heavier: Li?  $\alpha + d$
- Practical limitations from available polarized targets
  - Long history of polarized p and d in solid targets
  - Lithium Hydride and Deuteride: <sup>6</sup>LiH,<sup>6</sup>LiD, also <sup>7</sup>LiH
  - Ammonia: <sup>14</sup>NH<sub>3</sub>,<sup>14</sup>ND<sub>3</sub>, also <sup>15</sup>NH<sub>3</sub>
- Or, for eA collider, polarized ion sources
  - D. Alkalis? <sup>6</sup>Li, <sup>7</sup>Li, <sup>23</sup>Na attractive options

#### Transverse Polarized Target Nuclei

- Need a spin >1 nucleus, but this is a **multi-nucleonic** effect
  - Expected larger in compact nuclei (like EMC effect?)
  - Perhaps explains enhanced LQCD signal with larger  $m_{\pi}$ , more compact d?
- Deuteron? Should be investigated, but may not offer best chance for discovery.
  - Expect two nucleons to good approximation
- Something heavier: Li?  $\alpha + d$
- Practical limitations from available polarized targets
  - Long history of polarized p and d in solid targets
  - Lithium Hydride and Deuteride: <sup>6</sup>LiH,<sup>6</sup>LiD, also <sup>7</sup>LiH
  - Ammonia: <sup>14</sup>NH<sub>3</sub>,<sup>14</sup>ND<sub>3</sub>, also <sup>15</sup>NH<sub>3</sub>
- Or, for eA collider, polarized ion sources
  - D. Alkalis? <sup>6</sup>Li, <sup>7</sup>Li, <sup>23</sup>Na attractive options

#### Transverse Polarized Target Nuclei

- Need a spin >1 nucleus, but this is a **multi-nucleonic** effect
  - Expected larger in compact nuclei (like EMC effect?)
  - Perhaps explains enhanced LQCD signal with larger  $m_{\pi}$ , more compact d?
- Deuteron? Should be investigated, but may not offer best chance for discovery.
  - Expect two nucleons to good approximation
- Something heavier: Li?  $\alpha + d$
- Practical limitations from available polarized targets
  - Long history of polarized *p* and *d* in solid targets
  - Lithium Hydride and Deuteride: <sup>6</sup>LiH,<sup>6</sup>LiD, also <sup>7</sup>LiH
  - Ammonia: <sup>14</sup>NH<sub>3</sub>, <sup>14</sup>ND<sub>3</sub>, also <sup>15</sup>NH<sub>3</sub>
- Or, for eA collider, polarized ion sources
  - D. Alkalis? <sup>6</sup>Li, <sup>7</sup>Li, <sup>23</sup>Na attractive options

#### Proposed Measurements of $\Delta(x, Q^2)$

- Deep Inelastic Scattering on Polarized N Target: JLab Letter of Intent (Maxwell *et al.*, 2018. arXiv: 1803.11206)
- Drell Yan on Polarized *d* Target: FNAL (SpinQuest Collaboration, 2022. arXiv:2205.01249)
- $J/\psi$  production at NICA

The EIC is the ideal place to search for a  $\Delta(x, Q^2)$  signal! Requires polarized ion sources, with varied species offering more opportunity for discovery.

### Outline

 Double Helicity-Flip Structure Function Lattice Calculations Measurement Approaches
Jefferson Lab Measurement JLab Polarized Target
Gluonometry at the EIC Polarized Ion Beams



$$(3\cos^2\theta_m - 1)\left(b_1 + \frac{1 - y}{xy^2}b_2\right) - \frac{1 - y}{y^2}\sin^2\theta_m\Delta(x, Q^2)\cos(2\phi)$$

1 Not easy: need out of plane detectors for  $\cos(2\phi)$ 

- Not standard in Halls A, C. SoLID?
- No transverse target in Hall B
- 2 Form tensor asymmetry:  $\mathcal{A} = \frac{1}{A} \frac{N_+ + N_- 2N_0}{N_+ + N_- + 2N_0}$ 
  - Set target field at  $\theta_m = 54.7^{\circ}$
  - Yields at N<sub>+</sub>, N<sub>-</sub> and N<sub>0</sub> separated in time: systematic headaches
- Over the section of the section o
  - Set target field at  $\theta_m = 54.7^\circ$ , vector polarization easier
  - Lose advantage of asymmetry, systematic headaches

$$(3\cos^2\theta_m - 1)\left(b_1 + \frac{1-y}{xy^2}b_2\right) - \frac{1-y}{y^2}\sin^2\theta_m\Delta(x,Q^2)\cos(2\phi)$$

1 Not easy: need out of plane detectors for  $\cos(2\phi)$ 

- Not standard in Halls A, C. SoLID?
- No transverse target in Hall B

2 Form tensor asymmetry: 
$$\mathcal{A} = \frac{1}{A} \frac{N_+ + N_- - 2N_0}{N_+ + N_- + 2N_0}$$

- Set target field at  $\theta_m = 54.7^\circ$
- Yields at  $N_+$ ,  $N_-$  and  $N_0$  separated in time: systematic headaches
- 3 Vector polarized minus unpolarized cross sections
  - Set target field at  $\theta_m = 54.7^\circ$ , vector polarization easier
  - Lose advantage of asymmetry, systematic headaches

$$\underbrace{(3\cos^2\theta_m = 1)\left(b_1 + \frac{1-y}{xy^2}b_2\right)}_{y^2} - \frac{1-y}{y^2}\sin^2\theta_m\Delta(x,Q^2)\cos(2\phi)$$

- 1 Not easy: need out of plane detectors for  $\cos(2\phi)$ 
  - Not standard in Halls A, C. SoLID?
  - No transverse target in Hall B
- 2 Form tensor asymmetry:  $\mathcal{A} = \frac{1}{A} \frac{N_+ + N_- 2N_0}{N_+ + N_- + 2N_0}$ 
  - Set target field at  $\theta_m = 54.7^\circ$
  - Yields at  $N_+$ ,  $N_-$  and  $N_0$  separated in time: systematic headaches
- 3 Vector polarized minus unpolarized cross sections
  - Set target field at  $\theta_m = 54.7^\circ$ , vector polarization easier
  - Lose advantage of asymmetry, systematic headaches

$$\underbrace{(3\cos^2\theta_m - 1)\left(b_1 + \frac{1-y}{xy^2}b_2\right)}_{y^2} - \frac{1-y}{y^2}\sin^2\theta_m\Delta(x,Q^2)\cos(2\phi)$$

- 1 Not easy: need out of plane detectors for  $\cos(2\phi)$ 
  - Not standard in Halls A, C. SoLID?
  - No transverse target in Hall B
- 2 Form tensor asymmetry:  $\mathcal{A} = \frac{1}{A} \frac{N_+ + N_- 2N_0}{N_+ + N_- + 2N_0}$ 
  - Set target field at  $\theta_m = 54.7^{\circ}$
  - Yields at  $N_+$ ,  $N_-$  and  $N_0$  separated in time: systematic headaches
- 3 Vector polarized minus unpolarized cross sections
  - Set target field at  $\theta_m = 54.7^\circ$ , vector polarization easier
  - Lose advantage of asymmetry, systematic headaches

### Kinematic Reach with 12 GeV CEBAF in Hall C

- 11 GeV, unpolarized  $e^-$  on fixed, polarized  ${}^{14}\rm NH_3$
- Preliminary SHMS Monte Carlo (Gaskell, Arrington)
  - Transverse (not 54.7°!) UVa magnet (M. Jones)

| $\theta$ | E (GeV) | E' (GeV) | $Q^2 \left( {\rm GeV/c^2} \right)$ | x     | Rate (Hz) |
|----------|---------|----------|------------------------------------|-------|-----------|
| 10.5     | 11      | 5        | 1.842                              | 0.164 | 170       |
| 10.5     | 11      | 4        | 1.474                              | 0.112 | 152       |
| 10.5     | 11      | 3        | 1.105                              | 0.074 | 138       |
| 10.5     | 11      | 2        | 0.737                              | 0.044 | 100       |
| 15       | 11      | 5        | 3.748                              | 0.333 | 28        |
| 15       | 11      | 4        | 2.999                              | 0.228 | 30        |
| 15       | 11      | 3        | 2.249                              | 0.15  | 32        |
| 15       | 11      | 2        | 1.499                              | 0.089 | 34        |

## JLab Solid Polarized Target

- Dynamic Nuclear Polarization
  - 5 T field, 1 K <sup>4</sup>He evap. fridge
  - Leverage e p spin coupling
  - $\mu$ -waves drive polarizing transitions
  - *e* relaxes to flip-flop with new *p*
- Irradiated Ammonia: 95% p, 50% d
  - Beam current <100 nA
  - P decay: anneals and replacement
- Workhorse DIS technique at SLAC, JLab. Upcoming experiments in Halls B, C.
- What material for  $\Delta(x, Q^2)$ ? NH<sub>3</sub>?
  - <sup>14</sup>N is spin 1



### JLab Solid Polarized Target

- Dynamic Nuclear Polarization
  - 5 T field, 1 K <sup>4</sup>He evap. fridge
  - Leverage e p spin coupling
  - $\mu$ -waves drive polarizing transitions
  - *e* relaxes to flip-flop with new *p*
- Irradiated Ammonia: 95% p, 50% d
  - Beam current <100 nA
  - P decay: anneals and replacement
- Workhorse DIS technique at SLAC, JLab. Upcoming experiments in Halls B, C.
- What material for  $\Delta(x, Q^2)$ ? NH<sub>3</sub>?
  - <sup>14</sup>N is spin 1



### Polarization, Tensor Alignment and DNP

$$P = (N_{+} - N_{0}) + (N_{0} - N_{-})$$
  
=  $N_{+} - N_{-}$   
 $A = (N_{+} - N_{0}) - (N_{0} - N_{-})$   
=  $1 - 3N_{0}$ 

- Polarization and alignment can be anywhere in the black triangle
- At equal spin temperature, can be only on red curve:

$$A = 2 - \sqrt{4 - 3P^2}.$$

• For  $P = 40\% \Rightarrow A = 13\%$ 



### Nitrogen Polarization in Ammonia: Not Easy

• We can also relate polarization of N to p:

 $P_N = \frac{4 \tanh((\omega_N/\omega_p) \arctan(P_p))}{3 + \tanh^2((\omega_N/\omega_p) \arctan(P_p))}$ 

- At 95% *p*: 17% N
  - $P_N = 17\% \Rightarrow A_N = 2\%$
- NMR measurement is difficult
  - Peaks too far apart for one NMR scan (2.4 MHz)
  - Overcome at SMC with 2 sweeps, changing B field<sup>1</sup>



### Nitrogen Polarization in Ammonia: Not Easy

We can also relate polarization of N to p:

 $P_N = \frac{4 \tanh((\omega_N/\omega_p) \operatorname{arctanh}(P_p))}{3 + \tanh^2((\omega_N/\omega_p) \operatorname{arctanh}(P_p))}$ 

- At 95% *p*: 17% N
  - $P_N = 17\% \Rightarrow A_N = 2\%$
- NMR measurement is difficult
  - Peaks too far apart for one NMR scan (2.4 MHz)
  - Overcome at SMC with 2 sweeps, changing B field<sup>1</sup>

<sup>1</sup>B. Adeva, NIM A 419 (1998).



### Techniques to Improve $P_N, A_N$

- Tricks to help: "RF Hole Burning"<sup>1</sup>
  - Vast separation of NMR peaks in N will help.
- Cross Spin Transfer
  - Move magnetic field to allow cross relaxation of resonances
  - SMC: 40%  $P_N \Rightarrow$  12%  $A_N$
- RF Spin Transfer
  - Same effect in the end
  - Allow dynamic pumping of N while *µ*-waves pump *p*



<sup>1</sup>P. Delheij, NIM A 251 (1986).

#### Jefferson Lab Letter of Intent 12-14-001

- $\sim$ 30 PAC days with solid polarized target
  - Run with approved measurement of  $b_1$  in Hall C
  - Ballpark 1% statistical error
  - Heavily dependent on achieved polarization
  - Largest systematic uncertainty comes from target polarization measurement 4-5%
- LOI Reception, PAC 44
  - Encouragement with charges
  - Guidance on size of  $\Delta$  from Lattice QCD
  - Polarized N target yet to be proven
  - Systematic challenges

#### Jefferson Lab Letter of Intent 12-14-001

- $\sim$ 30 PAC days with solid polarized target
  - Run with approved measurement of  $b_1$  in Hall C
  - Ballpark 1% statistical error
  - Heavily dependent on achieved polarization
  - Largest systematic uncertainty comes from target polarization measurement 4-5%
- LOI Reception, PAC 44
  - Encouragement with charges
  - Guidance on size of  $\Delta$  from Lattice QCD
  - Polarized N target yet to be proven
  - Systematic challenges

### Outline

 Double Helicity-Flip Structure Function Lattice Calculations Measurement Approaches
Jefferson Lab Measurement JLab Polarized Target
Gluonometry at the EIC

Polarized Ion Beams



#### Electron-Ion Collider Approach

$$(3\cos^2\theta_m - 1)\left(b_1 + \frac{1-y}{xy^2}b_2\right) - \frac{1-y}{y^2}\sin^2\theta_m\Delta(x,Q^2)\cos(2\phi)$$

 $\bigcirc$   $\cos(2\phi)$  offers  $\Delta(x,Q^2)$  sensitivity

- Vastly increased kinematic space for search
- Vector polarization observable
- 2 Form tensor asymmetry:  $\mathcal{A} = \frac{1}{A} \frac{N_+ + N_- 2N_0}{N_+ + N_- + 2N_0}$ 
  - Set target at  $\theta_m = 54.7^{\circ}$
  - Yields at N<sub>+</sub>, N<sub>-</sub> and N<sub>0</sub> separated in time: systematic headaches
- ③ Form difference of vector polarized and unpolarized cross sections
  - Set target at  $\theta_m = 54.7^\circ$
  - Lose advantage of asymmetry, still have systematic headaches

#### Electron-Ion Collider Approach

$$(3\cos^2\theta_m - 1)\left(b_1 + \frac{1-y}{xy^2}b_2\right) - \frac{1-y}{y^2}\sin^2\theta_m\Delta(x,Q^2)\cos(2\phi)$$

**1**  $\cos(2\phi)$  offers  $\Delta(x, Q^2)$  sensitivity

- Vastly increased kinematic space for search
- Vector polarization observable
- 2 Form tensor asymmetry:  $\mathcal{A} = \frac{1}{A} \frac{N_+ + N_- 2N_0}{N_+ + N_- + 2N_0}$ 
  - Set target at  $\theta_m = 54.7^\circ$
  - Yields at N<sub>+</sub>, N<sub>-</sub> and N<sub>0</sub> separated in time: systematic headaches
- ③ Form difference of vector polarized and unpolarized cross sections
  - Set target at  $\theta_m = 54.7^\circ$
  - Lose advantage of asymmetry, still have systematic headaches

#### Electron-Ion Collider Approach



**1**  $\cos(2\phi)$  offers  $\Delta(x, Q^2)$  sensitivity

- Vastly increased kinematic space for search
- Vector polarization observable

2 Form tensor asymmetry:  $\mathcal{A} = \frac{1}{A} \frac{N_+ + N_- - 2N_0}{N_+ + N_- + 2N_0}$ 

- Set target at  $\theta_m = 54.7^\circ$
- Yields at N<sub>+</sub>, N<sub>-</sub> and N<sub>0</sub> separated in time: systematic headaches
- 3 Form difference of vector polarized and unpolarized cross sections
  - Set target at  $\theta_m = 54.7^\circ$
  - Lose advantage of asymmetry, still have systematic headaches

#### Polarized Gases via Atomic Beam Source

- Spray atoms of choice through a sextupole.
- 4 spin states for H. To isolate (1):
  - Choose (1) (2)
  - Use RF to flip 2 to 3
  - Second sextupole to choose (1)
- 100% Vector P (and/or Tensor!)
- Atomic Beam Source: jets with very low density (10<sup>16</sup> H/s), good for storage rings
- Storage cells coated with teflon used to increase target density. FILTEX at CERN, and VEPP-3 in Novosibirsk



#### Polarized Gases via Atomic Beam Source

- Spray atoms of choice through a sextupole.
- 4 spin states for H. To isolate (1):
  - Choose (1) (2)
  - Use RF to flip 2 to 3
  - Second sextupole to choose (1)
- 100% Vector P (and/or Tensor!)
- Atomic Beam Source: jets with very low density (10<sup>16</sup> H/s), good for storage rings
- Storage cells coated with teflon used to increase target density. FILTEX at CERN, and VEPP-3 in Novosibirsk



## SMOG2 Internal Target (LHCspin)

- Bring Spin Physics to the LHC!
- Fixed, internal target at LHCb with storage cell
- Storage ring, so low density is advantageous
- ANKE ABS from COSY, Jülich
- Cell splits in half to accommodate beam, suppress wake field effects
- Already run with unpolarized gases



Steffens, PSTP 2022

### SMOG2 Internal Target (LHCspin)

- Bring Spin Physics to the LHC!
- Fixed, internal target at LHCb with storage cell
- Storage ring, so low density is advantageous
- ANKE ABS from COSY, Jülich
- Cell splits in half to accommodate beam, suppress wake field effects
- Already run with unpolarized gases



Steffens, PSTP 2022

### SMOG2 Internal Target (LHCspin)

- Bring Spin Physics to the LHC!
- Fixed, internal target at LHCb with storage cell
- Storage ring, so low density is advantageous
- ANKE ABS from COSY, Jülich
- Cell splits in half to accommodate beam, suppress wake field effects
- Already run with unpolarized gases



Steffens, PSTP 2022

### Spin Polarized Alkali Sources

- Heidelberg Atomic Beam Polarized Source (1975)<sup>1</sup>
  - Laval nozzle, Sextupole Stern–Gerlach give m = +1/2
  - RF used for adiabatic transitions to fill other states
  - Surface ionization, heated tungsten strip
  - $^{6,7}$ Li: 0.57 < |P| < 0.65, 200 nA
  - <sup>23</sup>Na: 50% losses to P and current in ionization

<sup>1</sup>E. Steffens, NIM 143 (1977)



#### Spin Polarized Alkali Sources

- Improved Heidelberg Source adds OP (1986)<sup>1</sup>
  - Laser pumped, modulated to pump both multiplets
  - <sup>6</sup>Li: A = 85%, <sup>23</sup>Na: A = 77%
  - Polarization limited due to lack of full ionization



<sup>1</sup>H. Reich, NIM A288 (1989)

#### Polarized Ion Beam Possibilities

At EIC,  $\Delta(x, Q^2)$  search becomes a problem of available ion sources and their corresponding depolarizing resonances.

| Nucleus          | Spin          | Technique | Pol. | Flux        | G     |
|------------------|---------------|-----------|------|-------------|-------|
| $^{2}$ H         | 1             | OP, ABS   | 100% | 100% 1μA    |       |
| <sup>6</sup> Li  | 1             | OP, ABS   | 88%  | $2.4 \mu A$ | -0.18 |
| <sup>7</sup> Li  | $\frac{3}{2}$ | OP, ABS   |      |             | 1.53  |
| $^{10}B$         | ŝ             | Not known |      |             |       |
| $^{20}F$         | 2             | OP, ABS?  |      |             |       |
| <sup>23</sup> Na | $\frac{3}{2}$ | OP, ABS   | 77%  | $6.5\mu A$  | 0.53  |

### Spin Manipulation in Ring

- Depolarizing resonances when spin precession frequency = frequency of perturbing B field<sup>1</sup>
- Imperfection:  $\nu_s = G\gamma = n$
- Intrinsic:  $\nu_s = G\gamma = Pn + \nu_y$
- Anomalous g-factor G



- <sup>7</sup>Li: G of 1.53 (like proton's 1.79)  $\Rightarrow$  easy
- <sup>6</sup>Li: G of -0.18 (like deuteron's -0.14)  $\Rightarrow$  hard
- <sup>23</sup>Na: G of 0.53 could work at RHIC with more snakes
- Figure-8 makes for easier manipulation at lower G

<sup>1</sup>Bai, Courant *et al.*, BNL-96726-2012-CP, 2012.

#### Towards Design of an Optimized EIC Experiment

- Exploration of  $\Delta$  in x,  $Q^2$ , S, & A
  - How does effect change for different nuclear spin  $\geq 1$ ?
  - Spin-1/2 species important cross-check
  - How does effect change for different atomic masses?
  - Spin-1 <sup>6</sup>Li vs. Spin-3/2<sup>7</sup>Li
- Simulate measurement for Inclusive DIS on Nuclei
- Estimate running time for given statistical uncertainties
  - Species choice informed by simulation
  - Loss of luminosity compared to JLab made up for by lack of dilution, kinematic coverage

#### Summary

- $\Delta(x,Q^2)$  offers a rare look at gluonic components in the nucleus
  - Significant Lattice QCD result drives interest
  - Need spin  $\geq$  1, polarized, nuclear target
  - Low *x*, where glue dominates, region of interest
- Jefferson Lab experiment still in pre-proposal stage
  - 0.05 < x < 0.33 for exploratory search
  - Polarized Target development needed
  - Fixed target can give the high x needed for moments!
- EIC capable of thorough search
  - Vast low *x* exploration
  - Spin manipulation of polarized, "heavy" ions crucial
  - Polarized ion sources needed! Li and Na most attractive

JLab Nuclear Gluonometry Collab:

- JLab: M. Jones, C. Keith, J. Maxwell, D. Meekins
- MIT: W. Detmold, R. Jaffe, R. Milner, P. Shanahan
- Univ. of Virginia: D. Crabb, D. Day, D. Keller, O. Rondon
- Oak Ridge: J. Pierce

Thank you for your attention!



#### 5 T Split-Pair Target Magnet

- Can we get  $\theta_m = 54.7^\circ$
- Old Hall C Magnet, with largest opening angles, retired in 2012
  - Better than 10<sup>-4</sup> uniformity in 3x3x3 cm<sup>3</sup> volume
- $g_2^p$  ran with modified Hall B magnet
  - 54.7° not available
  - Alteration needed to get 50°
- New 5 T target magnet needed
  - ~\$500k



#### 5 T Split-Pair Target Magnet

- Can we get  $\theta_m = 54.7^\circ$
- Old Hall C Magnet, with largest opening angles, retired in 2012
  - Better than 10<sup>-4</sup> uniformity in 3x3x3 cm<sup>3</sup> volume
- $g_2^p$  ran with modified Hall B magnet
  - 54.7° not available
  - Alteration needed to get 50°
- New 5T target magnet needed
  - $\sim$ \$500k



#### Kinematic Reach at Electron-Ion Collider

