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a b s t r a c t

Parton Distribution Functions (PDFs) are essential non-perturbative inputs for calculation of any observ-
able with hadronic initial states. These PDFs are released by individual groups as discrete grids as a
function of the Bjorken-x and energy scale Q . The LHAPDF project maintains a repository of PDFs from
various groups in a new standardized LHAPDF6 format, additionally older formats such as the CTEQ PDS
grid format are still in use. ManeParse is a package that provides access to PDFs within Mathematica to
facilitate calculation and plotting. The program is self-contained so there are no external links to any
FORTRAN, C or C++ programs. The package includes the option to use the built-in Mathematica interpo-
lation or a custom cubic Lagrange interpolation routine which allows for flexibility in the extrapolation
(particularly at small x-values). ManeParse is fast enough to enable simple calculations (involving even
one or two integrations) in the Mathematica framework.
Program summary
Program Title: ManeParse
Program Files doi: http://dx.doi.org/10.17632/knbsccggg4.1
Licensing provisions:MIT
Programming language: Mathematica
Nature of problem: PDFs are currently read and interpolated via a FORTRAN or C++ interface. No method
exist to read the LHAPDF6 or CTEQ PDFs directly in Mathematica.
Solution method: A Mathematica package reads in LHAPDF6 and CTEQ PDF files. The PDFs are parsed
into a three-dimensional array in Bjorken-x, scattering energy Q , and parton flavor, and are stored in
memory. Provided functions give access to the PDF, the PDF uncertainty, the PDF correlations, and the
parton–parton Luminosities. The LHAPDF6 info files are converted from YAML format into Mathematica
rules.

© 2017 Elsevier B.V. All rights reserved.

1. What is ManeParse?

Parton Distribution Functions (PDFs) are essential elements for
making predictions involving hadrons (protons and nuclei) in the
initial state. For example, at the LHC, we can compute the Higgs
production cross section (σ ) using the formulaσpp→H =

∑
a,bfa/P⊗

fb/P ⊗ ωab→H where PDFs fa/P and fb/P give the probability density
for finding partons ‘‘a’’ and ‘‘b’’ in the two proton beams, and the
hard cross section,ωab→H , gives the probability density for partons
a and b producing the Higgs,H . The PDFs cannot be computed from
first principles at this time, so they must be extracted using fits

✩ This paper and its associated computer program are available via the Computer
Physics Communication homepage on ScienceDirect (http://www.sciencedirect.
com/science/journal/00104655).
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to experimental data.1 This analysis is performed by a number of
collaborations, and the PDFs are generally distributed as a grid of
values in x and Q which must be interpolated to generate the PDF
fa/P (x,Q ) for flavor ‘‘a’’ in hadron ‘‘P ’’ at momentum fraction x and
energy scale Q .

ManeParse2 is a flexible, modular, lightweight, stand-alone
package used to provide access to a wide variety of PDFs within
Mathematica. To illustrate the flexibility, in Fig. 1 we show how
ManeParse can work simultaneously with different PDF sets from
avariety of groups.3 This figure displays the selected PDF sets listed
in Table 3. Some of the sets are in the LHAPDF6 grid format [3],
and others are in the older PDS grid format [4]. These sets also

1 Lattice QCD has made great strides in computing PDFs in recent years [1,2].
2 The ManeParse programwas originally developed to run on the SMU comput-

ing cluster ‘‘ManeFrame’’ which is a play on words inspired by the school mascot,
Peruna the pony.
3 All plots presented here have been generated in Mathematica.
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Fig. 1. (a) We display x f Au (x,Q ) for the up-quark at Q = 2 GeV as a function of x for the 10 PDFs listed in Table 3. (b) We display the ratio of the PDFs in (a) compared to
CT10 proton PDF (A = 1) as a function of x. While we do not identify them individually, the one curve (yellow) that distinctly deviates from the others is the nuclear PDF for
lead A = 208. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

have different numbers of active flavors, NF , different values for
the initial evolution scale, Q0, different values for the heavy quark
masses, {mc,mb,mt}, and they can represent either free protons or
protons bound in nuclei. Nevertheless, ManeParse is able to easily
compare and contrast sets from different groups in a common
framework.

As ManeParse is a stand-alone code, this complements a num-
ber of other available programs such as the QCDNUM program,[5]
theAPFEL program including theweb-plotter,4 the TransverseMo-
mentum Dependent (TMD) distributions plotter hosted at DESY,5
and also the Durham HepData online PDF plotting and calculation
tool.6 The online tools provide the ability to quickly plot PDFs,
ratios, and luminosities. Then with ManeParse, it is easy to take
the next step and compute cross sections and other user-selected
quantities in the Mathematica environment.

In this paper we describe the key features of ManeParse avail-
able to the user. In Section 2, we sketch a minimal example of
how the program is used. In Section 3, we provide some details
of how the PDFs are parsed, stored and interpolated. In Section 4,
we display some example plots that are easily constructed using
ManeParse. In Section 5, we provide examples of the functions
in the pdfError module. Finally, we discuss files provided by
ManeParse and how to obtain the external PDF files.

2. A simple example

Webegin byoutlining a simple example of howManeParsemay
be used. After loading the ManeParse packages into Mathemat-
ica, the user can enter the following commands:

Get[pdfParseLHA.m]
iSet1=pdfParseLHA[LHA_file.info,LHA_file.dat]
pdfFunction[iSet1,iParton,x,Q]

Get[pdfParseCTEQ.m]
iSet2=pdfParseCTEQ[PDS_file.pds]
pdfFunction[iSet2,iParton,x,Q]

The first and fourth line load the parsing subpackages included in
ManeParse. Loading either of these, causes the pdfCalc package
to be loaded as well. The second line reads an LHAPDF6 formatted
external data file (LHA_File.dat) and its associated information
file (LHA_File.info), and generates an internal PDF set that
is referenced by the integer iSet1. The fifth line reads a PDS
formatted external data file7 (PDS_File.pds) and generates an
internal PDF set that is referenced by the integer iSet2.

4 Details can be found in Ref. [6] and online at: http://apfel.mi.infn.it/.
5 Details can be found in Refs. [7,8] and online at: http://tmdplotter.desy.de/.
6 Details can be found online at: http://hepdata.cedar.ac.uk/pdf/pdf3.html.
7 Note that the LHAPDF6 files have both a data file and an info file whereas the

older CTEQ PDS files have only a data file.

After reading these data files, the user is provided with the core
function for computing the PDFs:pdfFunction[iSet,iParton,
x,Q]. Here, iSet selects the individual PDF set, iParton selects
the parton flavor as shown in Table 1, and {x,Q} specify the
momentum fraction, x, and the energy scale, Q , in GeV.

pdfFunction performs the bulk of the work for the
ManeParse program, so the package has been optimized for speed
to make it practical to perform single or double integrals in a
reasonable amount of time; specifically, the pdfFunction call
generally takes less than 1 ms per core on a standard laptop or
desktop.

Additionally, ManeParse can handle an arbitrary number of
PDF sets and can switch between sets without delay. When the
external PDF file is parsed, the data is stored internally (about
1 Mb per PDF set) and the iSet variable essentially functions as
a pointer to the set; thus, it is trivial to loop over many PDF sets
as was done in Fig. 1. This feature contrasts to some of the older
FORTRAN programs, which could only store a fixed number of sets
in memory and often had to re-read the data files.

These are the key elements of the package, however, we also
providemany auxiliary functions described below. Consistentwith
the Mathematica convention, all our public functions begin with
the prefix ‘‘pdf’’. One can obtain a complete list with the command
?pdf*. The usage message for individual functions is displayed in
a similar manner to:

?pdfFunction

pdfFunction[setNumber, flavor, x, Q]

• This function returns the interpolated value of the PDF for
the .pds/.dat file specified by setNumber , for the given
flavor and value of Bjorken x and scale Q .

• Warning: The results of this function are only reliable be-
tween the maximum andminimum values of x and Q in the
.pds/.dat file.8

3. Inside the ManeParse package

3.1. Overview of package

ManeParse internally consists of four modules (or sub-
packages) as illustrated in Fig. 2. The modular structure of
ManeParse allows for separate parsers for the LHAPDF6
(pdfParseLHA) and PDS (pdfParseCTEQ) grids which read the

8 If interpolation outside the given grid is requested by the user, ManeParse is
equipped to handle this. The Mathematica interpolator will throw a warning
message and proceed to use built-in extrapolation techniques. The ManeParse in-
terpolator will extrapolate using the behavior defined with pdfSetXpower.

http://apfel.mi.infn.it/
http://tmdplotter.desy.de/
http://hepdata.cedar.ac.uk/pdf/pdf3.html


128 D.B. Clark et al. / Computer Physics Communications 216 (2017) 126–137

Table 1
The standard Monte Carlo (MC) flavor numbering convention [9] used within ManeParse. This differs from the mass-
ordered convention used in many older CTEQ releases. ManeParse converts these releases into the MC ordering.

flavor # 0 or 21 ±1 ±2 ±3 ±4 ±5 ±6

parton gluon down/dbar up/ubar strange/sbar charm/cbar bottom/bbar top/tbar

Fig. 2. A schematic overview of the ManeParse package and the individual
modules.

individual file types and pass the information on to a common
calculation (pdfCalc) module.

The new LHAPDF6 format is intended as a standard that all
groups can use to release their results. Additionally, many older
PDF sets have been converted into this format.

The ManeParse modular structure provides flexibility, as the
user can use both LHAPDF6 and PDS format, or evenwrite a custom
parser to read a set that is not in one of these formats.

The error PDFs module (pdfError) uses pdfCalc to construct
PDF uncertainties, luminosities, and correlations as illustrated in
Section 5.

The key elements of each PDF set include the 3-dimensional
{x,Q ,NF } grid and the associated information, which is stored as a
set of Mathematica rules.We nowdescribe the features and some
details of these structures.

3.2. The PDF {x,Q ,NF } grid

The parsing routines pdfParseLHA and pdfParseCTEQ read
the external files and assemble the PDF sets into a common data
structure that is used by the pdfCalc module. The central struc-
ture is a 3-dimensional grid of PDF values in {x,Q ,NF } space,which
uses vectors {xvec,Qvec} to specify the grid points. The spacing of
{xvec,Qvec} need not be uniform; typically, Qvec uses logarithmic
spacing, and xvec is commonly logarithmic at small x and linear at
large x. Different spacings in xvec andQvec do not pose a problem for
the pdfCalc package, as the grid points are simply interpolated
to provide the PDF at a particular point in {x,Q ,NF }. The user is
agnostic to the specific grid spacing chosen in a PDF release.

3.2.1. NF convention
The NF flavor dimension is determined by the iSet value

passed to pdfFunction. The association between the grid slice
in NF and iSet is specified in the LHAPDF6 info file using the
‘‘key:data’’ format such as ‘‘Flavors: [−5, −4, −3, −2,
−1, 1, 2, 3, 4, 5, 21]’’. This tells us which partons are
in the grid, and their proper order.9 Note: we use the standard
Monte Carlo (MC) convention10 throughout ManeParse where
d = 1 and u = 2 rather than the mass-ordered convention (see

9 For the PDS files, this information is contained in the header of the data file so
there is not a separate info file; pdfParseCTEQ extracts the proper association.
10 See Ref. [9] ‘‘Review of Particle Physics’’, Chapter 34 entitled ‘‘Monte Carlo
particle numbering scheme’’.

Table 1).11 The standard MC convention also labels the gluon as
iParton = 21; for compatibility, the gluon in ManeParse can be
identified with either iParton = 21 or iParton = 0.

ManeParse is able to work with PDF sets with different num-
bers of flavors. For example, in Fig. 1, the NNPDF set includes NF =

6 where iParton = {t̄, . . . , t}, while most of the other sets have
NF = 5. If a flavor, iParton, is not defined, pdfFunction will
return zero. This feature allows the user to write a sum over all
quarks

∑
fi(x,Q ) for i = {−6, . . . , 6} without worrying whether

some PDF sets might have less than 6 active flavors.
Additionally, the ManeParse framework has the flexibility to

handle new particles such as a 4th generation of quarks with
iParton= {b′, t ′} = {7, 8} or a light gluino with iParton= g̃ =

1000021 PDF by identifying the flavor index, iParton, with the
appropriate grid position in the LHAPDF6 info file.

3.2.2. Q sub-grids
At NNLO and beyond, the PDFs can become discontinuous

across themass flavor thresholds. This is illustrated using theNNLO
MSTW set in Fig. 3 where we observe a discontinuity of both the
gluon and b-quark PDF across the b-quark threshold at mb =

4.75 GeV. ManeParse accommodates this by using sub-grids in Q
as illustrated in Fig. 4(a); for example, we use separate grids below
and above the threshold at Q = mb = 4.75 GeV. When we call the
PDF at a specific Q value, ManeParse looks up the relevant heavy
quark thresholds, {mc,mb,mt}, to determinewhich sub-grid to use
for the interpolation. ForQ < mb, sub-grid #2 (NF = 4) is used, and
for Q ≥ mb, sub-grid #3 (NF = 5) is chosen.

Note that for the x value (10−4) displayed in Fig. 3, the b-quark
PDF is negative forQ just abovemb; this is the correct higher-order
result and justifies (in part) why we do not force the PDFs to be
positive definite. This behavior also makes sense in terms of the
momentum sum rule, which we will discuss in Section 4.3.

3.2.3. An NF -dependent PDF: f (x,Q ,NF )
Note, the use of sub-grids in Q also enables the use of overlap-

ping NF ranges as in a hybrid scheme as described in Ref. [10]; in
this case, we generalize the PDF so that it also becomes a function
of the number of flavors: f (x,Q ,NF ). This feature is useful if, for
example, we are performing a fit to data in the region Q ∼ mb;
we can perform a consistent NF = 4 flavor fit even if some of
the data are above the Nf = 5 threshold (Q > mb) by selecting
f (x,Q ,NF = 4); thus, we avoid encountering any discontinuities
in the region of the data.12 We illustrate this generalized case for
f (x,Q ,NF ) in Fig. 4(b). Here, the user has the freedom to choose the
active number of flavors, NF , rather than being forced to transition
at the quark mass values as in Fig. 4(a).

3.3. The LHAPDF6 info file

In addition to the 3-dimensional {x,Q ,NF } grid, there is aux-
iliary material associated with each PDF set. In the LHA format,
each PDF collection has an associated ‘‘info’’ file which contains

11 Caution is required here as many of the older CTEQ releases use the mass-
ordered convention with u = 1 and d = 2. ManeParse converts these mass-
ordered sets into the MC ordering.
12 Note that the APFEL PDF evolution library [11] is in the process of implementing
these features.



D.B. Clark et al. / Computer Physics Communications 216 (2017) 126–137 129

Fig. 3. The discontinuity of the gluon (left) and b-quark (right) PDFs across the mb = 4.75 GeV flavor threshold; the horizontal axis is Q (in GeV), and the vertical axis is
x f (x,Q ). The curves are for the MSTW2008nnlo68cl PDF with x = 10−4 . Note that the gluon and b-quark shift in opposite directions to ensure the momentum sum rule is
satisfied.

Fig. 4. A schematic representation of the Q sub-grids used to handle discontinuities across the heavy quark thresholds at {mc ,mb,mt }. Fig. (a) shows the conventional
arrangement for f (x,Q ) with non-overlapping sub-grids; for a given Q , the NF flavor dimension is uniquely determined. Fig. (b) shows a flavor-number-dependent PDF
f (x,Q ,NF ) where the user has the freedom to choose the NF flavor dimension value (and hence the sub-grid).

Table 2
Sample YAML entries contained in the LHAPDF6 info file, and the corresponding rules
passed to Mathematica. The rules for a specific PDF set are obtained using the pdfGet-
Info[iSet]function.

YAML Mathematica

key: ‘‘data’’ ‘‘key’’ → ‘‘data’’
SetDesc: ‘‘nCTEQ15 ...’’ ‘‘SetDesc’’ → ‘‘nCTEQ15 ...’’
NumFlavors: 5 ‘‘NumFlavors’’ →5
Flavors: [−5,−4,−3,−2,−1,1,2,3,4,5,21] ‘‘Flavors’’→{−5,−4,−3,−2,−1,1,2,3,4,5,21}
AlphaS_Qs: [1.299999e + 00, . . . ] ‘‘AlphaS_Qs’’→ {1.299999 × 10+00, . . .}

UnknownKey: data ‘‘UnknownKey’’→‘‘data’’

the additional data in a YAML format,13 whereas in the CTEQ
PDS format files, the auxiliary information is contained at the top
of each PDS data file. Each parser interprets this information and
builds a list of Mathematica rules.

The basic syntax of YAML is [key: ‘‘data’’], and the LHA
parser converts this into a Mathematica rule as {‘‘key’’→
‘‘data’’}. This can be viewed within ManeParse using the
function pdfGetInfo[iSet], and Table 2 demonstrates the some
sample mappings between the two.

If ‘‘key’’ is known to be a number, ‘‘data’’ is converted from
a string into a number. This behavior applies to values such as
{NumFlavors, QMin, MTop, . . . }. If ‘‘key’’ is known to be a list such
as {Flavors, AlphaS_Qs}, ‘‘data’’ is converted from a string into a
Mathematica list. If ‘‘key’’ is unknown, ‘‘data’’ is left as a string.
This means that ManeParse can handle any unknown ‘‘key’’, and
the user canmodify these rules after the fact, or introduce a custom
modification by identifying ‘‘key’’ to the parser.

3.4. Interpolation

Once the 3-dimensional {x,Q,NF } grid and auxiliary rules are
given to the pdfCalc module, we are ready to interact with the
PDFs. When the user calls for fi(x,Q ), the pdfCalc module will
determine the appropriate NF index and Q grid and do a 4-point

13 ‘‘YAML Ain’t Markup Language’’ http://yaml.org/.

interpolation in the 2-dimensional {x,Q } space. For the interpola-
tion we use a 4-point Lagrange interpolation given by:14

g(x) = c0(x) y0 + c1(x) y1 + c2(x) y2 + c3(x) y3

where yk = g(xk) are the PDF values at the grid points, and the
coefficients are given by:

cj(x) =

∏′

0≤m≤3

(x − xm)
(xj − xm)

where the prime (′) indicates the restriction j ̸= m in the product.
This formula has the feature that the interpolated curvewill always
contain the grid points {xi, yi}. The grid points do not need to be
equally spaced.

To perform the 2-dimensional interpolation, we extract a 4× 4
sub-grid in {x,Q } space; we first compute 4 interpolations in
x-space, and then use these to perform a 4-point interpolation in
Q -space. Generally, pdfCalc will interpolate {x,Q } values with 2
grid points on each side, but at the edges of the grid, it will use
a 3–1 split. It also will extrapolate beyond the limits of the grid
andwill return a number, even if it is unphysical. Except for setting
fi(x,Q ) = 0 for x > 1, we do not check bounds, as this would slow
the computation; in the sample files, we do provide examples of
how the user can implement particular boundaries if desired.

14 We present the interpolation formulas in the x-variable; an equivalent form is
used for the Q interpolation.

http://yaml.org/
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Additionally, we allow the interpolated PDF to be negative. At
very large x this can happen due to numerical uncertainty, but
there are also instanceswhere a negative PDF is the physical result,
such as at NNLO (illustrated in Fig. 3). Within Mathematica, it
is easy for the user to impose particular limits (i.e. positivity) if
desired. The interpolation can be performed either with the Math-
ematica Interpolate function (default) or a custom 4-point
Lagrange interpolator and is set with the pdfSetInterpolator
function. We set the Mathematica Interpolate function as the
default, as it is slightly faster, but the custom 4-point Lagrange
interpolator often will provide better extrapolation of the PDFs
beyond the grid boundaries and has some adjustable parameters
which are useful in the small x region.

The PDF typically increases as 1/xa at small x where a ∼ 1.5;
thus, we can improve the interpolation by scaling the PDF by a
factor of xa which is implemented by replacing yk → xa g(xk) and
g(x) → g(x)/xa. This is why many of the PDF programs funda-
mentally compute with xf (x) rather than f (x). To return fi(x,Q ) we
divide by x, but to avoid dividing by zero we internally impose a
defaultminimum x value of xmin = 10−30. The default scaling factor
for the custom interpolator is a = 1, but this can be set with the
pdfSetXpower[a] function.

3.4.1. Interpolation quality
By construction, the interpolation curve will always intersect

the grid values: g(xi,Qj) ≡ f (xi,Qj) if xi and Qj are grid points.
Therefore, the numerical uncertainty arises from how we connect
these grid points. We have bench-marked many of the PDF sets
to ensure our interpolations are accurate across the defined grid
in {x,Q } space. For the PDS files, our interpolation (with scaling
1/xa for a = 1.0) uses the same algorithm as the benchmark
CTEQ FORTRAN, so our results easily match to better than one
part in 103. The LHAPDF6 interpolation uses a logarithmic bi-cubic
interpolation in the central region, and switches to linear near the
grid boundaries.15 To illustrate the range of numerical uncertainty,
we will show how the interpolation changes as we vary the a
power. We will also compare with the built-in Mathematica in-
terpolator. If a different interpolation is required, the a-parameter
can be tuned, or the user can supply a custom interpolation routine.

In Fig. 5, we show the ratio of the interpolated value for the
gluon PDF compared to the default Mathematica interpolation.
We select a Q value which is precisely a grid point, and then show
the variation as a function of x between these grid values. Figs. 5(a),
5(b), 5(c) show the results for three ranges of x, {small, mid, large},
while Figs. 5(d), 5(e) show the results for small Q and mid Q . In all
five plots, we observe that the interpolated curvesmatch exactly at
the grid values (xk), as they should. In between the grid values, we
see there is a variation depending on the details of the interpolation
and the particular value of the scaling power a. We have varied the
scaling power over the range a ={0.0,0.5,1.0,1.5,2.0}. The scaling
power a = 0matcheswith the defaultMathematica interpolation
routine, while a = 1 compensates for the 1/x PDF behavior at
small x.

In Fig. 5(a), we observe that the variation is quite small in the
large x range (x ∼ 0.5) , of order∼3×10−6. For many calculations,
such as Higgs and W/Z boson production, the mid x range of (x ∼

0.01), seen in Fig. 5(b), is themost relevant region and herewe find
the variation to be a bit larger, of order ∼1 × 10−4. At the small x
range (x ∼ 10−5), Fig. 5(c), we find the largest variation which can
be of order ≲10−3; this is partly because the PDFs are diverging in
the limit x → 0, so the relative error increases.16

15 LHAPDF6 has validated a number of PDF sets, and these generally match both
our interpolator, with a = 1, and the Mathematica interpolator to 1 part in 10−3 .
16 The PDFs typically exhibit a rise at small x of the form 1/xa . At smaller Q values,
the exponent is commonly slightly larger than 1, and increases with increasing Q
toward an asymptotic limit in the range a ∼ [1.5, 1.7]. Note, the momentum sum
rule requires a < 2 [12].

We now investigate the quality of the interpolation in the Q
variable. In Fig. 5(d), we show the small Q range, (Q ∼ Q0). Here,
the steps in Q are about 20% apart and we see the variation is of
order ∼5 × 10−4. At the larger Q range in Fig. 5(e), the steps in Q
are up to 100% apart and we see the variation is of order ∼10−3; if
increased accuracy is required here, the obvious solution would be
to include more grid points in Q .

In general, we expect a = 1 yields the best representation of
the PDFs, and the spread between a = 0 and a = 1 is a reasonable
estimate of the uncertainty. Computing the momentum sum rule
(c.f., Table 3) can also provide a useful check.

We find that ratios of PDFs are more sensitive to the interpola-
tion than the PDFs themselves. For illustrative purposes, in Fig. 6,
we show an example of a poor interpolation generated with the
Mathematica interpolator compared to a good interpolation by
the custom 4-point Lagrange interpolation with the default a = 1
scaling; in general, we find the custom 4-point Lagrange interpo-
lation computes smoother ratios and provides better extrapolation
beyond the grid limits.

3.5. αS Function

For some of the PDF sets, the value of αS(Q ) is provided as a list
of points associated with Qvec . For these sets, we interpolate αS(Q )
to provide amatched function called pdfAlphaS[iSet,Q]; this is
displayed in Fig. 7 for a sample PDF set.17 ThepdfGetInfo[iSet]
function will display the information associated with the corre-
sponding PDF set (including any αS values). If the PDF set does not
have any αS information, the pdfAlpha function will return Null.
In Fig. 7(a) we display αS(Q ) for the NNPDF set, and in Fig. 7(b) we
enlarge the regionnearmb = 4.18GeV todisplay the discontinuity.
In general, αS(Q ) will be discontinuous at NNLO and higher and at
all mass thresholds, {mc,mb,mt}.

4. Sample plots & calculations

The advantage of importing the PDF sets into Mathematica is
that we have the complete set of built-in tools that we can use
for calculating and graphing. We illustrate some of these features
here.

4.1. Graphical examples

To highlight the graphical capabilities, in Fig. 8 we display a
selection of PDFs using both linear (left) and log (right) scale. Using
the flexible graphics capabilities of Mathematica it is easy to
automatically generate such plots for different PDF sets.

4.2. Small x extrapolation

Sometimes it is useful to extrapolate to low x values beyond
the limits of the PDF grid; for example, the study of high en-
ergy cosmic ray experiments that use very small x extrapola-
tions [13,14].Weprovide the commandpdfLowFunction[iSet,
iParton,x,Q,power] which allows the user to choose the ex-
trapolation power in the small x region.18 An example is displayed
in Fig. 9 for the nCTEQ15 proton PDF. Theminimum x value for this
set for the grid is xmin = 5×10−6; beyond this limit pdfLowFunc-
tionwill extrapolate using the form 1/xa. In this example, we vary
the power from 0.4 to 1.6; using the Mathematica integration
routines it is easy to find that this range of variation in the small
x behavior will only change the momentum fraction of the gluon
by 1/2%.

17 Since at Leading Order (LO), αS (Q ) = 1/[β0 ln(Q 2/Λ2)], we obtained improved
results by interpolating in 1/αS (Q ).
18 The ‘‘a’’ argument is optional; the default power is 1.0. We use a separate
function pdfLowFunction so as not to slow the computation of pdfFunction.
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Fig. 5. We show the numerical variation of the interpolation for the CT10 central set by presenting the ratio of the ManeParse interpolator with different a values to the
Mathematica interpolator. The range of the CT10 grid is x = [10−8, 1] with 150 points, and Q = [1.3, 34515] GeV with 24 points. In (a)–(c), we display the variation in x
for fixed Q = 1.3 GeV (which is a grid value). In (d)–(e), we display the variation in Q for fixed x = 0.0110878 (which is a grid value). We have drawn horizontal guide-lines
to indicate the approximate numerical variation. The ratios were plotted as points rather than lines to avoid any line-smoothing of the graphics output.

Fig. 6. The ratio of PDFs can sometimes lead to interpolation problems; we display the ratio of two gluon PDFs at Q = 100 GeV. Fig. (a) on the left was generated with the
default Mathematica interpolator, and Fig. (b) on the right was generated with the custom 4-point Lagrange interpolation with the default scaling of a = 1.

Fig. 7. αS (Q ) vs. Q in GeV from NNPDF. Note the discontinuity across themb = 4.18 GeV threshold which is enlarged in Fig. (b).
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Fig. 8. Sample linear and log ratio plots of the gluon PDFs from Table 3 compared to CT14 as a function of x at Q = 2.0 GeV.

Fig. 9. Small x extrapolation of the gluon PDF from the nCTEQ15 proton at Q =

100 GeV using pdfLowFunction. Here, xmin = 5 × 10−6 , and the extrapolation
exponent 1/xa is set to a = {0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6}.

Fig. 10. The integrated momentum fraction Eq. (1) of the PDF flavors vs. Q
in GeV for the NNPDF set. At large Q the curves are (in descending order)
{g, u, d, ū, d̄, s, c, b, t}.

4.3. Momentum sum rules

The PDFs satisfy a number of momentum and number sum
rules, and this provides a useful cross check on the results. The
momentum sum rule:∑

i

∫ 1

0
dx x fi(x,Q ) = 1, (1)

says that the total momentum fraction of the partons must sum
to 100%. If any single parton flavor were not imported correctly,
this cross-checkwould be violated; hence, this provides a powerful
‘‘sanity check’’ on our implementation. In Table 3 we display the
partonic momentum fractions (in percent) and the total; for each
PDF set the momentum sum rule checks within numerical accu-
racy.19

19 Numerical uncertainties arise from the extrapolation down to x → 0, the
interpolation, and the integration precision.

While Table 3 presented the momentum fraction for a single
Q value (3 GeV), it is interesting to see how these values change
with the energy scale. In Fig. 10 we show the momentum carried
by each PDF flavor (in percent) as a function of Q in GeV. We can
see the heavy quarks, {c, b, t} enter as we cross the flavor mass
thresholds. In the limit of large Q , the {ū, d̄, s̄} PDFs approach each
other asymptotically.

4.4. Nuclear correction factors

Given the PDFs, it is then trivial to build up simple calculations.
In Fig. 11 we display the nuclear correction factors FA

2 /FN
2 for a

variety of nuclei. Here, the F2 structure functions are related to the
PDFs via FA

2 (x,Q ) = x
∑

q e
2
q fq/A(x,Q ) at leading order where FN

2 is
an isoscalar, and FA

2 is the scaled structure function20 for nuclei A.
We have also superimposed the uncertainty bands; wewill discuss
this more in the following section.

4.5. Luminosity

Using the integration capabilities of Mathematica it is easy to
compute the differential parton–parton luminosity21 for partons a
and b:[24]

dLab

dŝ
=

1
s

1
1 + δab

∫ 1

τ

dx
x

fa(x,
√

ŝ) fb
(τ

x
,
√

ŝ
)

+ (a ↔ b), (2)

where τ = ŝ/s, and the cross section is

σ =

∑
a,b

∫ (
dŝ
ŝ

)(
dLab

dŝ

)
(ŝ σ̂ab). (3)

Note, the luminosity definition of Eq. (2) has dimensions of a cross
section (1/ŝ), and in Eq. (3)wemultiply by a scaled (dimensionless)
cross section (ŝ σ̂ab).

We define the pdfLuminosity function to compute Eq. (2).
The hadron–hadron production cross section for producing parti-
cle of mass

√
ŝ = MX is proportional to the luminosity times the

scaled partonic cross section ŝσ as in Eq. (3). In Fig. 12 we display
the differential luminosity dLaā/dM2

X for parton–anti-parton (aā)
combinations; this luminosity would be appropriate if we were
interested in estimating the size of the cross section for the process
of quark–anti-quark annihilation into a Higgs boson, bb̄ → H for
example.22

20 More specifically, FN
2 is the average of the proton and neutron (p+n)/2 and FA

2 is
composed of Z protons, (A–Z) neutrons, and scaled by A to a make it ‘‘per nucleon:’’
[Z p + (A − Z) n] /A.
21 There are other definitions of the luminosity in the literature which are dimen-
sionless such as L = fa ⊗ fb .
22 ManeParse also has the capability to handle custom PDFs. This allows the user
to explore a wide variety of phenomena, such as intrinsic heavy quarks, as long as
the custom PDFs are written in either LHAPDF6 or CTEQ format.
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Table 3
We compute the momentum sum rule, Eq. (1), (in percent) for the individual partons at Q = 3 GeV. Partons {s̄, c̄, b̄} are not shown, but are equal to {s, c, b}. The totals
sum to 100% within uncertainties of integration and interpolation. Here the colors matched with each set correspond to that set in Figs. 1 and 8.

PDF Set Total u d g d u s c b

MSTW2008nnlo68cl [15] 99.87 3.3 3.8 43.5 14.6 29.3 2.0 0.7 0

CT14nnlo [16] 100.01 3.1 3.7 43.4 14.6 29.7 2.0 0.8 0

NNPDF30_nnlo_as_0118_nf_6 [17] 99.98 3.2 3.7 43.6 14.6 29.4 2.2 0.8 0

HERAPDF20_NLO_VAR [18] 99.98 3.9 3.0 41.7 14.6 31.2 2.2 0.6 0

abm12lhc_5_nnlo [19] 100.14 2.9 3.5 43.4 14.8 30.4 2.0 0.7 0

CJ15nlo [20] 99.96 3.0 3.7 43.3 15.1 29.8 1.8 0.7 0

nCTEQ15_1_1 [21] 100.10 3.1 3.8 43.0 15.0 30.2 1.8 0.7 0

nCTEQ15_208_82 [21] 99.99 2.7 3.4 44.6 17.0 27.2 1.8 0.8 0

ct10.pds [22] 99.97 3.0 3.7 43.4 14.6 29.6 2.2 0.7 0

ctq66m.pds [4] 99.98 2.9 3.6 43.6 14.5 29.4 2.3 0.7 0

Fig. 11. Nuclear correction ratios FA
2 /FN

2 vs. x for Q = 10 GeV for the nCTEQ15 PDFs over an iso-scalar target. The left plot is on a linear scale, and the right plot is a log scale.
This figure is comparable to Fig. 1 of Ref. [23].

4.6. W boson production

Next, we compute a simple leading-order (LO) cross section for
W+ boson production at the Tevatron proton–anti-proton collider
(1.96 TeV) and the LHC proton–proton collider (8 TeV). Schemati-
cally, the cross section is σ (W+) = fa⊗ fb⊗ωab→W+ . There are two
convolution integrals, but the constraint that the partonic energies
sum to the boson massW+ eliminates one [25,26]. Hence, this can
easily be performed inside of Mathematica, and the results are
displayed in Fig. 13. It is interesting to note the much larger width
of the rapidity distribution at the LHC as well as the increased rela-
tive contribution of the heavier quark channels (such as cs̄ and us̄).

5. Error PDFs & correlations

5.1. PDF uncertainties

We now examine some of the added features provided by the
pdfErrormodule. To accommodate the PDF errors, it is common
for the PDF groups to release a set of grids to characterize the
uncertainties; the number of PDFs in each error is typically in the
range 40 to 100, but can in principle be as many as 1000.

As Mathematica handles lists naturally, we can exploit this
feature to manipulate the error PDFs. The pdfFamilyParseLHA
and pdfFamilyParseCTEQ functionswill read an entire directory
of PDFs and return the associated set numbers as a list; this list can
then be used to manipulate the entire group of error PDFs.

For example, we can use this feature to read the 100 PDFs of the
NNPDF set displayed in Fig. 14, capture the returned list of iSet
values, and pass this to the plotting function; we will describe this
more in the following.

When working with the error PDFs, the first step is to take the
list of iSet values and obtain a list of the PDF values. Constructing
the PDF error depends on whether the set is based on the Hessian
or the Monte Carlo method.

Fig. 12. The differential parton–parton luminosity dLaā/dM2
X vs.Mx in GeV at

√
s =

14 TeV for (in descending order) a = {g, u, d, s, c, b}.

The Hessian PDF error sets can be organized as follows
{X0, X+

1 , X−

1 , X+

2 , X−

2 , . . . , X+

N , X−

N }where X0 represents the central
set, {X+

1 , X−

1 } represent the plus andminus directions along eigen-
vector #1, and so on up to eigenvector N . For the Hessian PDF
sets, there should be an odd number equal to 2N + 1 where N is
the number of eigenvector directions. The PDF errors can then be
constructed using symmetric, plus, or minus definitions:[24,27]

∆XHess
sym =

1
2

√ N∑
i=1

[
X+

i − X−

i

]2 (4)

∆XHess
plus =

√ N∑
i=1

[
max

{
X+

i − X0, X−

i − X0, 0
}]2 (5)

∆XHess
minus =

√ N∑
i=1

[
max

{
X0 − X+

i , X0 − X−

i , 0
}]2

. (6)
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Fig. 13. Leading-Order W+ production cross section, dσ/dy at the Tevatron (pp̄, 1.96 TeV) and the LHC (pp, 8 TeV). We display the total cross section and the individual
partonic contributions.

Fig. 14. The fractional PDF uncertainty vs. x at Q = 10 GeV. (a) The upper (red) curve is CT14 using the pdfHessianError function, and the lower (blue) curve is the
NNPDF using the pdfMCError function for the gluon. (Note, these curves do not necessarily represent the same confidence level.) (b) The down quark PDF uncertainty band
for the CTEQ6.6 PDFs (inner, red) and the nCTEQ15 lead 208 (outer, blue). (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)

These can be computed using the function pdfHessian-
Error[iSet,(method)], and can take an optional ‘‘method’’
argument, {‘‘sym’’, ‘‘plus’’, ‘‘minus’’}, to specify which
formula is used to compute the error; the default being ‘‘sym’’.

We next turn to the Monte Carlo sets. For example, the
NNPDF set (#3 in Table 3) has 101 elements; the ‘‘zeroth’’ set is
the central set, and the remaining 100 replica sets span the PDF
uncertainty space. The central set is the average of all the sets,
and the PDF error is the standard deviation of the 100 replica
sets. For these sets, pdfMCCentral will return the central PDF
value. pdfMCError[iSet,(method)] will return the associated
error. This function can also take an optional ‘‘method’’ argument,
{‘‘sym’’, ‘‘plus’’,‘‘minus’’}, defined by Eqs. (7) and (8)
and Eq. (9) [28,29].

The modification from the Hessian case is due to the MC error
PDFs using replica sets, not eigenvector pairs.23 The formula for
∆XMC

sym is a straightforward extension of the Hessian case:

∆XMC
sym =

√ 1
Nrep

N∑
i=1

[Xi − X0]2 (7)

where Nrep counts the 100 replica sets not including the ‘‘zeroth’’
central set. This quantity is simply the standard deviation of the
values. The 1/

√
Nrep factor compensates for the fact that Monte

Carlo sets can have an arbitrary number of replicas, in contrast to
the Hessian sets which have a fixed number of eigenvector sets.

It is possible to define extensions for Monte Carlo ‘‘plus’’ and
‘‘minus’’ uncertainties as:[30]

∆XMC
plus =

√ 1
N+

rep

N∑
i=1

[max {Xi − X0, 0}]2 (8)

23 See the LHAPDF6 reference [3] for a more complete description of the error
definitions and calculation.

∆XMC
minus =

√ 1
N−

rep

N∑
i=1

[max {X0 − Xi, 0}]2 , (9)

where N±
rep are the number of replicas above/below the mean.

In Fig. 14(a), we compute the fractional PDF error for the
CT14 PDF gluon using the pdfHessianError function with the
‘‘sym’’ formula of Eq. (4). The same is done for the NNPDF set
pdfMCError function, using Eq. (7). As expected, we see the un-
certainty increase both as x → 1 and at very small x values.

In Fig. 14(b), we compute the error bands for the down quark
in the CTEQ6.6 proton PDF and also the nCTEQ15 lead-208 PDF; as
expected, we see the uncertainties on the nuclear PDF are larger
than the proton PDF uncertainties.

5.2. Correlation angle

Finally, we can compute the correlation cosines via the
relation: [4]

cosϕ =

−→
∇ X ·

−→
∇ Y

△X △Y

=
1

4△X △Y

N∑
i=1

(
X+

i − X−

i

) (
Y+

i − Y−

i

)
. (10)

We have implemented separate functions pdfHessianCorrela-
tion and pdfMCCorrelation as the computation of the uncer-
tainty in the denominator ∆X ∆Y could depend on Eqs. (4)–(6) or
Eqs. (7)–(9).

In Fig. 15we display an examplewherewe show the correlation
cosine between the W+ cross section and the partonic flavors for
both the Tevatron and LHC. We observe the behavior of the flavors
is quite similar except for the u and d quarks which stand out at
large x.
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Fig. 15. The cosine of the correlation angle, cosφ, as in Eq. (10), as a function of Bjorken-x for the leading-orderW+ cross section and each of the partonic flavors. Differences
between Tevatron (top) pp̄ collisions at

√
S = 1.96 TeV and LHC (bottom) pp collisions at

√
S = 8 TeV are visible in the high-x region in both the central (|y| < 2) and high

absolute rapidity (|y| > 2) regions.

The cosine of the correlation angle indicates the degree towhich
the error on aparticular parton’s PDF contributes to theuncertainty
on some function of the PDFs, usually a physical observable. A
value close to one for some parton indicates that the PDF error
on the observable is being driven by the error on that parton’s
PDF. Similarly, a value close to zero indicates that the error on the
parton’s PDF does not contribute significantly to the error on the
observable. More details can be found in Ref. [4].

6. Conclusions

We have presented the ManeParse package which provides
PDFs within the Mathematica framework. This is designed to
work with any of the LHAPDF6 format PDFs, and is extensible to
other formats such as the CTEQ PDS format. ManeParse can also
work with nuclear PDFs such as the nCTEQ15 sets.

The ManeParse package implements a number of novel fea-
tures. It adapts YAML relations into Mathematica rules including
unknown keys, and can handle discontinuities in both the PDFs
and αs(Q 2). We have implemented a flexible interpolation with a
tunable parameter, and it can extrapolate to small xwith a variable
power. Additionally, we have implemented functions to facilitate
the calculation of PDF uncertainties for both Hessian and Monte
Carlo PDF sets.

ManeParse provides many tools to simplify calculations in-
volving PDFs, and is fast enough such that even one or two
convolutions can easily be computed within the Mathematica
framework. We illustrated these features with examples of W
production, luminosity calculations, nuclear correction factors, and
NF -dependent PDFs.

In summary, the ManeParse package is a versatile, flexible,
user-extensible tool that can be used by beginning users to make
simple PDF plots, as well as by advanced users investigating subtle
features of higher-order discontinuities and PDF uncertainty cal-
culations.
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Appendix A

A.1. ManeParse distribution files

The ManeParse package is distributed as a gzipped tar
file (about 2.6 Mb), and this is available at cteq.org or
ncteq.HepForge.org.

When this is unpacked, the ManeParse modules {pdfCalc,
pdfErrors, pdfParseCTEQ, pdfParseLHA} will be in the
./MP_Packages/ directory.

There is a Demo.nb Mathematica notebook which will illus-
trate the basic functionality of the program; we also include a
Demo.pdf file so the user can see examples of the correct output.

We do not distribute any PDF files, so these must be obtained
from the LHAPDF6website24 or the CTEQ website.25 The README
file will explain how to run the MakeDemo.py python script to
download and set up the necessary directories for the PDF files.26

The MakeDemo.py script will also run the Perl script
noe2.perl on the CT10 data files. Older versions of these files use
a two digit exponent (e.g. 1.23456E−12), but occasionally three
digits are required in which case the value is written as 1.23456-
123 instead of 1.23456E−123. While the GNU compiler writes and
reads this properly, other programs (including Mathematica) do
not, so the noe2.perl script fixes this. This script can also be
run interactively, in which case it will print out any lines that are
modified.

There is amanual in bothMathematica format (manual_v1.nb)
and PDF format (manual_v1.pdf); this allows the user to execute

24 http://lhapdf.hepforge.org/.
25 http://cteq.org/.
26 Python is not essential to ManeParse as the files can be set up manually.

http://lhapdf.hepforge.org/
http://cteq.org/
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Fig. A.16. We display the gluon PDF fg (x,Q ) at x = 0.03 vs. Q for NF = {3, 4, 5, 6};
NF = 3 is the largest, and NF = 6 is the smallest curve.

the notebook directly, but also see how the output should look. The
manual provides examples of all the functions of ManeParse.

There is also a glossary file User.pdfwhich provides a list and
usage of all the commands.

A.2. A simple example

First we define some directory paths. You should adjust for your
particular machine. Note, for LHAPDF6, the individual ‘‘dat’’ and
‘‘info’’ files are stored in subdirectories.

pacDir=‘‘../ManeParse/Demo/packs’’
pdfDir=‘‘../LHAPDF’’
subDir1=pdfDir<>‘‘/MSTW2008nnlo68cl’’
subDir2=pdfDir<>‘‘NNPDF30_nnlo_as_0118_nf_6’’
ctqDir=‘‘../ManeParse/Demo/PDF_Sets/PDS’’

Next, we load the ManeParse packages. The pdfCalc pack-
age is automatically loaded by both pdfParseLHA and pdfPar-
seCTEQ, so we do not need to do this separately.

Get[pacDir<>‘‘/pdfParseLHA.m’’];
Get[pacDir<>‘‘/pdfParseCTEQ.m’’];
Get[pacDir<>‘‘/pdfErrors.m’’];

pdfParseLHA will read the PDF set and assign an ‘‘iSet’’ num-
ber, which in this case is 1.

iSetMSTW=
pdfParseLHA[

subDir1<>‘‘/MSTW2008nnlo68cl.info’’,
subDir1<>‘‘/MSTW2008nnlo68cl_0000.dat’’]

Out[...]:=1

The ‘‘iSet’’ numbers are assigned sequentially, and are returned
by pdfParseLHA which we use to define the variable iSetMSTW
(= 1 in this example). We can then evaluate the PDF values.

iParton=0; (* Gluon *)
x=0.1;
q=10.;
pdfFunction[iSetMSTW,iParton,x,q]
Out[...]:=11.714

Next, we can read in an NNPDF PDF set.

iSetNNPDF=
pdfParseLHA[

subDir2<>‘‘/NNPDF30_nnlo_as_0118_nf_6.info’’,
subDir2 <>‘‘/NNPDF30_nnlo_as_0118_nf_6_0000.dat’’]

Out[...]:=2

We can then evaluate this PDF. We find it is similar (but not
identical) to the value above.

pdfFunction[iSetNNPDF,iParton,x,q]
Out[...]:=11.8288

Finally, we load a ctq66 PDF file in the older ‘‘pds’’ format using
the pdfParseCTEQ function; note this only takes a single file as
the ‘‘info’’ details are contained in the ‘‘pds’’ file header.

iSetC66=pdfParseCTEQ[
ctqDir<>‘‘/ctq66.00.pds’’];

Out[...]:=3

pdfFunction[iSetC66,iParton,x,q]
Out[...]:=11.0883

Now that we have these functions defined inside of Mathemat-
ica, we can make use of all the numerical and graphical functions.
Detailed working examples are provided in the auxiliary files.

A.3. NF -dependent PDF example

We provide an example of implementing the NF -dependent
PDFs within the ManeParse framework using the matched set
of PDFs27 with NF = {3, 4, 5, 6} from Ref. [10]. We load the
ManeParse packages as above, and then read in the grid files
which are in ‘‘pds’’ format.

pdfDir=‘‘../vfnsnf’’;
iSetNF3=pdfParseCTEQ[pdfDir<>‘‘/nf3_q1.2.pds’’]
iSetNF4=pdfParseCTEQ[pdfDir<>‘‘/nf4_q1.2.pds’’]
iSetNF5=pdfParseCTEQ[pdfDir<>‘‘/nf5_q1.2.pds’’]
iSetNF6=pdfParseCTEQ[pdfDir<>‘‘/nf6_q1.2.pds’’]

pdfParseCTEQ returns the ‘‘iSet’’ number and we store these
in { iSetNF3, . . . }. The below function pdfNF allows the user
to choose NF , and then returns the appropriate PDF.

Clear[pdfNF,nf,iParton,x,q];
pdfNF[nf_,iParton_,x_,q_]:=Module[{iSet=0},

If[nf==3,iSet=iSetNF3];
If[nf==4,iSet=iSetNF4];
If[nf==5,iSet=iSetNF5];
If[nf==6,iSet=iSetNF6];
If[iSet==0,Return[Null]];
Return[pdfFunction[iSet,iParton,x,q]]

]

Note in the pdfNF function, the ‘‘iSet’’ variable is local to the
Module. We now compute some sample values.

iParton=0; (* Gluon *)
x=0.03;
q=10.;
{pdfNF[3,iParton,x,q], pdfNF[4,iParton,x,q],
pdfNF[5,iParton,x,q], pdfNF[6,iParton,x,q]}
Out[...]:={123.288, 117.694, 115.331, 115.341}

As we have taken Q = 10 GeV, we are above the charm and
bottom transition, but below the top transition; hence the NF =

{5, 6} results are the same, but the NF = {3, 4} values differ.

27 These PDF sets are available at http://ncteq.hepforge.org/.

http://ncteq.hepforge.org/
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In Fig. A.16 we display the gluon PDF vs. Q for NF = {3, 4, 5, 6}.
We observe as we activate more flavors in the PDF evolution the
gluon is reduced as a function of NF . This decrease in the gluon PDF
will be (partially) compensated by the new NF channels.

Appendix B. Supplementary data

Supplementary material related to this article can be found
online at http://dx.doi.org/10.1016/j.cpc.2017.03.004.
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