

P-Carbon Polarimetry at EIC

Haixin Huang For the EIC Polarimetry Team

Mar 11th, 2025 Workshop on Polarized Ion Sources and Beams at EIC CO In @BrookhavenLab Stony Brook University

Outline

- RHIC p-Carbon Polarimeter
- EIC Polarimeter Development
- Summary

The RHIC p-Carbon CNI Polarimeter

Elastic scattering: interference between electromagnetic and hadronic amplitudes in the Coulomb-Nuclear Interference (CNI) region.

Components of Polarimeters

- Ultra-thin ribbon targets:
 - $\approx 10 \, \mu m \, \times \, 50 \, nm$
- Target holder inside beam pipe

Carbon Event Selection

- The effective energy losses E_{loss} and time offset t_0 are determined from the kinematical fit to the banana-like band $E_{kin} = E_{meas} + E_{loss} = \frac{1}{2}M \times \frac{L^2}{(t_{max} + t_0)^2}$
- Carbon Events are selected within a Time-Energy window, 400 < T <900 keV, optimized for minimal background Brookhaven National Laboratory

Bunch by Bunch Polarization

National Laboratory

Depolarization and Polarization profiles

Polarization loss from intrinsic resonances: polarization lost at edge of beam \rightarrow polarization profile

• Impact of polarization profile on beam polarization at collisions P_{coll} :

$$P(x,x',y,y') = P_0 e^{-\frac{x^2 + x'^2}{2s_{x,P}^2}} e^{-\frac{y^2 + y'^2}{2s_{y,P}^2}}; \quad I(x,x',y,y') = I_0 e^{-\frac{x^2 + x'^2}{2s_{x,I}^2}} e^{-\frac{y^2 + y'^2}{2s_{y,I}^2}}; \quad R_H = \frac{s_{x,I}^2}{s_{x,P}^2}; \quad R_V = \frac{s_{y,I}^2}{s_{y,P}^2};$$

$$\langle P \rangle = P_0 \frac{1}{(1+R_H)(1+R_V)}; \quad P_{coll.} = P_0 \frac{1}{\sqrt{1+\frac{1}{2}R_H}\sqrt{1+R_H}\sqrt{1+\frac{1}{2}R_V}\sqrt{1+R_V}} = \langle P \rangle \frac{\sqrt{1+R_H}\sqrt{1+R_V}}{\sqrt{1+\frac{1}{2}R_H}\sqrt{1+\frac{1}{2}R_V}}$$

- For $R_H \approx R_V \approx R$ and small: $P_0 = \langle P \rangle (1+R)^2$; $P_{coll} \approx \langle P \rangle (1+l/2R)$
- <P> measured with H jet polarimeter; R measured with pC polarimeter
- Typical best values at RHIC 255 GeV: $P_0 = 80\%$; <P>=57%, R=0.18, P_{coll} .=62%

Note that P_0 , the polarization of the core particle, should be equal to the maximum achievable polarization.

Loss of average polarization is compatible with development of polarization profiles \rightarrow all remaining polarization loss in AGS and RHIC is due to intrinsic resonances. (no coherent polarization loss)

Operation of p-Carbon Polarimeter

- Due to the target orientation and thickness variation, the calibration of p–Carbon polarimeter with polarized jet can not be once-and-done.
- The polarized hydrogen jet needs to be running in parallel.
- The jet can give polarization error of $\pm 3\%$ for an 8-hour store.
- In sweep mode, a polarization of ±2% measurement can be done by p-Carbon polarimeter in about 30sec.
- Normally, four sets of polarization measurements are done at store:
 0, 3, 6, and 8 hours into a store. Each set consists of two polarization measurements done with horizontal and vertical targets, respectively. Besides polarization information, polarization profile information is also obtained. Several polarization measurements over a store provide possible polarization decay over time.

Outline

- RHIC p-Carbon Polarimeter
- EIC Polarimeter Development
- Summary

Beam Parameter Differences between RHIC and EIC

Parameters	RHIC	HSR
No. of Bunches	110	290
Energy (GeV)	255	275
Bunch spacing (ns)	106	10
Bunch Intensity [10 ¹¹]	2	2.76
RMS normalized emittance, h/v [um]	2.5	5/0.5

- More intensity will generally cause more energy deposit in the target. Can Carbon target survive?
- The impedance of the polarimeter chamber and target holder may also be problematic.
- Less bunch spacing, means the separation of events from different bunches is not possible with current Si detector configuration.

EIC Proton Polarization Requirements

- Combination of absolute normalization with fast measurements
 - Time dependent polarization decay
 - Transverse and longitudinal bunch profiles
 - Bunch by bunch polarization
- High luminosity (short bunch spacing)
 - Improvements in detector performance and read-out needed
 - Veto for prompt particles
 - Time resolution of digitization
 - Streaming DAQ
 - Ribbon target material

EIC Proton Polarization Options

	Polarized HJET	Unpolarized HJET	Carbon polarimeter	Forward neutrons	
Absolute beam polarization	+		*		(*) Increased systematics (*) A_N can be calculated, but needs to be confirmed
Polarization decay	*	*	•	•	
Transverse profile	*	*	+	(*)	(*) depends on the target
Longitudinal profile	+	•	•	*	
Polarization vector	(*)	+	•	•	(*) limited space for detectors
Bunch polarization	*	*	+	*	pC only measures \mathbf{P}_{x} and \mathbf{P}_{y}

Carbon fiber targets at EIC

Target heating (code by Peter Thieberger)

• With realistic beam sizes, target heating about the same at RHIC and EIC

- By increasing the beta function at the polarimeter location (30m-> 240m), the beam size can be significantly increased. The target heating can be managed at the similar level in RHIC with higher total intensity and smaller emittance.
- This also implies a longer target and different target chamber design.

Impedance Calculations

Short bunch spacing at EIC(10 ns)

- Fiber target chambers ok for single-bunches
- Higher order modes \rightarrow pumping ports \rightarrow RF shielding

RF simulations of C targets

 RF heating more severe at EIC → target holders need to be RF-optimized

Wakefield and Impedance Simulation in Progress

- Performed CST simulations of wakefield, impedance, and the beam induced resistive wall (RW) loss for the HSR polarimeter with both RHIC and EIC parameters.
- Only one target holder is incorporated in the simulations.
- The beam induced loss seems comparable for both target holders with the RHIC beam.
- For the EIC proton beam, the aluminum target holder introduces large wakefield oscillations and resonances in the impedance plot.
- The amplitude of the wakefield and impedances reduces significantly while using the alumina (dielectric target).
- Simulations done so far is with 2*10¹¹/bunch. It will be carried out for higher intensity 2.8*10¹¹/bunch.

Direct Measurement of the C Target Temperatures

- Up to now, the temperatures of the polarimeter carbon targets during interaction with proton beam cannot be directly measured.
- A dedicated optical light collection system was implemented in IP12 to capture and analyze emitted light across the visible and near-infrared spectrum.
- This study investigates the feasibility of using light emission as a diagnostic tool to determine the target temperatures.
- A dedicated experiment with proton beam is planned in run 25.
- This work is critical for assessing the applicability of carbon fiber targets in the EIC under increased beam intensity.

New layout of hadron polarimetry at IP4

- Choice of location driven by size of HJET/drift space
 - C, polarized H and ³He targets in one place to minimize spin rotation between them
- HJET setup in 510 for refurbishment/modifications (Q4/25)
 - Double layer silicon detectors
 - Breit-Rabi upgrade with QMA (H₂ content)
 - Target chamber/magnetic field
 - Upgrade slow control system, plus EPICS database

Electron-Ion Collider

Polarimeter Schedule

Polarimeters ready for beam development (L2_0600 Construction of Components Complete)

Summary

- Basic polarimetry methods established
 - New chamber with additional lock chamber to hold extra targets will be needed.
 - RF shielding is needed for pump ports and view ports etc.
 - Longer C targets are needed, and the aluminum target holder will need to be replaced with alumina.
 - Readout/detector choice for C targets are still needed
- Design progressing towards CD-2 in FY25 and CD-3 in FY26
- Demands at EIC significantly higher than at previous facilities
 - designs are in progress to meet demands
- Future modifications beyond EIC baseline not precluded with current designs
- All polarimeters shall be ready for operation at start of polarized beam commissioning

Backup Slides

Hadron Polarimeter R&D

F6

R6

Second detector layer installed in pC polarimeter

· Included in DAQ since start of Run22 operations

F1

R1

~1 cm

Data from RHIC Run 22

- Hybrid simulation
 - PYTHIA & GEANT
 - Repeated with 10 ns bunch spacing

Proton time-of-flight

