3/10/25, 4:31 PM FewBodyTitlePage | Desmos

Few-body elastic scattering polarimetry

Nigel Buttimore

Trinity College Dublin Ireland

March 11, 2025

- 1. Amplitudes and Analyzing Powers
- 2. Kinematic Region and Polarimetry

Polarized Ion Sources and Beams at EIC
Stony Brook University
Center for Frontiers of Nuclear Science

ANALYZING POWER for POLARIZED LIGHT IONS

Z and m: charge and mass of the ion with magnetic moment $\ \mu \cdot \frac{e}{2m_p}$

 $A_{\rm N}$: analyzing power for incident polarized ion (neglecting double-flip)

2 Im (non-flip* × spin-flip)/(
$$|non-flip|^2 + |spin-flip|^2$$
)

Re-scaled amplitudes by e.g. $\sigma_{\rm tot}$ do not alter $A_{\rm N}$ so that we write

non-flip:
$$i+\rho-\frac{t_C}{t}e^{i\delta_C-(b_h-b_e)t}$$

$$\frac{m}{\sqrt{-t}}$$
 spin-flip: $i I_S + R_S - \frac{t_C}{2t} \left(\frac{\mu}{Z} - \frac{m_p}{m} \right) e^{i\delta_C - (b_h - b_m)t}$

EM and hadronic amplitudes equal at: $-t_C = \frac{4hc~Z\widetilde{Z}}{137~\sigma_{\mathrm{tot}}} \approx \frac{Z\widetilde{Z}}{14~\sigma_{\mathrm{tot}}}~(\mathrm{GeV/}c)^2$

Hadronic slope: $2b_h$; EM form factor slopes: b_e , b_m ; Target charge: $\overset{\sim}{Ze}$

ANALYZING POWER AT LOW MOMENTUM TRANSFER

The analyzing power for an incident polarized hadron is approximately

$$\frac{m_p}{\sqrt{-t}} A_{N} = \frac{\left(\frac{\mu}{Z} - \frac{m_p}{m} - 2I_S\right) \frac{t_C}{t} - 2R_S + 2\varrho I_S}{\left(\frac{t_C}{t} - 2\varrho - 2\delta_C\right) \frac{t_C}{t} + 1 + \varrho^2 + R_S^2 + I_S^2}$$

Further terms appear in A. Poblaguev et al., PRL 123 (2019) 16, 162001

Spin $\frac{\mu}{m_p}$ and charge $\frac{Z}{m}$ terms arise from Gordon decomposition (1928)

The ${\cal A}_N$ peak is related linearly to the unknown hadronic spin-flip term ${\cal I}_S$

Multiplying by the square of $x = t/t_C$ the analyzing power approximates

$$\frac{m_p}{\sqrt{-t_C}} \frac{A_N}{\sqrt{x}} = \frac{\left(\frac{\mu}{Z} - \frac{m_p}{m} - 2I_S\right)x}{1 - 2(\varrho + \delta_C)x + x^2}$$

Squared hadronic terms and R_{S} are relatively tiny for $1 < -1000 \ t < 10$

0.5-

FEW-BODY ELASTIC SCATTERING ANALYZING POWER

m and Z: mass and charge of ion with magnetic moment μ

 μ : in units of nuclear magnetons with proton mass m_p

 $A_{\rm N}$: analyzing power for incident polarized ion

$$\left(\sqrt{3}, 3^{3/4}/4\right)$$

$$-t_{\rm C} = \frac{4hc Z \tilde{Z}}{137 \sigma_{\rm tot}} \approx \frac{Z \tilde{Z}}{14 \sigma_{\rm tot}} \text{ GeV/}c^2$$

where
$$\frac{A_0}{\sqrt{-t_{\rm C}}} = \frac{\mu}{Z m_p} - \frac{1}{m} - \frac{2 I_S}{m_p}$$

Time for recoil mass R with charge \tilde{Z} to reach distance d:

Dhua Latt Dode 12000

Absorption corrections: B Z Kopeliovich, Phys Lett B816, 136262

$$x = t / t_{\rm C}$$

 $A_{\rm N}$

(%)

p↑ - p assuming

also p↑ - 3He for $\sigma_{\mathrm{tot}} = 80\,\mathrm{mb}$

 $\sigma_{\rm tot}^{}=40$

mb

 $p\uparrow$ - C for $\sigma_{\rm tot}=330\,{\rm mb}$

Absorption corrections: Poblaguev, PRD 110 (2024) 5, 056033

Kopeliovich & Trueman PRD 2001, 64, 034004; & 2312.03702

For other values of $\sigma_{\rm tot}$, re-scale with: $t_{\rm C} = \frac{-Z\widetilde{Z}}{14\,\sigma_{\rm tot}({\rm mb})}$

3He† - C for $\sigma_{\mathrm{tot}} = 660\,\mathrm{mb}$

3He↑ - 3He

assuming $\sigma_{\rm tot} = 160\,{\rm mb}$

also 3He \uparrow - p for $\sigma_{\rm tot}=80\,{\rm mb}$

Corrections needed for Coulomb phase δ_{C} , hadronic spin-flip I_{S} , absorption and ϱ

 t/t_{C}

20-

Recoil angles indicated for inelastic and elastic scattering Purple region has been successful for proton polarimetry Minima for the two inelastic excitation curves are at dots.

$$\csc \phi_{\text{in}} = \frac{P\sqrt{1 + 2M/T}}{W(1 + hM/T)}$$

$$k = (2m + \delta) \delta / (2MW)$$

$$\delta = 135 \, \text{MeV}$$

$$\csc\phi_{\rm el} = \frac{P}{W}\sqrt{1 + 2M/T}$$

 $p+p \to p^*+p, m^* = m+135 \text{ MeV}$ Inelastic angle minus elastic angle:

150

$$p+p \rightarrow p+p$$
, all at $E=50~{\rm GeV}$

p+p
$$\rightarrow$$
 p+p, all at $E=50~{\rm GeV}$ $\sin\phi_{\rm in}-\sin\phi_{\rm el}=\frac{0.5~(2m+\delta)~\delta}{P\sqrt{(2M+T)~T}}$

Upper: p+135 MeV (pion production)

Lower: p+135 MeV (pion production)

Lowest curve: elastic p - p scattering

T (MeV)

Polarized Beams and Ion Sources at EIC, CFNP, Stony Brook University,

50

Nigel Buttimore, Trinity College Dublin, Few-Body Elastic Scattering Polarimetry, 11 March 2025

200

1.5-

(degree)

3He + 12C → 3He + 12C*

W = E + M; $R - M = \Delta = 4439 \text{ keV}$

 $K = (2E - \Delta) \Delta / (2RW)$

 $\left(\frac{KR}{1-K}, \arcsin\left(\frac{W}{P}\sqrt{K(2-K)}\right)\right)$

Recoil angles indicated for inelastic and elastic scattering Purple region should be considered for helion polarimetry Minima for the two inelastic excitation curves are at dots. Upper C+4439 keV (1st excited state) Lower h+5494 keV (breakup to p + d) Curve with both excitations further up

$$k = (2m + \delta) \delta / (2MW); \delta = 5494 \text{keV}$$

$$\left(\frac{kM}{1-k}, \arcsin\left(\frac{W}{P}\sqrt{k(2-k)}\right)\right)$$

$$\csc\phi_{\rm in} = \frac{P\sqrt{1+2M/T}}{W(1+kM/T)}$$

$$\csc\phi_{\rm el} = \frac{P}{W}\sqrt{1 + 2M/T}$$

3He+12C→ 3He*+12C, m* = m+5494 keV

3He+12C \rightarrow 3He+12C, all at $E=100~{\rm GeV}$

Inelastic angle minus elastic angle:

$$\sin \phi_{\rm in} - \sin \phi_{\rm el} = \frac{0.5 (2m + \delta) \delta}{P \sqrt{(2M + T) T}}$$

T (MeV)

Polarized Beams and Ion Sources at EIC, CFNP, Stony Brook University, Nigel Buttimore, Trinity College Dublin, Few-Body Elastic Scattering Polarimetry, 11 March 2025

φ (degree)

3He + 3He → 3He + 3He*

W = E + M; $R - M = \Delta = 5494$ keV

 $K = (2E - \Delta) \Delta / (2 R W)$

 $\left(\frac{KR}{1-K}, \arcsin\left(\frac{W}{P}\sqrt{K(2-K)}\right)\right)$

Recoil angles indicated for inelastic and elastic scattering Blue domain should be considered for helion polarimetry Minima for the two inelastic excitation curves are at dots. Upper curve: target break-up to p + d Lower curve: incident breakup to p + d Lowest curve: elastic scattering of h + h

 $k = (2m + \delta) \delta / (2 M W); \delta = 5494 \text{ keV}$

$$\left(\frac{kM}{1-k}, \arcsin\left(\frac{W}{P}\sqrt{k(2-k)}\right)\right)$$

$$\csc \phi_{\rm in} = \frac{P\sqrt{1+2M/T}}{W(1+kM/T)}$$

 $\csc\phi_{\rm el} = \frac{P}{W} \sqrt{1 + 2M/T}$

3He + 3He \to 3He* + 3He, $m^* = m + 5494 \text{ keV}$

3He + 3He \rightarrow 3He + 3He, all at: $E=100~{\rm GeV}$

Inelastic angle differs from elastic angle:

$$\sin \phi_{\rm in} - \sin \phi_{\rm el} = \frac{0.5 (2m + \delta) \delta}{P \sqrt{(2M + T) T}}$$

T (MeV)

Polarized Beams and Ion Sources at EIC, CFNP, Stony Brook University,

Nigel Buttimore, Trinity College Dublin, Few-Body Elastic Scattering Polarimetry, 11 March 2025

Few-body elastic scattering polarimetry

Conclusions

- 1. Absolute polarimetry required to assess hadronic spin contribution
- 2. Accurate total cross sections needed for precise analyzing powers
- 3. Polarization levels above nuclear excited states should be studied
- 4. A thorough understanding of the small corrections would be useful

Thank you

Polarized Ion Sources and Beams at EIC - Stony Brook University

(E,P) Projectile Energy and Momentum satisfy: $E^2=P^2+m^2$

EXTREMUM OF THE RECOIL ANGLE IN TERMS OF RECOIL KINETIC ENERGY

(QU,Q) Recoil Energy & Momentum, U=c/v, v recoil velocity

 $(m, m + \delta)$ Projectile & Ejectile masses; $a = m^2, \ c = (m + \delta)^2$

 δ and Δ : first excited states or break-up level of the projectile m and target M

 $(M, M + \Delta = R)$ Target and Recoil masses; $b = M^2, d = R^2$

 $4b P Q \sin \phi = (s-a-b)(b+d-t) + 2b(u-a-d)$

Recoil angle $\theta = 90^{\circ} - \phi$ in terms of Recoil Momentum Q and invariants s, t, u

s-a-b = 2ME, and b+d-t = 2MQU = 2M(T+R)

u-a-d = (b+d-t)-(s-a-b)-(d+b)+(c-a)

Invariants in terms of reciprocal Velocity U, Incident E, and Recoil Energy QU

 $= 2M QU - 2ME - 2MR - \Delta^2 + (2m + \delta) \delta$

 $PQ\sin\phi = (E+M)QU - ER - MR + (E-\Delta/2)\Delta + (m+\delta/2)\delta$

Recoil angle ϕ in terms of U, E, QU, and the excited state increments δ , Δ

 $P\sin\phi = WU - [WR - (E - \Delta/2) \Delta - (m + \delta/2) \delta]\sqrt{UU - 1} / R$

Define: $k = [(E - \Delta) \Delta - (m + \delta/2) \delta]/(WR)$, and hence

Define k to find an extremum with respect to U, and wrt recoil kinetic energy T

 $P\sin\phi/W = U - (1-k)\sqrt{UU-1}$, extremum $d\sin\phi/dU = 0$

 $1 = (1-k) \; U_e / \sqrt{U_e U_e - 1} \; , \quad \text{leading to:} \; \; U_e = 1 / \sqrt{k \, (2-k)} \; .$

The extreme recoil kinetic energy is: $T_e = RU_e/\sqrt{U_eU_e-1} - R = R/k-R$

and hence: $T_e = kR/(1-k)$, with: $\sin \phi_e = W\sqrt{k(2-k)}/P$

Polarized Beams and Ion Sources at EIC, CFNP, Stony Brook University, Nigel Buttimore, Trinity College Dublin, Few-Body Elastic Scattering Polarimetry, 11 March 2025