

Lorentz-Force Free RF Spin Manipulator

Meeting on Polarized Ion Sources and Beams at EIC

Jamal Slim 11.03.2025

Content

- Design concept
- Electromagnetic simulations
- RF driving circuit
- Uncertainties
- Lorentz-Force measurements
- Spin Manipulation
- Potential use at EIC

Experimenl Enviropnment

COSY: COoler SYnchrotron

- **Polarized** and unpolarized protons and deuterons synchrotron and storage ring
- Nuclear and particle physics, particularly spin physics
- Two 180 deg. ~ 52 m each
- Two straight sections ~ 40m each
- Max momentum 3.7 GeV/c
- · Electron and stochastic cooling
- Polarimeter (JePo,)
- Spin Manipulators
 The waveguide RF Wien Filter

The RF Wien Filter

Electromagnetic Concept

Waveguide RF Wien filter

- Transverse electromagnetic mode
- Orthogonality is fulfilled by-design

Field quotient is controlled by the complex load impedance: wave mismatch

$$\underline{\vec{E}}(\vec{r}) = \left(E_0 e^{-jk_z z} - \Gamma E_0 e^{jk_z z}\right) \vec{e}_x$$
$$\underline{\vec{H}}(\vec{r}) = \left(H_0 e^{-jk_z z} + \Gamma H_0 e^{jk_z z}\right) \vec{e}_y$$

$$E_x = c \cdot \beta \cdot \mu_0 \cdot H_y$$
$$Z_q = \frac{E_x}{H_y} = c \cdot \beta \cdot \mu_0 \approx 173 \ \Omega \checkmark$$

This is designed for a 970 MeV/c deuteron beam with a revolution frequency ~ 750 kHz, β ~0.459

Wien filter condition

- Orthogonal electric and magnetic fields
- The quotient of the total electric and magnetic fields corresponds to the Lorentz β-factor

$$E_x = c \cdot \beta \cdot \mu_0 \cdot H_y$$
$$Z_q = \frac{E_x}{H_y} = c \cdot \beta \cdot \mu_0 \approx 173 \ \Omega$$

Homogeneous electric and magnetic fields

$$\vec{E}_{D} = \begin{pmatrix} E_{x} \\ 0 \\ 0 \end{pmatrix} \vec{H}_{D} = \begin{pmatrix} 0 \\ H_{y} \\ 0 \end{pmatrix} \vec{E}_{\perp} = \begin{pmatrix} 0 \\ E_{y} \\ E_{z} \end{pmatrix} \vec{H}_{\perp} = \begin{pmatrix} H_{x} \\ 0 \\ H_{z} \end{pmatrix} \vec{F}_{E_{\perp}} = \frac{\int |\vec{E}_{\perp}| d\ell'}{\int |\vec{E}| d\ell'} \quad f_{H_{\perp}}^{\text{int}} = \frac{\int |\vec{H}_{\perp}| d\ell'}{\int |\vec{H}| d\ell'}$$

Resonance frequencies for protons and deuterons:

	$f_{ m RF}[m kHz]$							
$f_{\mathrm{RF}} = f_{\mathrm{rev}} k + \gamma \cdot G , k \in \mathbb{Z}$		k = -4	k = -3	k = -2	k = -1	k = 0	k = +1	k = +2
	d	3121.6	2371.4	1621.2	871.0	120.8	629.4	1379.6
	p	1543.9	752.2	39.4	831.0	1622.7	2414.3	3206.0

Electromagnetic Design

Mechanical Support

Mechanical structure

- 1. Sliding RF connectors
- copper electrodes with the trapezium shaping at the edges
- 3. Ceramic insulators
- 4. Mechanical support for electrodes
- 5. Clamps supporting the ferrite cage
- 6. Inner support tube

Fields Profile

Total field integrals at 1kW of input power

$$\int_{-\ell/2}^{\ell/2} \vec{E} \, dz = \begin{pmatrix} 3324.577\\ 0.018\\ 0.006 \end{pmatrix} \text{V} \qquad \int_{-\ell/2}^{\ell/2} \vec{B} \, dz = \begin{pmatrix} 2.73 \times 10^{-9}\\ 2.72 \times 10^{-2}\\ 6.96 \times 10^{-7} \end{pmatrix} \text{Tmm}$$

Lorentz Force

Field Homogeneity

Field Homogeneity

Evaluating the field homogeneity base on beam tracking/simulation

$$\frac{d\vec{v}}{dt} = \frac{q}{m\gamma} \left[\vec{E}(\vec{r},t) + \vec{v} \times \vec{B}(\vec{r},t) \right] \\ -\frac{q}{m\gamma c^2} \vec{v} \left[\vec{v} \cdot \vec{E}(\vec{r},t) \right]$$
$$d\vec{r}$$

$$\frac{dr}{dt} = \vec{v}$$

$$egin{aligned} ec{E}_{\perp} &= egin{pmatrix} 0 \ E_y \ E_z \end{pmatrix} ec{H}_{\perp} &= egin{pmatrix} H_x \ 0 \ H_z \end{pmatrix} \ f_{E_{\perp}}^{ ext{int}} &= rac{\int ec{E}_{\perp} ec{d\ell'}}{\int ec{E} ec{d\ell'}} & f_{H_{\perp}}^{ ext{int}} &= rac{\int ec{H}_{\perp} ec{d\ell'}}{\int ec{H} ec{d\ell'}} \end{aligned}$$

Electromagnetic Fields Homogeneity

Tolerance Analysis

wariabla	distribution		100]
variable	C(909, 9, 0, 1) mm		-		. (0	-
x_1	$G(808.8, 0.1) \mathrm{mm}$		50	\bar{E}	$\tilde{z}_{\perp} = [$	E_y	-
x_2	$G(808.8, 0.1){ m mm}$		-			E_z /	-
x_3	$G\left(182,0.1 ight)\mathrm{mm}$	x_{9}	- 0 E				
x_4	$G\left(182,0.1\right)\mathrm{mm}$						
x_5	$G\left(0,1 ight)$ mrad		-50				-
x_6	$G\left(0,1 ight)$ mrad	X ₄ X				\lor	
x_7	$G\left(0,1 ight)$ mrad		-100				
x_8	$G\left(0,1 ight)$ mrad		U	300	600 z [mm]	900	1200
x_9	$G\left(0,1 ight)$ mrad		-				
x_{10}	G(0,1) mrad		1-	·	·	A	-
10			-	Ŧ	$\begin{pmatrix} H_x \\ 0 \end{pmatrix}$		
	$\int_{-\ell/2}^{\ell/2} ec{E}_{\perp} d\ell$		0.5	H_{\perp} =	$\left(\begin{array}{c} 0\\ H_z \end{array}\right)$		
$f_{E_{\perp}}^{\mathrm{int}} =$	$rac{\mathcal{J}=\ell/2}{\mathcal{L}^{\ell/2}+ec{\mathcal{J}$	E					$\mathbf{\lambda}$
	$\int_{-\ell/2}^{\ell/2} E d\ell$			1-			
	$\int \ell/2 + \vec{t} + i\ell$						
fint	$\int_{-\ell/2}^{\cdot} H_{\perp} d\ell = \gamma$	2	-0.5				-
$J_{H_{\perp}} =$	$\frac{1}{\int^{\ell/2} \vec{H} d\ell} = \mathcal{Y}_{H}$	'H		ľ			-
	$J - \ell/2$ 11 uc		-1				
			0	300	600	900	1200
					z [mm]		

Sensitivity Analysis

- Sobol sensitivity analysis
- Indices are calculated using the PCE method
- Each index value denotes the sensitivity of the variance of the output to the corresponding input variable
- E-field homogeneity
 - Electrodes rotation (62%)
 - Parallelism
- H-field homogeneity
 - Ferrites alignment in *xy*-plane (85%)

Driving Circuit

- **1** signal generator
- 1 signal splitter
- 4 power amplifiers
- 2 isolators
- 9 voltage/current detectors
- 2 power combiners
- 1 1:1 transformer
- 4 vacuum high precision capacitors
- 2 air coils
- 1 water cooled fixed-resistor

High-Power Analog Electronics

- High-power RF electronics (10 kW up to 10 MHz)
- Active cooled
- High-precision
- Custom designed

Probabilistic Model of the Electrical Uncertainties

							-
variable	standardized	description	distribution	Unit		N	
x_1	ξ_1	Capacitance C_L	G(725,1)	pF	T Rf		
x_2	ξ_2	Capacitance C_T	G(503,1)	pF		Lfu	
x_3	ξ_3	Capacitance C_{P1}	G(148,1)	pF	ı⊨ Ω		
x_4	ξ_4	Capacitance C_{P2}	G(334,1)	pF	d ا		
x_5	ξ_5	fixed inductance L_f	G(27.5, 0.5)	$\mu { m H}$	Cp1 p		
x_6	ξ_6	fixed inductance L_p	G(5.07, 0.1)	$\mu \mathrm{H}$	ч л		
x_7	ξ_7	fixed resistance R_f	G(25,2)	Ω	u⊨ €		
x_8	ξ_8	phase variation on electrode 1 (feed 1)	G(0,0.05)	deg	2 p		
x_9	ξ_9	phase variation on electrode 1 (feed 2)	G(1.7, 0.05)	deg	Lp u	2 2	
x_{10}	ξ_{10}	phase variation on electrode 2 (feed 3)	G(178.4, 0.05)	deg			
x_{11}	ξ_{11}	phase variation on electrode 2 (feed 4)	G(179.2, 0.05,)	deg		<u> </u>	234
x_{12}	ξ_{12}	attenuation on the electrode 1 (feed 1)	G(0,0.12)	dB		<u> </u>	
x_{13}	ξ_{13}	attenuation on the electrode 1 (feed 2)	G(0.1, 0.12)	dB			
x_{14}	ξ_{14}	attenuation on the electrode 2 (feed 3)	G(0.3, 0.12)	dB			
x_{15}	ξ_{15}	attenuation on the electrode 2 (feed 4)	G(0.2, 0.12)	dB			

Performance Analysis

Performance analysis under electrical uncertainties

E-field homogeneity 4.33×10^{-7}

```
H-field homogeneity
1.36×10<sup>-4</sup>
```


Measurement of Induced Beam oscillation

Commissioning the RF WF

- Experimental setup
 - Mismatch the field quotient (induce coherent beam oscillation)
 - Measure the beam oscillation at the most sensitive location of COSY

Quantity	Symbol	Value
Deuteron beam momentum	р	970.0000 MeV/c
Deuteron mass	m	1875.6128 MeV/c ²
Deuteron G factor	G	-0.1430
Lorentz factor	β	0.4594
Lorentz factor	γ	1.1258
COSY circumference	$L_{\rm COSY}$	183.4728 m
Revolution frequency	$f_{\rm rev}$	750603.7600 Hz
Vertical machine tune	ν_{v}	3.6040
Vertical β function at BPM 17	$\beta_v^{\rm BPM}$	15.3049 m
Vertical β function at WF	$\beta_y^{\rm WF}$	2.6784 m
Effective length WF	ť	1.1600 m
Frequency WF	$f_{ m WF}$	871000.0000 Hz
Tune WF	$ u_{\mathrm{WF}} $	1.1604

Measurement Setup

Ratio to displacement

I (steerer) [%]	y [mm]	$\Delta y \text{ [mm]}$
-5	-7.756 ± 0.030	-7.466 ± 0.030
-4	-6.684 ± 0.038	-6.395 ± 0.038
-3	-5.629 ± 0.016	-5.339 ± 0.016
-2	-4.518 ± 0.020	-4.229 ± 0.020
-1	-3.489 ± 0.018	-3.119 ± 0.018
0	-2.439 ± 0.029	-2.150 ± 0.029
+1	-1.429 ± 0.020	-1.140 ± 0.020
+2	-0.288 ± 0.028	0.000 ± 0.000
+3	$+0.798 \pm 0.044$	$+1.085 \pm 0.044$
+4	$+1.872 \pm 0.014$	$+2.160 \pm 0.014$
+5	$+2.928 \pm 0.069$	$+3.211 \pm 0.069$

$$R = \frac{A_{\rm t}^{\rm rev} - A_{\rm b}^{\rm rev}}{A_{\rm t}^{\rm rev} + A_{\rm b}^{\rm rev}} = \kappa \frac{2U_0 \Delta y}{2U_0} = \kappa \Delta y$$

Impedance Scan

- When the electric and magnetic fields in the WF are mismatched, i.e., when the electric and magnetic forces no longer cancel each other, the rf fields excite collective beam oscillations at the frequency at which the WF is operated
- In the present experimental setup, a mismatch between electric and magnetic fields provides a vertically mismatched Lorentz force
- With a vanishing Lorentz force, the beam performs idle vertical (and horizontal) betatron oscillations

$$y(t) = y(0) \sqrt{\frac{\beta_y(t)}{\beta_y(0)}} \cos \left[\psi_y(t)\right]$$

- $\beta_y(t)$ is the betatron amplitude function
- $\psi_y(t)$ is the betatron phase advance satisfying

 $\psi_y(t+T) - \psi_y(t) = \omega_y T = 2\pi\nu_y$

• ν_y is the vertical betatron tune given by

$$\nu_y = \omega_y / \omega_{\rm rev}$$

Quantum Limit

• The change of the vertical velocity of the stored particle, accumulated during the time interval Δt the particle spends per, turn n inside the WF, is given by

$$\Delta v_{y}(nT) = \frac{F_{y}(n)\Delta t}{\gamma m} = -\zeta \omega_{y} \cos(n \,\omega_{\rm WF} T).$$

A lock-in amplifier may be used to selectively measure the corresponding Fourier ٠ component of the beam oscillation

$$\xi_y = \frac{\zeta}{2} \cdot \frac{\sin(2\pi\nu_y)}{\cos(2\pi\nu_{\rm WF}) - \cos(2\pi\nu_y)}$$

This equation describes Hooke's constant $F_y = k_{\rm H} \epsilon_y$ with ۲

$$k_{\rm H} = \left| \frac{2\gamma m\omega_y}{\Delta t} \cdot \frac{\cos(2\pi\nu_{\rm WF}) - \cos(2\pi\nu_y)}{\sin(2\pi\nu_y)} \right|$$

An approximate description of the betatron motion by a harmonic oscillator with ٠ constant betatron function and evaluate the Heisenberg uncertainty limit Q for the betatron oscillation amplitude in terms of the zero-point oscillator energy $\frac{1}{2}\hbar\omega_{v}$ leading to 1

$$Q^2 = \frac{\hbar}{m\gamma\omega_y} \approx 41 \text{ nm}$$

RF Wien Filter as a Resonant Spin Manipulator

- The RF Wien filter has been used at COSY as a Lorentz-force free resonant spin manipulators in 2 modes of operation
 - Radial B-field
 - Vertical B-field
- The spin rotation angle induced by the WF

$$\Omega_{\rm WF} \cdot \Delta t = \psi_{\rm WF} = -\frac{q}{m} \cdot \frac{(1+G)}{\gamma^2} \cdot B^{\rm WF} \cdot \frac{\ell_{\rm WF}}{\beta c}$$

- Usages
 - EDM experiments
 - Axion search
 - Search for proton spin coherence time
- Operated in CW and gated mode

Bunch Selective Operation of the RF Wien Filter

- Spin tune is ill-defined in the presence of RF fields running spin tune
- Co-magnetometer for precise determination of the resonance frequency
- Multi-bunch operation
- Gated mode

Bunch Selective Operation of the RF Wien Filter

Parameter	Symbol [Unit]	Value
Deuteron momentum (lab)	P [MeV/c]	970.663702
Deuteron kinetic energy (lab)	$T \; [MeV]$	236.284783
Lorentz factor	γ [1]	1.125977
Beam velocity	β [c]	0.459617
Nominal COSY orbit circumference	$\ell_{\rm COSY}$ [m]	183.572
Revolution frequency	$f_{ m rev}$ [Hz]	750602.6
Spin precession frequency $f_s = G\gamma f_{\rm rev}$	f_s [Hz]	-120847.303520
Deuteron mass	$m \; [\text{MeV}]$	1875.612793
Deuteron g factor	g [1]	1.714025
Deuteron $G = (g-2)/2$	G[1]	-0.142987
Slip factor	η [1]	0.6545
Momentum spread in middle of cycle	$\Delta p/p$ [1]	$7.397\cdot 10^{-5}$
Synchrotron oscillation frequency	$f_{ m sync}$ [Hz]	205 ± 21
RF Wien filter electric field integral	$\int E_x^{\rm WF} ds$ [V]	763.29509
RF Wien filter magnetic field integral	$\int B_{y}^{\text{WF}} ds [\mu \text{T m}]$	5.65567704
RF Wien filter active length	$\ell_{\rm WF}$ [m]	1.550

Bunch Selective Operation of the RF Wien Filter

Exponential damping model

$$egin{aligned} A_{
m s}(t) &= a_{
m s}(t-t_0) + b_{
m s} \ &+ d_{
m s} \exp\left(-\Gamma_{
m s}(t-t_0)
ight) \cos\left[2\pi f_{
m SF}(t-t_0)
ight] \end{aligned}$$

- Caused by the spin decoherence in terms of the time constant
- *d_s* is the spin-flip amplitude
- f_{SF} is the spin-flip frequency
- Efficiency $\epsilon_{\rm SF}$, ratio of polarizations after and before a single spin flip

$$\epsilon_{
m SF} = 1 - \frac{\Gamma_s}{2f_{
m SF}} = 0.9954 \pm 0.0037$$

- The total polarization loss after the 14 spin flips $\frac{\Delta P}{P} = 0.062 \pm 0.050$
- Efficiency of the gate

$$\epsilon_{
m gate} = 1 - rac{d_{
m p}}{d_{
m s}} = 0.9921 \pm 0.0136$$

Parameter	Value	Error	Unit
$a_{ m s}$	-4.04	0.38	$10^{-4}/s$
t_0	85.548	0.060	s
$b_{ m s}$	-0.0228	0.0019	1
$d_{ m s}$	-0.0936	0.0027	1
Γ_s	7.30	5.86	$10^{-4}/\mathrm{s}$
$f_{ m SF}$	0.07944	0.00010	Hz

RF Wien Filter at EIC

- Using a Lorentz force-free RF WF operating at a fixed frequency as a spin manipulator has the potential to open new possibilities for spin physics experiments at future accelerators such as the EIC and NICA.
- In terms of continuous spin flips, such a device does not suffer from the limitations of the Froissart-Stora scanning technique employed at the RHIC spin flipper using RF dipoles
- The RF WF can be tuned to minimize adverse effects on the beam orbit produced by RF dipoles and RF solenoids.
- Instead of injecting polarized bunches with a predefined alternating polarization pattern into the collider, one can inject one polarization state and invert the vertical polarization by selective gating on individual bunches or on trains of bunches on flattop.

RF Wien Filter at EIC

- As the rate of spin flip of an RF WF scales with the inverse energy squared
- To obtain similar spin flip rates as in our experiment, such a device for EIC
 - 275 GeV
 - γ ~ 295
 - *f*_{rev} ~ 78 kHz
 - require RF fields increased by a factor of $\gamma^2 \sim 10^4$
 - 10 m long RF WF at sideband K = 15000, frequency $f_{WF} \sim 1.1$ GH driven by a 1 MW amplifier (Amateur Radio PA would also be an option at 78 kHz)
 - spin flip periods of one minute appear feasible for protons
- Regarding the prospects for gating out an individual bunch with an RF WF at EIC, we note that the RF switches used in the present experiment already provide switching times of 2 ns while at EIC with 1180 bunches, the bunch period will be 11 ns
- Thus, the achieved switching time is already in the ballpark of the EIC requirements, but handling the considerably higher power will require a dedicated development effort.