
June 2 - 13, 2025

Martha Constantinou 

Temple University

Lattice QCD (selected topics) 
 Lecture 1

Center for Frontiers in Nuclear Science 
 Stony Brook University, USA 



M. Constantinou, CFNS-SURGE School 2025 2

Have you ever written a code longer than 500 lines? 

Have you ever stared at data at 3 a.m.?

Let’s get to know each other!

Have you ever blamed a bug on systematic effects?

Do you believe we will ever solve QCD analytically in 4D?

Lattice QCD is THE first-principle approach for QCD. 

I find it equally frustrating and beautiful… 
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Lattice QCD*  
complements  

theory & experiments

*Lattice gauge theories also encompass  
   unphysical theories



LBL cyclotron

4

Overview of lattice QCD studies

★ Important Lattice QCD contributions that 
complement the experimental program in 
both Hot and Cold QCD

HOT COLD

Nuclear 
Astrophysics

Hadron 
Structure

Fundamental 
Symmetries

Hadron 
Spectroscopy

Nuclear 
Structure 

M. Constantinou, CFNS-SURGE School 2025

USQCD Nuclear Physics Program

This school
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★ Tuesday, June 3: 

- Motivation and Formulation of Lattice QCD 

- How to extract physical information 

★ Thursday, June 5: 

- Hadron Structure from Lattice QCD in the EIC era 

- Novel methods for x-dependent distributions? 

- Suggestions? 

- Synergistic efforts

OUTLINE OF LECTURES
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★ Lattice Gauge Theories: An Introduction 

H. J. Rothe  
https://www.worldscientific.com/worldscibooks/10.1142/1268  

★ Quantum Chromodynamics on the Lattice 
An Introductory Presentation 

C. Gattringer and C. Lang 
https://www.springer.com/us/book/9783642018497 

★ Lattice quantum chromodynamics:  
practical essentials 
Knechtli, Günther & Peardon  
https://link.springer.com/book/10.1007/978-94-024-0999-4

Useful Reading Material

https://www.worldscientific.com/worldscibooks/10.1142/1268
https://www.springer.com/us/book/9783642018497
https://link.springer.com/book/10.1007/978-94-024-0999-4
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Useful Reading Material

Review article Eur.Phys.J.C 83 (2023) 1125

arXiv: 2212.11107 
https://inspirehep.net/literature/2617065
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Useful Reading Material
EIC Yellow Report 

Nucl.Phys.A 1026 (2022) 122447

arXiv:2103.05419 
https://inspirehep.net/literature/1851258

Lattice QCD at the EIC:  
a non-perturbative window  
into hadron structure and 
interactions 
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★ Path Integral Formalism 

★ Lattice QCD formulation  

★ Landscape of numerical simulations  

★ Selected “objects” we calculate on the lattice 

★ Key points of Lecture 1

OUTLINE OF LECTURE 1
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Why is  
Lattice QCD  
essential?
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QCD is a non-abelian gauge theory with symmetry group SU(3): 
— 8 generators of SU(3) gauge group 
— dimensionality of transformation space: 3

QCD Lagrangian

QCD Lagrangian density:

ℒQCD = ∑
f

ψ̄f (iγμ Dμ − mf) ψf −
1
4

Fa
μν Fa μν

Tα : SU(3) generators, α : 1,2,...,8

Gα
μ : gluon field

Fα
μν : field tensor operator

fabc : structure constants of SU(3) Gluon kinetic & interaction terms

ℒgluonic

Quark kinetic & mass terms 
quark-gluon terms

ℒfermionic

Huge increase of complexity level 
to solve QCD (compared to QED)

ψ s,c
f (x) : quark field, 4 component spinors, 3 component color, 6 flavors
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Features of QCD: The running coupling

Perturbative tools are successful

“running” of coupling αs 
almost resulted in 
abandoning QCD:  
αs  too strong for  
perturbation theory to be 
of any use. 

Quark confinement

Strong coupling is not constant

Particle jets

Top- and anti top- quark pair decaying into jets,
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In the quest of solving complex problems

 “Οτι δεν λύνεται, κόβεται”
Alexander the Great while 
cutting the Gordian knot

QCD 
and beyond

M. Constantinou, CFNS-SURGE School 2025
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Path Integral Formalism

     
xi(ti)

xf(tf)

Classical particle

xf(tf)

Quantum particle

                  xi(ti)

All possible 
trajectories 
(weighted)

unique 
trajectory

Probability of getting to xf(tf) when 
initially at xi(ti) 

Propagator

U(xf , tf; xi, ti) = ⟨ψ(xf , tf ) |ψ(xi, ti)⟩

U(xf , tf; xi, ti) = ∫ 𝒟x(t)e i
ℏ S[x(t)]

= ⟨ψ(xf ) |e− i
ℏ Ĥ(tf−ti) |ψ(xi)⟩

Path integral “language” 
(sum of all paths  

weighted by action)

∫ 𝒟x(t) : measure

S[x(t)] : action
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Path Integral Formalism
★ Equivalent to the Schrödinger formalism - more intuitive in interpretation  

★ Very practical for quantum mechanics (weighted sum over all paths)  

★ Critical for quantum field theories  (weighted sum over all field values) 
Successfully applied to QCD (Lattice QCD)

⟨𝒪⟩ =
1
𝒵 ∫ D[U] 𝒪(D−1, U) det(D[U])Nf ei SQCD[U]

★ Observables: 
(v.e.v of operator)

𝒵 = ∫ D[U]D[ψ̄] D[ψ] ei SQCD[U,ψ̄,ψ] = ∫ D[U] det(D[U])Nf ei SQCD,G[U]

Fermion degrees of freedom integrated out 
(anticommuting Granssmann variables) 

★ Partition function

Complex action problem: 
makes weight sampling 
impossible  
(oscillatory phase factors)

Functional volume element 
for corresponding fields
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Euclidean metric & Discretization

⟨𝒪⟩ =
1
𝒵 ∫ D[U] 𝒪(D−1, U) det(D[U])Nf ei SQCD[U]

ei SQCD[U] → e− SQCD[U]

★ Path integral has infinite degrees of freedom: 
  
Need to introduce a space-time discretization

★ Wick rotation to imaginary (Euclidean) time:  
(temporal and spatial components same sign in invariant length)

t → iτ

★ Statistical mechanics methods may be utilized (Boltzmann probability)

We have not reach the lattice discretization yet!
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★ Space-time discretization on a finite-size 4-D grid 

★ Serves as a regulator of theory: 
— UV (hard momentum) cut-off (finite integrals):  
     inverse lattice spacing ( α-1 ) 
     momentum and energy < |π/α| 
 
 
 
— IR cut-off (finite number of d.o.f): inverse lattice size ( V-1/4 ) 
 
 

★ Removal of regulator

Lattice formulation of QCD

∫
∞

−∞
dp → ∫

π/a

−π/a

dp
2π

∫ dpF(p) →
Nmax

∑
n

2π
L

F(p0 +
2πn

L
)

L → ∞ , a → 0

K. Wilson M. Creutz
First principle (ab initial) formulation



★ Parameters (define cost of simulations): 
— quark masses (aim at physical values) 
— lattice spacing* (ideally fine lattices) 
— lattice size (need large volumes) 

★ Discretization not unique 
— clover improved fermions 
— Domain wall fermions  
— Overlap fermions 
— Staggered fermions 
— Twisted mass fermions 
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Lattice formulation of QCD

Technical Aspects

* In practice, the coupling is set in simulation and α is defined by comparing lattice 
results and values of physical quantities, e.g., proton mass   
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★ Direct evaluation of (finite d.o.f.) path integral is unfeasible:  
One needs to invert the Dirac matrix (~ 108 × 108)

Monte Carlo Methods for Lattice QCD

Monte Carlo Methods  
for Numerical Simulations 

★ Solution:  Stochastic estimation of path integral

★ Discretization in a lattice of volume:  
e.g., 483 × 96: 340 Million degrees of freedom!
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Monte Carlo Methods for Lattice QCD
★ Representative ensemble of gauge field  

configurations of the vacuum with acceptance probability  
 

                               
 

- Metropolis Algorithm: 
   Very slow due to sequential repetition of updating variables 
- Hybrid MC, important sampling, use of Markov process: 
   update all  variables at once, better scaling behavior in volume 

★ Expectation value of operator (correlation functions)  
for this distribution, which requires an inversion of sparse matrix 

★ Repetition of this process N times  
N: number of “measurements” 

★ Average of results     

★ Statistical errors (jackknife, bootstrap) decrease as 

e−S[U]+Nf log(det(D[U]))

O =
1
N ∑

N

𝒪(U)

σ(O) ∝ 1/ N

M. Constantinou, CFNS-SURGE School 2025
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Theoretical aspects  
of lattice QCD

The boring stuff…
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Fermions and Gluons on the Lattice

x = na

Link variable Uμ relates to gauge field Gμ

Ψ(x) : anticommuting Grassmann variables

x x + a ̂μ

U(x, x + a ̂μ)
x x + a ̂μ

U(x + a ̂μ, x)

Lν

Lμ

For more theoretical aspects 
see backup slides
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Fermions and Gluons on the Lattice
★ Lattice formulation “must” be invariant under SU(3) local gauge transformations 

 
★ Giving up gauge invariance would create a series of problems: 

 

— More parameters to tune  
     (couplings for quark-gluon, 3- & 4-gluon interactions, the gluon mass,…) 

 
— More operators at any given order in α, thus increase of discretization errors 

 
— Proofs of renormalizability within perturbation  
     theory rely on strict gauge invariance 
      [T. Reisz & H. Rothe, Nucl.Phys. B575 (2000) 255] 

★ Gauge invariant quantities: 
— Products of Ψ(x), Ψ(x’) and  
      gauge links connecting x and x’ 
— Closed gluonic loops

ψ(x) → V(x)ψ(x) , ψ̄(x) → ψ̄(x)V†(x)
Uμ(x) → V(x)Uμ(x)V†(x + ̂μa)

V(x) = e−iθa(x) λa
2
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★ Discretization of fermionic action complicated  

★ Naive discretization preserves gauge invariance, but results in fermion 
doubling problem: appearance of spurious states and continuum limit 
wrongly leads to 24 fermions instead of one. 

Example: Naive fermion discretization

Fermion propagator (in momentum space upon Fourier Transform):

Additional poles: 
Vanishes at the ends of 
Brillouin zone [-π/α,π/α]. 
In 4-dim these are sixteen 
regions instead of p~0 only, 
thus 16 species of fermions

π/a

naive
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Nielsen-Ninomiya (No-Go) theorem
It is not possible to define a local, translationally invariant, hermitian lattice action 

that preserves chiral symmetry and does not have doublers 

★ Several proposals for fermion action to avoid fermion doubling 
Wilson, Clover, Twisted Mass, Staggered, Overlap, Domain Wall, Mixed actions 

★ Improved actions have different advantages and disadvantages: 
Clover:  
computationally fast  
break chiral symmetry & require operator improvement 
Twisted Mass:  
computationally fast & automatic improvement 
break chiral symmetry & violation of isospin 
Staggered: 
computationally fast 
4 doublers & difficult contractions 
Overlap: 
exact chiral symmetry 
computationally expensive 
Domain Wall  
improved chiral symmetry 
computationally demanding & require tuning

All these formulations are used to 
understand aspects of QCD 
(hadron structure, spectroscopy, etc)
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Challenges of numerical simulations

★ Above benchmark is for a small-scale calculation 

★ Modern calculations (physical parameters) require TFlops x years

O(100) less cost physical point 
(“Berlin Wall”)
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Landscape of numerical simulations

Size of symbols  
proportional to mπ L

Ensembles with physical values  
for quark masses (physical point)

Lattice (fermion) formulations employed by various groups: 
Wilson, Clover, Twisted Mass, Staggered, Overlap, Domain Wall, Mixed actions
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What should we  
first study  

in Lattice QCD?

Start from quantities that are (relatively) easy to 
compute, and can be compared against 

experimental data
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First goals of Lattice QCD
Reproduce the low-lying spectrum

Mesons                                                        Baryons

Quark propagator

creation point

annihilation point
propagator

e.g. pion, kaon                                                e.g. proton

Most costly part of calculation

⟨H(p) |H(p)⟩
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Calculation of Hadron mass
Extraction of a hadron’s mass from its propagator:

★ Two-point correlator (hadron level, Heisenberg picture):

Insertion of complete 
set of momentum 
and energy states: 

Sum over x gives δ(κ), 
Εn(0) = mn

Only terms that have same 
quantum numbers as χ survive

★ The mass of the hadron appears, for the nth state
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Calculation of Hadron mass
★ Overlap with ground state, excitations, other hadron states. Thus:

★ For large enough t the exponential for excited states and multi-
hadron states, becomes very small, thus ground-state dominance.

C(t)
=

t > > 1
1

2mH
|⟨Ω |χ(0⃗,0) |H(0⃗,0)⟩ |2 e−mHt

mass of ground state

a mH
eff(t) = log ( C(t)

C(t + 1) )

One may proceed with a 
constant or multi-state fit

Excited states suppressed



[C. Alexandrou et al.,Phys. Rev. D 90, 074501 (2014)]

Low-lying meson and baryon states

BMW collaboration, Science 322, 1224 (2008)

Stable states below decay thresholds

offset: -4000 MeV

A. S. Kronfeld, Annu. Rev. Nucl. Part. Sci. 62 (2012) 265, arXiv:1209.3468
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Lattice results reproduce experimental values 

Hadron Spectroscopy

no experimental value

Lattice data more 
accurate than 

experimental ones

Open symbols also used 
to fix parameters, such as 

lattice spacing
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Hadron Spectroscopy
★ QCD + QED effects: mass splitting between, e.g., proton and neutron

Borsanyi et al, Science 347, 14521455 (2015)

For new exciting advances in spectroscopy see lectures of 2024 CFNS School
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Correlation functions 
related to  

Hadron Structure 
(See lecture #2)



Connected

Disconnected Quark loop Disconnected Gluon loop
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Hadrons on the Lattice

Particularly interesting for EIC physics

Sink Operator insertion
Source

Diagrams  
for baryons

★ Separation between source and sink: excited states investigation 
★ Type of current insertion gives different observable  
★ Extraction of each contribution has its own challenges  

(statistical and systematic uncertainties) 

⟨N(pf ) |𝒪 |N(pi)⟩
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Hadrons on the Lattice

Connected

3pt correlation function

Insertion of two set of 
complete eigenstate

Fourier transform

Momentum  
conservation

pf = p′￼, pi = p′￼− p1 Limit   t-t1 >>1,   t1>>1: 
ground state dominance 

•                transition amplitudes and transition form factors    
•                hadron structure 

                   no momentum transfer (charges) 
                   momentum transfer (form factors)

H′￼≠ H :
H′￼= H :

pf = pi :
pf ≠ pi :
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A. Calculation of matrix elements with appropriate currents for the 
quantities under study (e.g., vector-axial current)

C2pt = ⟨N |N⟩ C3pt
Γ = ⟨N |ψ(0)Γψ(0) |N⟩

C. Renormalization (usually multiplicative)

ΠR
Γ = ZΠΓ

D. Kinematic factors based on symmetry properties, e.g. 

A3
μ ≡ ψ̄ γμ γ5

τ3

2
ψ ⇒ ūN(p′￼)[GA(q2) γμ γ5 + Gp(q2)

qμ γ5

2 mN
]uN(p)

Nucleon on the Lattice

Rμ
𝒪(Γ, ⃗q, t) =

G𝒪(Γ, ⃗q, t)

G(0⃗, tf )

G(− ⃗q, tf − t)G(0⃗, t)G(0⃗, tf )

G(0⃗, tf − t)G(− ⃗q, t)G(− ⃗q, tf )
= ΠΓ

B. Construction of optimized ratios and 
identify ground state

0<<τ<< t

Multiply analysis techniques available (single- & multi-state, summation)
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Inherited uncertainties in lattice calculations

★  decrease of pion mass 
★  increase of momentum transfer between initial-final state 
★ Type of operator  
★ increase of source-sink separation Tsink 

★ …

Statistical errors significantly increase with:

★  cut-off effects (finite lattice spacing) 
★  finite volume effects 
★  contamination from other hadron states 
★  chiral extrapolation for unphysical pion mass 
★  renormalization and mixing  
★ …

Sources of systematic uncertainties:

Careful error budgeting is essential for comparison to experiments
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Investigation of systematic uncertainties

★ Excited states contamination 

★ Pion mass (with simulations at physical point) 

★ Renormalization and mixing 

★ Different methodologies to extract the same observables

On a single ensemble: 

Using multiple ensembles: 
★ Cut-off effects due to finite lattice spacing 

★ Finite volume effects 

★ Pion mass dependence }Effects reduced 
in single ensemble 
with appropriate 
parameters
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Recap of Lecture 1
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Key points of Lecture 1

★ QCD Lagrangian is compact, but extremely difficult to solve 

★ Several models of QCD provide intuitive understanding, and can reliable 
results to high energy scales 

★ Lattice QCD is the only first-principle non-perturbative formulation to 
study QCD from first principle 

★ Lattice regularization is a well-formulated 4-D discretization 

★ Several discretizations proposed for fermion and gluon action, with 
different advantages disadvantages 

★ Computational cost is among the challenges of numerical simulations 

★ Robust connection with observables
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Join us at EINN 2025
28 October – 01 November, 2025

Coral Beach Hotel & Resort

Frontiers and  
Careers Workshops:

https://2025.einnconference.org/

Abstract submission is Open!

Thank you 

26 - 27 October, 2025

M. Constantinou, CFNS-SURGE School 2025



Backup slides
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Fermions and Gluons on the Lattice
★ Lattice formulation “must” be invariant under SU(3) local gauge transformations 

 
★ Giving up gauge invariance would create a series of problems: 

 

— More parameters to tune  
     (couplings for quark-gluon, 3- & 4-gluon interactions, the gluon mass,…) 

 
— More operators at any given order in α, thus increase of discretization errors 

 
— Proofs of renormalizability within perturbation  
     theory rely on strict gauge invariance 
      [T. Reisz & H. Rothe, Nucl.Phys. B575 (2000) 255] 

★ Gauge invariant quantities: 
— Products of Ψ(x), Ψ(x’) and  
      gauge links connecting x and x’ 
— Closed gluonic loops

ψ(x) → V(x)ψ(x) , ψ̄(x) → ψ̄(x)V†(x)
Uμ(x) → V(x)Uμ(x)V†(x + ̂μa)

V(x) = e−iθa(x) λa
2
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Gluons on the Lattice
Gluon Actions:

parallelogram

plaquette

chair

rectangle
★ Choice of discretization not unique

★ O(α2) improved actions: approach better 
continuum limit
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★ Discretization of fermionic action complicated  

★ Naive discretization preserves gauge invariance, but results in fermion 
doubling problem: appearance of spurious states and continuum limit 
wrongly leads to 24 fermions instead of one. 

Fermions on the Lattice

Fermion propagator (in momentum space upon Fourier Transform):

Additional poles: 
Vanishes at the ends of 
Brillouin zone [-π/α,π/α]. 
In 4-dim these are sixteen 
regions instead of p~0 only, 
thus 16 species of fermions

π/a

naive
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★ Wilson action to avoid doubling problem

Fermions on the Lattice

W

Wilson term, r: (0,1]

[Kenneth G. Wilson, Phys. Rev. D10 2445  (1974)] 

Denominator of Fermion propagator becomes

1
a2 ∑

μ

sin2(akμ) + (m +
2r
a ∑

μ

sin(a
kμ

2
))2

No poles at the edge of B.Z.

π/a−π/a
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Properties of Wilson fermion action
★ Gauge invariant 

★ Translational invariance 

★ Invariant under charge conjugation (C), parity (P) and time reversal (T) 
transformations 

★ Only nearest neighbors interactions (useful for lattice pert. theory) 

★ Wilson-Dirac operator has γ5-hermicity: γ5DWγ5 = D†

★ Wilson-Dirac operator, DW+m is not protected against zero modes 
(quark mass: additive and multiplicative renormalization) 

★ Chiral symmetry is explicitly broken at O(α) by Wilson term 

★ O(α) Discretization effects 

★ Axial current transformations are not exact symmetry and nonsinglet  
axial current requires renormalization 


