

CP violation in Higgs decays

CFNS-SURGE 2025

A. I. Hernández-Juárez alan.hernandezjua@alumno.buap.mx June 6, 2025

PHYSICAL REVIEW LETTERS 132, 021803 (2024)

Editors' Suggestion

Featured in Physics

Evidence for the Higgs Boson Decay to a Z Boson and a Photon at the LHC

G. Aad et al.*

(ATLAS and CMS Collaborations)

(Received 8 September 2023; accepted 27 November 2023; published 11 January 2024)

The first evidence for the Higgs boson decay to a Z boson and a photon is presented, with a statistical significance of 3.4 standard deviations. The result is derived from a combined analysis of the searches performed by the ATLAS and CMS Collaborations with proton-proton collision datasets collected at the CERN Large Hadron Collider (LHC) from 2015 to 2018. These correspond to integrated luminosities of around 140 fb⁻¹ for each experiment, at a center-of-mass energy of 13 TeV. The measured signal yield is 2.2 ± 0.7 times the standard model prediction, and agrees with the theoretical expectation within 1.9 standard deviations.

DOI: 10.1103/PhysRevLett.132.021803

The signal strength is defined as

$$\mu_i^{Z\gamma} = \frac{\sigma_i \mathcal{B}^{Z\gamma}}{(\sigma_i)_{SM}(\mathcal{B}^{Z\gamma})_{SM}} = 2.2 \pm 0.7,$$

- ullet σ_i is the cross-section of the Higgs production
- $\mathscr{B}^{Z\gamma}$ is the branching ratio of the $H \to Z\gamma$ decay

The signal strength is defined as

Experimentally measured

$$\mu_i^{Z\gamma} = \frac{\sigma_i \mathcal{B}^{Z\gamma}}{(\sigma_i)_{\text{SM}}(\mathcal{B}^{Z\gamma})_{\text{SM}}} = 2.2 \pm 0.7,$$
SM prediction

- ullet σ_i is the cross-section of the Higgs production
- $\mathscr{B}^{Z\gamma}$ is the branching ratio of the $H \to Z\gamma$ decay

The signal strength is defined as

$$\mu_i^{Z\gamma} = \frac{\sigma_i \mathcal{B}^{Z\gamma}}{(\sigma_i)_{\text{SM}}(\mathcal{B}^{Z\gamma})_{\text{SM}}} = 2.2 \pm 0.7,$$
Possibilities of new physics!

- ullet σ_i is the cross-section of the Higgs production
- $\mathscr{B}^{Z\gamma}$ is the branching ratio of the $H \to Z\gamma$ decay

The signal strength is defined as

$$\mu_i^{Z\gamma} = \frac{\sigma_i \mathcal{B}^{Z\gamma}}{(\sigma_i) \circ \mathcal{A}(\mathcal{B}^{Z\gamma}) \circ \mathcal{A}} = 2.2 \pm 0.7,$$
Where is the new CP v physics!
Violation?

• \nearrow ' is the branching ratio of the $H \rightarrow Z\gamma$ decay

The Higgs production is well measured and agrees with the SM production through a top quark loop in gluon fusion.

$$\sigma_i = (\sigma_i)$$
SM

Therefore, the new physics can only arise from the $H \to Z\gamma$ decay:

$$\mu_i^{Z\gamma} = \frac{\mathscr{B}^{Z\gamma}}{\mathscr{B}_{SM}^{Z\gamma}} = 2.2 \pm 0.7,$$

A lot of models trying to explain this excess (THDM, MSSM, left-right models, new particles,...)

The Higgs production is well measured and agrees with the SM production through a top quark loop in gluon fusion.

Therefore, the new physics can only arise from the $H \to Z\gamma$ decay:

$$\mu_i^{Z\gamma} = \frac{\mathscr{B}^{Z\gamma}}{\mathscr{B}_{SM}^{Z\gamma}} = 2.2 \pm 0.7,$$

CP violation can also explain this excess!

A lot of models trying to explain this excess (THDM, MSSM, left-right models, new particles,...)

The $H o Z\gamma$ decay can be parametrized by the vertex function $\Gamma^{\mu\nu}_{Z\gamma H}$.

The general form of the vertex function $\Gamma^{\mu
u}_{Z \gamma H}$ is given as follows

$$\Gamma^{\mu\nu}_{Z\gamma H} = h_1^{Z\gamma} g^{\mu\nu} + \frac{1}{m_Z^2} \Big\{ h_2^{Z\gamma} p_1^{\nu} p_2^{\mu} + h_3^{Z\gamma} \epsilon^{\mu\nu\alpha\beta} p_{1\alpha} p_{2\beta} \Big\},\,$$

$$h_2^{Z\gamma} = \frac{2 \ m_Z^2}{m_Z^2 - m_H^2} h_1^{Z\gamma}.$$
 Complex $\sim 10^{-1}$ in the SM

The $H o Z\gamma$ decay can be parametrized by the vertex function $\Gamma^{\mu\nu}_{Z\gamma H}$.

The general form of the vertex function $\Gamma^{\mu
u}_{Z \gamma H}$ is given as follows

$$\Gamma^{\mu\nu}_{Z\gamma H} = h_1^{Z\gamma} g^{\mu\nu} + \frac{1}{m_Z^2} \Big\{ h_2^{Z\gamma} p_1^{\nu} p_2^{\mu} + h_3^{Z\gamma} e^{\mu\nu\alpha\beta} p_{1\alpha} p_{2\beta} \Big\},$$

$$h_2^{Z\gamma} = \frac{2 \ m_Z^2}{m_Z^2 - m_H^2} h_1^{Z\gamma}.$$
 Complex
$$\sim 10^{-1} \text{ in the SM}$$
 CP-violating and zero in the SM

The signal strength $\mu^{Z\gamma}$ can be expressed as follows

$$\mu^{Z\gamma} \simeq \frac{\mathscr{B}^{\mathsf{SM}}(H \to Z\gamma) + \delta\Gamma(H \to Z\gamma)/\Gamma_H}{\mathscr{B}^{\mathsf{SM}}(H \to Z\gamma)},$$

Where

$$\delta\Gamma(H \to Z\gamma) = g^2 \frac{\left(m_H^2 - m_Z^2\right)^3}{32 \ \pi m_H^3 m_Z^4} |h_3^{Z\gamma}|^2.$$

A. I. Hernández-Juárez, R. Gaitán and R. Martinez, H \rightarrow Z γ decay and CP violation, Phys. Rev. D 111, 015001 (2025), arXiv:2405.03094 [hep-ph].

$$\operatorname{Re}\left[h_3^{Z\gamma}\right]$$
, $\operatorname{Im}\left[h_3^{Z\gamma}\right]$ $\lesssim 1.15$ GeV at 95 % CL.

First direct limit on $h_3^{Z\gamma}$ from experimental data

Effective Lagrangian that induces FCNC of the Higgs and Z boson:

$$\mathcal{L} = \frac{g}{c_W} \bar{f}_i \left(g_V^{ij} - g_A^{ij} \gamma^5 \right) f_j Z^\mu + \frac{g}{2m_W} \bar{f}_i \left(g_S^{ij} + g_P^{ij} \gamma^5 \right) f_j H,$$

 g_V^{ij} , g_A^{ij} , g_S^{ij} and g_P^{ij} complex constants

A possible new physics contribution:

$$h_{3}^{Z\gamma} = \frac{g \ @ \ e \ m_{Z}^{2} \ N_{c}}{4\pi^{2}c_{W}m_{W}} \left\{ m_{j}\mathbf{C}_{0}\left(0, m_{H}^{2}, m_{Z}^{2}, m_{j}^{2}, m_{j}^{2}, m_{i}^{2}\right) \left[-\operatorname{Im}\left\{g_{A}^{ij}\left(g_{S}^{ij}\right)^{*}\right\} + \operatorname{Im}\left\{g_{V}^{ij}\left(g_{P}^{ij}\right)^{*}\right\} \right] \right\}$$

$$+ m_{i}\mathbf{C}_{0}\left(0, m_{H}^{2}, m_{Z}^{2}, m_{i}^{2}, m_{i}^{2}, m_{j}^{2}\right) \left[\operatorname{Im}\left\{g_{A}^{ij}\left(g_{S}^{ij}\right)^{*}\right\} + \operatorname{Im}\left\{g_{V}^{ij}\left(g_{P}^{ij}\right)^{*}\right\}\right]\right\}$$

Calculated for the first time also

A possible new physics contribution:

It does not contribute to the $H \rightarrow \gamma \gamma$ decay

The $H \rightarrow Z\gamma$ decay

$$h_{3}^{Z\gamma} = \frac{g \ @ \ e \ m_{Z}^{2} \ N_{c}}{4\pi^{2}c_{W}m_{W}} \left\{ m_{j}\mathbf{C}_{0}\left(0, m_{H}^{2}, m_{Z}^{2}, m_{j}^{2}, m_{j}^{2}, m_{i}^{2}\right) \left[-\ln\left\{g_{A}^{ij}\left(g_{S}^{ij}\right)^{*}\right\} + \ln\left\{g_{V}^{ij}\left(g_{P}^{ij}\right)^{*}\right\}\right] + m_{i}\mathbf{C}_{0}\left(0, m_{H}^{2}, m_{Z}^{2}, m_{i}^{2}, m_{i}^{2}, m_{i}^{2}, m_{j}^{2}\right) \left[\ln\left\{g_{A}^{ij}\left(g_{S}^{ij}\right)^{*}\right\} + \ln\left\{g_{V}^{ij}\left(g_{P}^{ij}\right)^{*}\right\}\right]\right\}$$

A. I. Hernández-Juárez, R. Gaitán and R. Martinez, H → Zy decay and CP violation, Phys. Rev. D 111, 015001 (2025), arXiv:2405.03094 [hep-ph].

Limits on top quark FCNC

couplings: $|g_{V_{\bullet}A}^{tc}| < 0.0095, \quad |g_{S,P}^{tc}| \lesssim 0.25 \,\, \mathrm{GeV}$

- We estimate that for FCNC of the top quark $h_{\rm q}^{Z\gamma} \approx 10^{-5}$, too small to explain the $\mu^{Z\gamma}$ excess.
- Contributions from new quarks are also possible and close to the bounds on $h_2^{Z\gamma}$.

The HZZ vertex

ARTICLES

https://doi.org/10.1038/s41567-022-01682-0

OPEN

Measurement of the Higgs boson width and evidence of its off-shell contributions to ZZ production

The CMS Collaboration^{⋆⊠}

$$m_H < 2m_Z$$

Evidence of off-shell Higgs boson production from ZZ leptonic decay channels and constraints on its total width with the ATLAS detector

The ATLAS Collaboration

$$\Gamma_H = 3.2^{+2.4}_{-1.7}$$
 MeV

The $H \rightarrow ZZ^*$ well measured at the LHC

The Higgs boson must to be off-shell to produce two on-shell Z bosons

The HZZ vertex

Anomalous couplings for the ZZH vertex can be induced

Similar for the $HW^{\pm}W^{\mp}$ case

 h_i^V in terms of the anomalous couplings

$$\Gamma^{ZZH}_{\mu\nu} = h_1^V g_{\mu\nu} + \frac{h_2^V}{m_Z^2} p_{1\nu} p_{2\mu} + \frac{h_3^V}{m_Z^2} \epsilon_{\mu\nu\alpha\beta} p_1^{\alpha} p_2^{\beta},$$

Anomalous couplings for the ZZH vertex can be also induced

Similar for the $HW^{\pm}W^{\mp}$ case

 h_i^V in terms of the anomalous couplings

CP-conserving

CP-violating

Anomalous couplings for the ZZH vertex can also be induced

Similar for the $HW^{\pm}W^{\mp}$ case

Induced at three level and complex in the SM.

$$Z_
u(p_2)$$

 h_i^V in terms of the anomalous couplings

$$\Gamma^{ZZH}_{\mu\nu} = h_1^V g_{\mu\nu} + \frac{h_2^V}{m_Z^2} p_{1\nu} p_{2\mu} + \frac{h_3^V}{m_Z^2} c_{\mu\nu\alpha\beta} p_1^{\alpha} p_2^{\beta},$$

Induced at one-loop level and complex in the SM.

¿Induced at threeloop level in the SM? $h_3^V \sim 10^{-11}$

Anomalous couplings for the ZZH vertex can also be induced

Similar for the $HW^{\pm}W^{\mp}$ case

Induced at three level and complex in the SM.

$$Z_
u(p_2)$$

 h_i^V in terms of the anomalous couplings

$$\Gamma^{ZZH}_{\mu\nu} = h_1^V g_{\mu\nu} + \frac{h_2^V}{m_Z^2} p_{1\nu} p_{2\mu} + \frac{h_3^V}{m_Z^2} \epsilon_{\mu\nu\alpha\beta} p_1^{\alpha} p_2^{\beta},$$

Induced at one-loop level and complex in the SM.

¿Induced at threeloop level in the SM? $h_3^V \sim 10^{-11}$

Possibilities of new physics!

Again FCNC of Z and H bosons: $\mathscr{L} = \frac{g}{c_W} \bar{f}_i \Big(g_V^{ij} - g_A^{ij} \gamma^5 \Big) f_j Z^\mu + \frac{g}{2m_W} \bar{f}_i \Big(g_S^{ij} + g_P^{ij} \gamma^5 \Big) f_j H,$

Two different contributions

Type I:

Type II:

H(q)

Again FCNC of Z and H bosons: $\mathscr{L} = \frac{g}{c_W} \bar{f}_i \Big(g_V^{ij} - g_A^{ij} \gamma^5 \Big) f_j Z^\mu + \frac{g}{2m_W} \bar{f}_i \Big(g_S^{ij} + g_P^{ij} \gamma^5 \Big) f_j H,$

Two different contributions

Calculated for the first time also

Type II:

Again FCNC of Z and H bosons: $\mathscr{L} = \frac{g}{c_W} \bar{f}_i \Big(g_V^{ij} - g_A^{ij} \gamma^5 \Big) f_j Z^\mu + \frac{g}{2m_W} \bar{f}_i \Big(g_S^{ij} + g_P^{ij} \gamma^5 \Big) f_j H,$

Two different contributions

Type I:

H(q) $h_3^V \sim 10^{-8}$ Calculated for the first time also

Type II:

• Small effects of h_3^H in the process $gg \to H^* \to ZZ \to 4l$

¿Polarized process
$$gg \to H^* \to Z_{\lambda}Z_{\lambda} \to 4l$$
 ? $\lambda = R, L$ and 0

• Left-Right asymmetry:

$$\mathcal{A}_{LR}^{H} = \frac{\Gamma_{H^* \to Z_L Z_L} - \Gamma_{H^* \to Z_R Z_R}}{\Gamma_{H^* \to Z_L Z_L} + \Gamma_{H^* \to Z_R Z_R}}$$

• Small effects of h_3^H in the process $gg \to H^* \to ZZ \to 4l$

¿Polarized process
$$gg \to H^* \to Z_{\lambda}Z_{\lambda} \to 4l$$
 ? $\lambda = R, L$ and 0

Left-Right asymmetry:

$$\mathscr{A}_{LR}^{H} \sim \operatorname{Re}\left[h_{1}^{H}\right]\operatorname{Im}\left[h_{3}^{H}\right] - \operatorname{Re}\left[h_{3}^{H}\right]\operatorname{Im}\left[h_{1}^{H}\right]$$

• Small effects of h_3^H in the process $gg \to H^* \to ZZ \to 4l$

¿Polarized process
$$gg \to H^* \to Z_\lambda Z_\lambda \to 4l$$
 ? $\lambda = R, L \text{ and } 0$

Left-Right asymmetry:

$$\mathscr{A}_{LR}^{H} \sim \operatorname{Re}\left[h_{1}^{H}\right]\operatorname{Im}\left[h_{3}^{H}\right] - \operatorname{Re}\left[h_{3}^{H}\right]\operatorname{Im}\left[h_{1}^{H}\right]$$

 h_1^H complex in the SM

Imaginary parts

Similar asymmetries are posible in the $Z^* o Z_{\lambda}H$ and the HWW vertex

Summary

- Effects of new physics are still possible in Higgs couplings.
- CP-violation can explain the reported excess in the $H \to Z\gamma$ decay.
- New sources of CP-violation in the HZZ and HWW.

Gracias!

Back up!

$$\Gamma(H \to Z\gamma) = g^2 \frac{m_H^2 - m_Z^2}{32 \ \pi m_H^3 m_Z^4} \Big(4 |h_1^{Z\gamma}|^2 m_Z^4 + |h_3^{Z\gamma}|^2 \left(m_H^2 - m_Z^2 \right)^2 \Big)$$
$$= \Gamma^{\text{SM}}(H \to Z\gamma) + \delta\Gamma(H \to Z\gamma),$$

The general form of the vertex function $\Gamma^{\mu
u}_{Z \gamma H}$ is given as follows

$$\Gamma^{\mu\nu}_{Z\gamma H} = h_1^{Z\gamma} g^{\mu\nu} + \frac{1}{m_Z^2} \Big\{ h_2^{Z\gamma} p_1^{\nu} p_2^{\mu} + h_3^{Z\gamma} \epsilon^{\mu\nu\alpha\beta} p_{1\alpha} p_{2\beta} \Big\},\,$$

$$h_2^{Z\gamma} = \frac{2 m_Z^2}{m_Z^2 - m_H^2} h_1^{Z\gamma}.$$
 Complex $\sim 10^{-1}$

CP-violating and zero in the SM

 $\mathcal{A}_{LR}^{H} \sim \operatorname{Re}\left[h_{1}^{H}\right]\operatorname{Im}\left[h_{3}^{H}\right] - \operatorname{Re}\left[h_{3}^{H}\right]\operatorname{Im}\left[h_{1}^{H}\right]$

The observation of the \mathscr{A}^H_{LR} asymmetry would imply a new source of CP violation