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Why Is Spin Flipper Needed?

To reduce systematic error, collisions are arranged with various collision
pattern (++, +-, -+,--). Because the same bunches collide for a given IP,

periodically reversing the spin will reduce systematic errors for asymmetry
measurements even further.




Polarization Passing through Resonance

Resonance conditions depend on
energy (y). During acceleration
many resonances are crossed

What happens to the spin of a
particle passing through a
resonance of strength |e| ata
crossing rate a = (dGy/d@) is
given by the Froissart-Stora
Formula:

s

(x/2)(|el2/a) _ 1
P;

= 2exp~

P; /P;=final and initial polarization ratio

a = crossing rate
|e| = resonance strength

Brookhaven

National Laboratory

©

PP,

B DDE-01

&.00E-01

4. 00E-01

2. 00E-D1
0.O0E=0
O00E+ 1.00E+D& 1.50E=05 2 DOE+05

-2 00E-O1

-4, DDE-0d

-6. 0OE-01 With adiabatic condition satisfied,

Spin flip!

-E.DDE-0d P P //
-1 O0E+00

No. of Orbit Turns

2
When adiabatic condition is satisfied, % > 1,

polarization amplitude can be preserved, by a full spin flip



Spin Flipper

The spin flip can be achieved by an artificial resonance generated by a dipole running
with certain rf frequency. It is done as following: ramping the frequency of the spin
flipper tune v, across the spin tune v, adiabatically and the spin can be flipped
following the Froissart-Stora formula:
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V.A. Anferov, et al., Phys. Rev. Accel. & Beams 3,
041001(2000). Spin flip results at 202.7MeV with single
AC dipole.
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Spin Flipper Challenges at RHIC

. ;Fhe s_inll}ale device can’t be applied to high energy colliders such as RHIC where spin
une Is 2.

* First, a single AC dipole generate two resonances located at v = v,. andv, = 1 —
Vose, the so-called mirror resonance. When v is adiabatically sweeping across v¢=1/2,
the polarized beam simultaneously crosses the spin resonance v, = v, from one side
and the spin resonance v¢ = 1 —v,,. from the opposite side. 'T'he_ contributions from
both can cancel each other or interfére. No full spin flip can be achieved.

. ]§Iecond, the orbit distortion due to the spin flipper has to be zeroed outside the spin
Ipper.

* Third, there is a spin tune spread related to the slope of dispersion function in the snake.
Spin tune of a ring with two snakes is given by

__1+(1+ﬂWH91—9ﬂ
2 21

Theredis a spin tune spread related to the synchrotron motion and the resulting momentum
spread:

(1 +Gy) Ap
(D} — D) —

b4 “p

Av,. =

5

M. Bai and T. Roser, Phys. Rev. Accel. & Beams 11, 091001(2008).
Brookhaven S-R. Mane, Phys. Rev. Accel. & Beams 12, 099001(2009).
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Mirror Resonance is Visible with Old Flipper
Driving tune is 0.49. The spin tune is changed by changing snake current, about 5A out of
320A for the two dips. The two colors correspond to 2 AC dipoles(black) and 1 AC dipole

case(red).
The structure looks similar on both sides.

Polarization[%] M. Bai etal. , IPAC10 Proc., p. 1224.
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Eliminating the Mirror Resonance

 Use 2 closed bumps to avoid spin rotations in quadrupoles and
multipoles.

* Phase difference between the bumps must be equal to the spin
rotation of one DC dipole.

 Phase difference accuracy better than % degree.
« Careful closure of the bumps.
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The Effect of Spin Chromaticity

* The spin tune is v:%+7/G(01—6’2)

* 0, and 6, are the total horizontal deflections angles in the two half
rings between the snakes

* For an off-momentum particle the spin tune change is

Av = ﬁ{(Dz '—Dl')ﬁ + higher order}
7 p

 The lattice needs to have small AD' between the two snakes.
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Fast or Slow Sweeping Speed?

2 00E+05

— v, - small dD'
— v, - large dD'

Spin tune, ACD frequency

— vggo - slow crossing speed
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RHIC Spin Flipper

In summary, these are the key requirements for the spin flippers in the presence of

snakes:

1.  The mirror resonance must be eliminated.

2. The vertical orbit distortion from spin flipper must be zeroed.

3. The spin tune spread must be small. In the case of RHIC, the AD’ of two
snake locations must be reduced.

There were several iterations of the spin flipper designs. It evolved from two AC

dipoles to five magnets, and eventually nine magnets. The 9-magnet design

satisfies the first two requirements.

" horizontal bump

AC u b ﬁ,-* ACT bump #2
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H. Huang, J. Kewisch, C. Liu, A. Marusic, W. Meng, F. Meot, P. Oddo, V. Ptitsyn, V.

Ranjbar and T. Roser Phys. Rev. Lett. 120, 264804 (2018).
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Spin Flip Efficiency vs. AD’

The spin flip efficiency at RHIC injection as function of D’ difference. The
D’ difference reduction is critical for good spin flip efficiency.
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Spin Flip Efficiency vs. Sweep Time (Turns)
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Spin Flipper for EIC

For EIC, the main RF cavity will be 28MHz. The synchrotron frequency is increased
from 6Hz to 60Hz. To avoid multiple crossing, the number of turns for the spin

. . €l?
flipper operation must be reduced even further. To get % > 1, |€| must be
increased.
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Slmulatlons for Spin Flipper for EIC

Spin Flip efficiency for different ACD strengths. Simulations are done with 28MHz at
255GeV with v, = 0.02 (namely v,y = [0.48, 0.50] with v, = 0.4962). Froissart-Stora
formula is plotted as well.

* To reach 99% spin flip efficiency, AC dipoles need to be ~4 times stronger.
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Driven Spin Coherent Motion

Nearby an isolated spin resonance, the stable spin direction is aiven by
Vs = Vosc P ‘6‘

s x
\/‘Vs o Vosc‘z + ‘€ 2 \/‘VS o UOSC‘Z + ‘6‘2

where € is the resonance strength of the spin flipper, i is the orbit turn number.

P, = coS(2v i — V)

tan 6, = P, — G
’ Py Us = Vosc

The advantage of this method is that it is nondestructive. When the driving force is
adiabatically removed, the spin will return to vertical.




Keys for the Measurement

1. Generate large enough oscillation amplitude;

2. We need large amount of data from polarimeter, but the memory on the
front-end board Is not larger enough. One has to align the TBT data properly
to gain statistics. Align the data to the right phase is critical. This was done
by align the events to spin flipper driving signal (see next page).

3. The small spin tune spread is also important. The large spin tune spread
would smear out the oscillation.

If one can measure this spin S>.0.8
coherent precession turn-by-turn, 0
the spin tune can be measured.
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Spin Tune Measurement Data Flow

|<-~240 bunch crossing or 2 turns -> /
Divide it into 6 time bins Spin flipper driving signals

* We binned the carbon events in bins of bunches crossings since the most recent spin
flipper signal, ~39kHz. We then grouped these bins into 6 big bins, 1-40, 41-80, 81-120,
etc.

e The data in each of bin is then analyzed normally, to get the polarization and the tilt angle.
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Driving Coherent Spin Precession at Injection
P.

X
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The curve can tell if the driving tune is higher or lower than the spin tune. The left is with
driving tune below spin tune. The right one is the opposite.
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Driving Coherent Spin Precession at 255GeV

P, |
5 = tan(0, — 6y) = tan 6y cos(2av,e.i — V). i is the No. of bins.

}.'
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The driving tune is below spin tune.
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Spin Tune Measurement Results

TABLE I. Spin tune measurement results. The first five cases
are at 24 GeV and the last two cases are at 255 GeV. The
precession amplitude angle 6, is in the second column. The third
column is the drive tune of the ac dipoles. The derived spin tune
from driven coherence is in the forth column. Last column is the
spin tune range from spin flipper operation.

Set 6, (rad) Vose Vs from coherence v, from flip
1 0273 £0.059 0.499 0.4999 £+ 0.0002 0.4975-0.5

2  0.1344+£0.015 0.498 0.4998 £ 0.0002 0.4975-0.5

3  0.109 £0.015 0.5004 0.5026 +0.0003 0.5022—-0.5025
4 0.132 +£0.021 0.5009 0.5027 £ 0.0003 0.5022-0.5025
5 0.062+0.015 0.499 0.4951 £0.0010 0.491-0.495
6 0.2631+0.033 0.494 0.4961 £ 0.0003 0.495-0.4965
7  0.174 20.024 0.493 0.4962 £ 0.0005 0.495-0.4965

«  With driven spin coherent precession, the transverse polarization components are
measured. Take the ratio of the two components, the oscillation angle can be
derived.

« The distance of driving tune to spin tune varied in above seven measurements,
from 0.001 to 0.004. All of these measurements were done with small AD’ lattice.

H. Huang J. Kewisch, C. Liu, A. Marusic, W. Meng, F. Meot, P. Oddo, V. Ptitsyn, V.
Ranibar T Roser and W B Schmidke PRIl 122 204803(2019)




Spin Tune Measurement with AC Dipole

« Without mirror resonance compensation, The driving tune range is
limited to above or below 0.5. In our case, it is limited to 0.5-0.51.

 There was a concern in run24 if the spin tune is indeed near 0.5.

 DC dipoles require water cooling, and we could not turn them on.
Instead, we use AC dipole to generate resonance, and the lattice
was not AD’ suppressed lattice.

* The idea Is as following: first, we need to search for spin flip or
depolarization (due to the lattice choice). Then we narrow down the
driving tune range to locate the range of spin tune.




Spin Tune Measurement with AC dipole in Run24

Sweep range Pol. dip? Snake current

0.50-0.51 No O5A start setting
0.50-0.51 No 90A
0.50-0.51 Yes 100A

0.505-0.51 Yes 100A
0.505-0.5075  Yes 105A
0.505-0.5075 No 110A
0.5025-0.505 No 110A
0.5-0.5025 Yes 110A end setting

0.8 i -

« Quter magnet current was increased 15 A to |
move v, from: vg > 0.51 = 0.5025 > v, > 0.5 ' [
* The blue snake setting was adjusted in fill g L] . }/WLT 7
34584 (in 2024 100GeV pp operation). The | - ffﬁ/ﬁ\% -- SR
relative polarization gain is about 10% after ..
the change. - e

Yellow Jet Polarization

=y g 0.2 I .
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Summary

 Polarization can be flipped by sweeping rf device frequency cross
the spin precession frequency. At high energies, full spin flip has
more constraints. The RHIC spin flipper localizes the orbit
distortion to within the spin flipper. This makes it possible to flip
the spin without depolarization. In addition, new optics to suppress
th% _spindtune spread Is critical. 97% flip efficiency has been
achieved.

« There are ways to measure the spin tune, but techniques used to
date effectively cause depolarization. A new way to measure the
frequency of the precession without depolarizing the beam has been
demonstrated. A controlled coherent spin precession can be
Introduced during the measurement and removed afterward. The
key Is to get driving tune close to the spin tune without
destabilization.

 Both techniques could also be used at EIC, but stronger magnets
are needed.

 Without stronger magnets, AC dipole can still be used to check spin
I tunes, but in a destructive way.

§ 2% Bronkhaven
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RHIC Snake Configuration

It is optimal to adjust the snake axes to 0° Full Sna._ke with 0° axis
Minimum field integral .- Rotation Angles for a Heligal Snake 5
Minimum orbit excursion L7g 190 =< ?%I/

No change in field and power supply 60170
polarities 50 160
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Dipoles in the RHIC Tunnel
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Tune from Driving Tune Scan @ Injection
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Use above formula, one
can plot the vertical
polarization as function
of vicinity to the spin
resonance. The data
follow the curve very
well.

Polarization was

measured with spin
flipper on at fixed tune
for 3 sec.

= AD'=0.044, 24GeV
s—a AD'=0.003, 24GeV
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