AC-LGAD based for detector systems for the EIC

Thomas Ullrich **CFNS Summer School 2025** June 5, 2025

Figure 8.45: The histogram shows the relative yield of charged hadrons from Pythia simu lations for 18×275 GeV *ep* collisions as a function of momenta and pseudorapidity, η . The function of momenta and pseudorapidity and the set of th contours indicate the 3σ separation region of the different ePIC PID subsystems for π/K (a *K*/*p* (b), and *e*/ π (c), respectively.

2455 2456

2457

- Additional low-momentum PID in the forward region is achieved by an AC-LGAD to ToF that also provides an additional layer of tracking points.
- A large radius high-performance DIRC (hpDIRC) in the barrel, which adds focusing t

Recall the Requirements

	Nomenclature	Tracking						Electrons and Photons			π/ Κ/p		HCAL		
η		Resolution	Relative Momentun	Allowed X/X ₀	Minimum-p _T (MeV/c)	Transverse Pointing Res.	Longitudinal Pointing Res.	Resolution $\sigma_{\sf E}^{}/{\sf E}$	PID	Min E Photon	p-Range	Separation	$\begin{array}{c} \text{Resolution} \\ \sigma_{\text{E}} / \text{E} \end{array}$	Energy	Muons
< -4.6	Low-Q2 tagger														
-4.6 to -4.0		Not Accessible													
-4.0 to -3.5			Reduced Performance												
-3.5 to -3.0	Backward Detector		σ _p /p ~					1%/E ⊕ 2.5%/√E ⊕ 1%	π suppression up to 1:10 ⁻⁴	20 MeV					
-3.0 to -2.5			0.1%×p⊕2%												
-2.5 to -2.0		σ _p /p ~		150-300			⊕1%			≤ 10 GeV/c		⊕ 10%		Muons useful for	
-2.0 to -1.5			0.02% × p ⊕ 1%			$dca(xy) \sim 40/p_T$	dca(z) ~ 100/p _T	2%/E	π suppression	50 MoV		≥ 3 σ		~500MeV	background suppression and improved resolution
-1.5 to -1.0						μm	μm ⊕ 20 μm	⊕ (4-0)%/ v⊏ ⊕ 2%	up to 1:(10 ⁻³ -10 ⁻²)	50 Mev					
-1.0 to -0.5	Barrel	σ _p /p ~ 0.02%			400		dca(z) ~ 30/p _T μm ⊕ 5 μm	2%/E ⊕ (12-14)%/√E ⊕ (2-3)%	π suppression up to 1:10 ⁻²	100 MeV	≤6 GeV/c				
-0.5 to 0.0			σ _p /p ~ 0.02% × p	~5% or		dca(xy) ~ 30/p- um							100%/√E		
0.0 to 0.5			⊕ 5%	less		⊕ 5 μm							⊕ 10%		
0.5 to 1.0															
1.0 to 1.5			σ _p /p ~ 0.02% × p ⊕ 1%		150-300	dca(xy) ~ 40/p _T		0/p _T 1 2%/E ⊕ (4*-12)%/√E ⊕ 2%	3σ e/π up to 15 GeV/c	50 MeV	≤ 50 GeV/c				
1.5 to 2.0		Forward Detectors				μm	dca(z) ~ 100/p _T um ⊕ 20 um						50%/√E ⊕ 10%		
2.0 to 2.5	Forward Detectors														
2.5 to 3.0			σ _p /p ~												
3.0 to 3.5	5		0.1%×p⊕2%												
3.5 to 4.0	Instrumentation to separate charged particles from photons	Reduced Performance													
4.0 to 4.5		Not Accessible													
	Proton Spectrometer														
~ 4.0	Zero Degree Neutral Detection														

The YR asks for 3σ separation of $\pi/K/p$ in

- backward (e-going): $p \leq 10$ GeV/c
- barrel/mid-rapidity: $p \leq 6$ GeV/c
- forward (p/A-going): $p \leq 50$ GeV/c

Yellow Report, arXiv:2103.05419

Note that there was a shortcoming in not discussing the low-*p* requirement. This is still under discussion.

Reflection on a Definition

Say we look at the π, K separation power. We typically think of this in terms of $n\sigma$. But how is this defined?

 Many use the difference between the two Gaussians, divided by the average Gaussian σ to define the separation power

 $n\sigma = \frac{\theta_C^{\pi} - \theta_C^K}{(\sigma_{\theta}^{\pi} + \sigma_{\theta}^K)/2}$

Reflection on a Definition

Say we look at the π, K separation power. We typically think of this in terms of $n\sigma$. But how is this defined?

- Many use the difference between the two Gaussians, divided by the average Gaussian σ to define the separation power
- However
 - this $n\sigma$ is not the quantity people are used to in statistics. The true $n\sigma$ is always smaller than the $n\sigma$ obtained from the definition we are using. This way one is overselling the performance. In short when we say 3σ , this is not the 99.73% one is used to.

 - Difference $\approx \sqrt{2}$, so 3σ is really ~ 2σ or 95.45% OK in most cased since PID systems are too complex to be reflected by just one number.

$$n\sigma = \frac{\theta_C^{\pi} - \theta_C^K}{(\sigma_{\theta}^{\pi} + \sigma_{\theta}^K)/2}$$
$$n\sigma = \frac{\theta_C^{\pi} - \theta_C^K}{\sqrt{(\sigma_{\theta}^{\pi})^2 + (\sigma_{\theta}^K)^2}}$$

Recall the Requirements

	Nomenclature	Tracking						Electrons and Photons			π/ Κ/p		HCAL		
η		Resolution	Relative Momentun	Allowed X/X ₀	Minimum-p _T (MeV/c)	Transverse Pointing Res.	Longitudinal Pointing Res.	Resolution $\sigma_{\sf E}^{}/{\sf E}$	PID	Min E Photon	p-Range	Separation	$\begin{array}{c} \text{Resolution} \\ \sigma_{\text{E}} / \text{E} \end{array}$	Energy	Muons
< -4.6	Low-Q2 tagger														
-4.6 to -4.0		Not Accessible													
-4.0 to -3.5			Reduced Performance												
-3.5 to -3.0	Backward Detector		σ _p /p ~					1%/E ⊕ 2.5%/√E ⊕ 1%	π suppression up to 1:10 ⁻⁴	20 MeV					
-3.0 to -2.5			0.1%×p⊕2%												
-2.5 to -2.0		σ _p /p ~		150-300			⊕1%			≤ 10 GeV/c		⊕ 10%		Muons useful for	
-2.0 to -1.5			0.02% × p ⊕ 1%			$dca(xy) \sim 40/p_T$	dca(z) ~ 100/p _T	2%/E	π suppression	50 MoV		≥ 3 σ		~500MeV	background suppression and improved resolution
-1.5 to -1.0						μm	μm ⊕ 20 μm	⊕ (4-0)%/ v⊏ ⊕ 2%	up to 1:(10 ⁻³ -10 ⁻²)	50 Mev					
-1.0 to -0.5	Barrel	σ _p /p ~ 0.02%			400		dca(z) ~ 30/p _T μm ⊕ 5 μm	2%/E ⊕ (12-14)%/√E ⊕ (2-3)%	π suppression up to 1:10 ⁻²	100 MeV	≤6 GeV/c				
-0.5 to 0.0			σ _p /p ~ 0.02% × p	~5% or		dca(xy) ~ 30/p- um							100%/√E		
0.0 to 0.5			⊕ 5%	less		⊕ 5 μm							⊕ 10%		
0.5 to 1.0															
1.0 to 1.5			σ _p /p ~ 0.02% × p ⊕ 1%		150-300	dca(xy) ~ 40/p _T		0/p _T 1 2%/E ⊕ (4*-12)%/√E ⊕ 2%	3σ e/π up to 15 GeV/c	50 MeV	≤ 50 GeV/c				
1.5 to 2.0		Forward Detectors				μm	dca(z) ~ 100/p _T um ⊕ 20 um						50%/√E ⊕ 10%		
2.0 to 2.5	Forward Detectors														
2.5 to 3.0			σ _p /p ~												
3.0 to 3.5	5		0.1%×p⊕2%												
3.5 to 4.0	Instrumentation to separate charged particles from photons	Reduced Performance													
4.0 to 4.5		Not Accessible													
	Proton Spectrometer														
~ 4.0	Zero Degree Neutral Detection														

The YR asks for 3σ separation of $\pi/K/p$ in

- backward (e-going): $p \leq 10$ GeV/c
- barrel/mid-rapidity: $p \leq 6$ GeV/c
- forward (p/A-going): $p \leq 50$ GeV/c

Yellow Report, arXiv:2103.05419

Note that there was a shortcoming in not discussing the low-*p* requirement. This is still under discussion.

Backward Region: pfRICH

- Basic idea
 - no mirror like in "real" RICH detectors but thin radiator, here aerogel
 - aerogel sits between liquids and gases radiators providing just the right "n" to cover the required p range.

• After several iterations the solution is a proximity focusing RICH detector (aka pfRICH)

Proximity Focusing RICH (pfRICH)

Aerogel

- Three radial bands; Opaque dividers
- 2.5 cm thick, 42 tiles total
- Vessel
 - Honeycomb carbon fiber sandwich
 - Filled with nitrogen

- HRPPD photosensors with timing capability
 - ▶ 12 x 12 cm size
 - 68 sensors total
 - Coverage: -3.5 < η < -1.5</p>
 - timing resolution ~20 ps
- High reflectivity mirrors to improve the acceptance of the RICH detector

The Story with the Photosensors

- Typically the number of Cherenkov photons in RICH detectors is moderate (~10) → every photon counts
- Need high efficiency in capturing the photons & high pixelization
- ePIC also need low material budget
- Huge impact: Radiation & magnetic field

- Good old photomultiplier tubes (PMT) do not work in ePIC field and are too massive
- Everything using CsI is cumbersome and not robust on long term (O₂, H₂O sensitivity, aging, maintenance)
- SiPM have issues with radiation hardness
- Way out are multichannel-plate PMTs or <u>LAPPDs/HRPPs</u>

(a) Estimates of the 1-MeV neutron equivalent fluence in cm⁻²/fb⁻¹ and (b) the sum of electromagnetic and chargedhadron doses in rads/ fb⁻¹ integrated in 1 fb⁻¹ equivalent Pythia events for 10 x 275 GeV ep collisions.

Photosensors: LAPPD & HRPPDs

- LAPPD/HRPPD potential solution for EIC
 - Photon detector + O(10) ps ToF detector at the same time

Large-Area Picosecond PhotoDetector (LAPPD)

- Microchannel plate (MCP) based large area picosecond photodetector (20cm x 20 cm)
- High-Resolution Picosecond PhotoDetector (HRPPD)
 - Size 10 cm x 10 cm
 - Novel multi-anode direct readout
 - Spatial resolution of ~1mm
 - ► Timing reference at the level of ~20 ps
 - Have reasonable power dissipation in mW per channel
 - Allow for a compact solution to leave more space for the proximity gap
 - In development by manufacturer (INCOM) with PED support by EIC project
 - Reduced gap spacing for improved timing resolution and B-Field tolerance, better tilability

pfRICH - Looking Good

EIC HRPPD QE as a function of wavelength

QE map in the full active area at a wavelength of 365 nm

Single photon timing resolution measured using femtosecond laser

Forward Region: dualRICH (dRICH)

- Forward region has the most challenging requirements
 - Provide continuous hadron identification from~3 dual radiator GeV/c to \sim 50 GeV/c,
 - Supplement electron and positron identification from a few hundred MeV/c up to about 15 GeV/c. In dual radiator
 - Work in a high B field ~ 0.5T (field lines!) SiPM photosensors
 - Fit in limited space (for a gas RICH) curved detector

dRICH Overview

The Challenge: SiPM Sensors

- Need to cover 3 m²
- 3x3 mm² pixel
- Pros

~ 10 noise hits / sector within 500 ps

- single photon detection
- high efficiency
- excellent timing resolution
- insensitive to magnetic fields
- Cons
 - not radiation tolerant
 - Iarge dark current rate ~50kHz/mm2 (a) $T = 24^{\circ}C$

A Tour de Force - SiPM in dRICH

Mitigation Strategies

- reduce DCR at low T
 - operation at $T = -30^{\circ}C$
- recover radiation damage
 - in-situ high-T annealing
- exploit timing capabilities with ALCOR front end chip

hows it works but T ~ 150°C s limit (see yellow chip)

13

A Tour de Force - SiPM in dRICH

Mitigation Strategies

- reduce DCR at low T
 - operation at $T = -30^{\circ}C$
- recover radiation damage
 - in-situ high-T annealing
- exploit timing capabilities with ALCOR front end chip

hows it works but T ~ 150°C s limit (see yellow chip)

coloured brackets is the RMS

dRICH Evolution

2025

electronics v3 final prototype

towards construction

-80 -60 -40 -20 0 20 40 60 80 slide inspired by Pietro Antonioli× (mm)

-80

14

dRICH Performance

dRICH & Global Warming

- Radiator gases for EIC RICH detectors are fluorocarbons that exhibit extremely high Global Warming Power: GWP(C₂F₆) ~ $\mathcal{O}(10k)$, GWP(CO₂) = 1
- Increasingly prohibited across the world
- Where used
 - complex and expensive close circulation systems needed
 - increasing procurement issues expected
- RICH performance is preserved when fluorocarbons at atmospheric pressure are replaced with argon pressurized at a few bar
- The challenge is to design vessel that allows
 - safe high-pressure operation
 - minimizing its impact on the overall detector material budget.
 - engineering in progress R&D ongoing

-0.9 -0.4 +0.4 +0.9 +1.8 +3.6 +7.2 °F

Barrel-Region: high performance DIRC

- There is not much room in the barrel for PID between the tracking layers and the EM calorimeter
- Need to cover up to p = 6 GeV/c
- There's no way around RICH detectors but need a short radiator plus readout?

Detection of Internally Reflected Cherenkov Light

- Light is captured by total internal reflection inside the solid radiator
- With glass/quartz there are many $\mathcal{O}(100)$ photons even for thin bars
- Reaches the light sensors at the detector perimeter
- Precise rectangular cross section of the radiator preserving the angular information of the Cherenkov light cone.
- One example is the DIRC of the BaBar experiment at SLAC

hpDIRC Overview

• Bars:

- Barrel radius: 762 mm, 12 sectors, 10 long bars per sector
- Reuse bars from decommissioned BABAR DIRC, supplemented by new bars/plates

Lenses:

- Novel 3-layer spherical focusing lens essential for achieving the PID performance ePIC requires.
- Lens design avoids the dramatic photon loss caused by air gap transitions in standard lens systems.

• Prisms:

- Prism expansion volume is made of synthetic fused silica. D
- Detector plane of each prism is covered by an array of 24 sensors

Sensors:

- In the baseline design of the hpDIRC, commercial microchannel plate photomultiplier tubes (MCP-PMTs) with a pore size of 10 µm or smaller were assumed with pixel size of 3.2 mm
- HRPPDs (pfRICH) are an alternative

BaBar DIRC Bar Reuse

- Successful transport of 8 DIRC bar boxes in April 2024
 - Low attitude road from SLAC, CA to JLab, VA
 - Shocks absorbing foam
 - Hydraulic shocks
 - Air shocks
 - Shock absorbing donuts
 - Air-ride, temperature control trucks
 - Goal: Keep shocks on Bar box below 1g

- Bar boxes disassembled into individual bars at JLab
 - Aluminum covers will need to be " opened", glue joints between bars decoupled
- Optical quality of bars after disassembly will be evaluated in QA DIRC lab
- QA Lab will consist of:
- Cleaning/inspection station
- Darkroom with laser setup to measure quality of DIRC bars
- Storage (long and short-term)
- Reflection coefficient measurement to evaluate surface quality

- Bar boxes disassembled into individual bars at JLab
 - Aluminum covers will need to be " opened", glue joints between bars decoupled
- Optical quality of bars after disassembly will be evaluated in QA DIRC lab
- QA Lab will consist of:
- Cleaning/inspection station
- Darkroom with laser setup to measure quality of DIRC bars
- Storage (long and short-term)
- Reflection coefficient measurement to evaluate surface quality

- Bar boxes disassembled into individual bars at JLab
 - Aluminum covers will need to be " opened", glue joints between bars decoupled
- Optical quality of bars after disassembly will be evaluated in QA DIRC lab
- QA Lab will consist of:
- Cleaning/inspection station
- Darkroom with laser setup to measure quality of DIRC bars
- Storage (long and short-term)
- Reflection coefficient measurement to evaluate surface quality

- Bar boxes disassembled into individual bars at JLab
 - Aluminum covers will need to be " opened", glue joints between bars decoupled
- Optical quality of bars after disassembly will be evaluated in QA DIRC lab
- QA Lab will consist of:
- Cleaning/inspection station
- Darkroom with laser setup to measure quality of DIRC bars
- Storage (long and short-term)
- Reflection coefficient measurement to evaluate surface quality

hpDIRC Performance

- Simulations show promising performances.
- bar which is needed to reconstruct the crossing and PID

Critical at the end is the quality of the pointing accuracy of the track into the

Time-of-Flight - What, Where, When?

- Early detectors had no ToF systems included
- The Yellow Report did not investigate the relevance of low-p
- Potential use:

• Extending measurement of $\rho \rightarrow \pi^+ \pi^-$,

- Originally ToF was proposed in 4π but had to eliminated in the backward (e-going direction) since to's heat dissipation and material thickness would have jeopardized the high precision EM calorimeter.
- Now forward (h-going) and in barrel

$$\phi \to K^+ K^-$$
, $\Lambda_c^+ \to p K^- \pi^+$

BTOF

ToF Overview

BTOF

- covers mid-rapidity $-1.33 < \eta < 1.74$
- Strip-type AC-LGAD sensors are used
 - reduces material (less cooling needed)
- Placed at R = 64 cm

FTOF

- covers $1.84 < \eta < 3.61$
- Strip-type AC-LGAD sensors are used

Subsystem	Area (m ²)	dimension (<i>mm</i> ²)	channel count	timing σ_t (ps)	spatial σ_x (μ m)	material budget (X/X ₀)
Barrel TOF	12	0.5*10	2.4M	35	$30 (r \cdot \phi)$	3%
Forward TOF	1.1	0.5*0.5	3.2M	25	30(x,y)	5%

HPK Strip Sensor (4.5x10 mm²) HPK Pixel Sensor (2x2 mm²)

ToF with Si Sensors: LGAD

 Low Gain Avalanche Diode Sensor (Hybrid) Issues: fill factor, heat

- How it works:
 - An e-h pair is produced at position z
 - The electron arrives at z=0 at time $T=z/v_1$
 - The electron multiplies in high field in layer at z=0
 - The holes move back to z=d inducing the dominant part of the signal

25

Time ?

- Sensor measures some time t_{measured} with good precision ~30ps
- To determine the time of flight we need also a start time t_0
- Time of flight is $\Delta t = t_{\text{measured}} t_0$
- How to get t_0 ?
 - Bootstrapping when 4π coverage (think about how?)
 - works in ePIC HRPPDs in pfRICH provide excellent t_{measured} as well Use identified scattered electron (v = c plus path length) works for dominant e' regions (barrel/ToF and backward/HRPPD) use beam crossing (clock, beam info, crab crossing) - tricky
 - o works in simulations real life?
- Best precision t_{measured} doesn't help if t_0 resolution is not great.
 - Expect at best $\delta t_0 \sim 20$ ps

TOF Performance

Summary

If you only carry 3 lessons back home with you I succeeded:

- ePIC covers an impressive range ($-3.5 < \eta < 3.5$) with PID detectors more than any collider experiment past or present
- Dominant technology are Cherenkov detectors (pfRICH, dRICH, hpDIRC) using gas, aerogel, and glass.
- They are augmented by fast Si sensors (AC-LGAD) in ToF detectors for low-p PID They all provide key contribution to the EIC physics program

