Polarized Electron Beams at EIC

Polarized Ion Sources and Beams at EIC Community Wide Meeting

> Dave Gaskell Jefferson Lab

March 10-11, 2025

EIC Electron Beam Properties

EIC has challenging requirements to meet needs of physics program

- → Variable CM energies: electron beam @ 5, 10, 18 GeV
- → High polarization: P_{avg} >70%
- \rightarrow High luminosity
 - \rightarrow Intense beams (up to 2.5 A)
 - → significant amount of synchrotron radiation
- → Short bunch spacing: 10 ns between electron/hadron bunches at high luminosity configuration (~40 ns at higher CM configuration)

Electron energies = 5, 10, 18 GeV

Table 1.1: Maximum luminosity parameters.

Parameter	hadron	electron
Center-of-mass energy [GeV]	104.9	
Energy [GeV]	275	10
Number of bunches	1160	
Particles per bunch [10 ¹⁰]	6.9	17.2
Beam current [A]	1.0	2.5
Horizontal emittance [nm]	11.3	20.0
Vertical emittance [nm]	1.0	1.3
Horizontal β -function at IP β_x^* [cm]	80	45
Vertical β -function at IP β_y^* [cm]	7.2	5.6
Horizontal/Vertical fractional betatron tunes	0.228/0.210	0.08/0.06
Horizontal divergence at IP $\sigma_{x'}^*$ [mrad]	0.119	0.211
Vertical divergence at IP $\sigma_{v'}^*$ [mrad]	0.119	0.152
Horizontal beam-beam parameter ξ_x	0.012	0.072
Vertical beam-beam parameter ξ_y	0.012	0.1
IBS growth time longitudinal/horizontal [hr]	2.9/2.0	-
Synchrotron radiation power [MW]	-	9.0
Bunch length [cm]	6	0.7
Hourglass and crab reduction factor [17]	0.94	
Luminosity $[10^{34} \text{cm}^{-2} \text{s}^{-1}]$	1.0	

Polarized Electron Complex

Previous storage rings/colliders relied on self-polarization of electrons due to Sokolov-Ternov effect

EIC: Polarized electrons injected into ring at full energy

Key Components

- 1. Polarized source \rightarrow photocathode
- 2. Injector system \rightarrow linac + BAR + RCS
- 3. Electron storage ring

Polarized Electron Source

- Polarized source must generate 7* nC bunches (later, 3-bunch-train of 7 nC bunches)
- High polarization from the source ~85%

EIC will use HV (320 kV) DC gun → R&D under way to develop new sources of suitable photocathode material (GaAs-based)

Electrons longitudinally polarized from photocathode \rightarrow must be rotated to vertical polarization before entering RCS

- → CDR assumed dipole-solenoid spin rotator at end of linac
- → Wein filter under consideration, but challenging due to 320 keV beam

Wang et al., Appl. Phys. Lett. 124, 254101 (2024)

*updated design reduces this to 1 nC

RCS Pre-Injector

Between source and RCS, S-band (2856 MHz) linac accelerates beam to 750 MeV \rightarrow Beam accumulator ring between linac exit and RCS entrance \rightarrow Allows reduction of charge from photocathode to 1 nC per bunch \rightarrow Simplifies spin rotator design

RCS requires 7 nC/bunch at 1 Hz for lower electron beam energies, 28 nC/bunch for 18 GeV

Rapid Cycling Synchrotron (RCS)

- RCS must accelerate electrons from 0.75 to nominal ESR beam energy → 5, 10, 18 GeV
- Racetrack design: 2 accelerating linacs with recirculating arcs
- Designed to maintain (vertical) polarization through acceleration
- Ramp time < 500 ms at 10 GeV
- ESR fill time @10 GeV 19.33 minutes
 - 1160 buckets at 1 Hz

on Lab

Property	Value	
Injection energy	0.75 GeV	
Bunch train repetition rate	1 Hz	
Charge per bunch	Up to 28 nC	
Max. current	5.9 mA	
Circumference	1421.26 m	

Electron Storage Ring

- Storage ring energies 5-18 GeV
- 1160 bunches, up to 2.5 A
- $P_{avg} >= 70\%$

Jefferson Lab

- Both beam polarization states arbitrary structure?
- Design accommodates interactions at IP6 (ePIC) and a possible 2nd detector at IR8
- Polarization vertical in most of ring
- Experiments desire longitudinal polarization
 - Spin rotator required

Polarization Time Dependence - electrons

- Electrons injected into the storage ring at full polarization (85%)
- Sokolov-Ternov effect (self-polarization) will re-orient spins to be anti-parallel to main dipole field → electrons will have different lifetime depending on polarization
- Bunches must be replaced relatively often to keep average polarization high

Electron Polarimetry Requirements

ESR	RCS			
Highly polarized electrons, $P \approx 70\%$				
Fast feedback for machine setup				
Excellent measurement of absolute polarization, $\Delta P/P \approx 1\%$	Modest precision, $\Delta P/P \approx 3 - 5\%$			
Non-destructive polarimetry				
Bunch-by-bunch polarization measurement (fill pattern: $P^{\uparrow}, P^{\downarrow}, \Delta t \approx 10$ ns for ESR)	Polarization averaged over several bunches, bunch repetition rate 1 Hz (at a given energy)			
Sokolov-Ternov, $\Delta P^{\uparrow} \neq \Delta P^{\downarrow}$	Measurement at multiple energies			
Polarization vector at experiment (transverse, longitudinal)	Transverse polarization only			

Polarimeter Locations

Electron Storage Ring Compton (ESR) → Upstream of IP6, between IP and spin rotating solenoid

- \rightarrow Will measure polarization for each bunch
- → Measure both transverse and longitudinal beam polarization
- → Detect backscattered photon and scattered electron

Rapid Cycling Synchrotron Compton (RCS)

- → Primarily for machine setup less stringent precision requirements
- → Beam should be 100% transversely polarized
- → Detect backscattered photons, multiphoton mode
- \rightarrow Average over several bunches

Compton Analyzing Power

Longitudinal

Transverse

 P_L from energy dependence of asymmetry

 P_T requires measuring spatial dependence

Electron Storage Ring Compton Polarimeter

Compton polarimeter will be upstream of upstream of detector IP

At Compton interaction point, electrons have both longitudinal and transverse (horizontal) components

- → Longitudinal polarization measured via asymmetry as a function of backscattered photon/scattered electron energy
- \rightarrow Transverse polarization from left-right asymmetry

Beam energy	PL	P _T
5 GeV	99.1%	13.2%
10 GeV	96.5%	26.2%
18 GeV	89.0%	45.6%

Polarization Components at Compton

Beam polarization will be fully longitudinal at detector IP, but accurate measurement of absolute polarization will require *simultaneous* measurement of P_L and P_T at Compton polarimeter

EIC Compton will provide first high precision measurement of P_L and P_T at the same time

ESR Compton Polarimeter Layout

Will operate in single-photon mode

ESR Compton Beamline Design

Beam

dipoles mitigates synchrotron radiation \rightarrow only need collimator plus ~1 mm W shield

> Electron detector outside vacuum pipe \rightarrow RF • shield used to mitigate beam impedance issues

Synchrotron Backgrounds in ESR Compton

Synchrotron radiation from strong dipoles (D6EF, D3EF) too large – thick shield needed for photon detector

→ Weak dipoles with small bend will re-direct synchrotron flux from strong dipoles to be outside photon detector acceptance

Backscattered Photons

Backscattered photons require unimpeded transport from laser IP to photon detector \rightarrow quadrupole aperture = 37 mm (radius)

At larger distances from laser, photon cone at larger radius than quad aperture \rightarrow this can be accommodated by careful coil design, hole in return steel

Arc quadrupole

ESR Compton: Laser System

- Laser system based on similar system used in JLab injector and LERF
- Gain-switched diode seed laser
 10 ps pulses @ 1064 nm
 - Variable frequency allows optimal use at different bunch frequencies (100 MHz vs 25 MHz)
- Fiber amplifier \rightarrow average power 10-20 W
- Optional: Frequency doubling system (LBO or PPLN)

• Partially reflective exit window to monitor reflected laser polarization

Development underway at Jefferson Lab

ESR Compton: Position Sensitive Detectors

- Position sensitive detectors needed to measure:
 - Scattered electrons $\rightarrow P_L$
 - Backscattered photons $\rightarrow P_{T}$
- Technology choice diamond strips → radiation hard, good time response
- Diamond used during Q-Weak expt at JLab → no performance degradation after 10 MRad of exposure
- Required detector segmentation = 500 μ m (electrons)/100-200 μ m (photons)
- Detector size = 6 cm (electrons), 5 cm (photons)
- Custom ASIC required → new "FLAT32" chip based on "CALYPSO" (used at LHC) developed for Jlab/MOLLER
 - Already meets timing requirements of EIC (10 ns)

JLab Hall C diamond detector

ESR Compton Photon Calorimeter

- Will use a Forward EMCAL module from EPIC detector for photon calorimeter
 - Block of $5 x 5 x 17 \text{ cm}^3 \text{ W/SciFi}$, subdivided into 4 towers
 - 2 cm light guide from block to PMT
 - Expected resolution:

$$\frac{\sigma_E}{E} \approx \frac{10\%}{\sqrt{E}} \bigoplus 1 - 3\%$$

 Only modest resolution required since calorimeter will be used in threshold-less integrating mode for longitudinal polarization measurements

RCS Compton Polarimeter

RCS relocated outside ESR/HSR tunnel \rightarrow new location for polarimeter needs to be found \rightarrow Possibly near straight section, with laser just before last dipole in arc?

Polarimeter laser and detector requirements driven by beam structure

```
\rightarrow Bunch frequency ~ 1 Hz
```

 \rightarrow Bunch charge: 7 nC

→ RCS ramps from 0.75 GeV to full injection energy (5, 10, 18) GeV

Bunch will have different energy each time it passes Compton

→ Energy dependence of analyzing power makes bunch-by-bunch measurement impossible

 \rightarrow Average over several bunches

Jefferson Lab Requires measurement in *multiphoton* mode – several thousand collisions per crossing 20

RCS Compton Detector Simulations

Multi-photon mode Compton polarimeter

→ Polarization will be extracted by measuring the energyasymmetry vs. position

→ Total energy deposited in the detector for each laser helicity state

Energy deposited in each strip of diamond detector

Simulated 10 laser pulses \rightarrow 10,000 backscattered photons per pules

Summary

- EIC requirements proposes several challenges for the needed polarized electron beam
 - High intensity and polarization
- Electron beam components:
 - Polarized electron gun, linac+BAR+RCS, electron storage ring
- Integration of beam polarimeter(s) requires careful planning
- ESR Compton has challenging requirements
 - Bunch-by-bunch operation with small bunch spacing
 - First polarimeter to measure PL and PT with high precision simultaneously
- Location for polarimeter in "new" RCS to-be-determined
 - Detector and laser requirements unchanged

