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The little bang: creation of the quark-gluon-plasma (QGP)

• Discovery of the QGP – hot deconfined QCD matter– at RHIC (early 2000’s)

• (i) Bulk collective elliptic flow (ii) High-pt adron suppression

Ultrarelativistic nuclei
(Au or Pb) → Nuclei

collide → QGP
formation → System expands

and cools → Detection
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The little bang: creation of the quark-gluon-plasma (QGP)

• QCD EOS from Lattice simulations:

• Phase transition Tc ∼ 170 GeV:

ϵc ∼ 0.5GeV/fm3

• Energy densities at RHIC energies:

ϵRHIC ∼ 1− 5GeV/fm3
The QCD energy density

[Figure from Karch, NPA (2001) ]

RHIC
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The QGP: a “perfect” liquid

• Collective behavior: Spacial → Momentum anisotropy
• Low shear viscosity to entropy ratio (from Viscous hydrodynamic) – near the
Gauge/Gravity Duality: η/s = 1/4π [Kovtun, Son, Starinet (2001)] .

• Flow harmonics: )

vn =
〈
cos

(
n(ϕ−Ψn)

)〉

[2015 Long Range Plan for Nuclear

Science]
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How does this behavior emerge from QCD?

Strongly coupled QGP Weakly coupled QGP

Increasing resolution  𝖰𝟤Long distances ∼ 1fm Short distances ≪ 1 fm
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QCD jets in proton-proton

• QCD Jets are the direct manifestation of high energy quarks and gluons and are
well understood from first principles. Paramount for Higgs discovery and BSM
searches.

• Multijet event with transverse momentum of order 1 TeV each, produced in
proton-proton collisions at a centre-of-mass energy of 13 TeV at the LHC.
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QCD jets in proton-proton
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QCD jets in Heavy Ion Collisions

• In Heavy Ion Collisions QCD Jets are embedded in a background of 1000s of soft
particles

Dijet event in Pb-Pb collisions at 5.02 TeV
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Evidence of the QGP from jet quenching

• Bjorken (1982) predicted the phenomenon of jet quenching in high energy
hadronic collisions as a consequence of elastic energy loss in the quark-gluon
plasma
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Evidence of the QGP from jet quenching

• Substantial final state
interactions: jets lose energy to
the QGP constituents

• Strong suppression and
modification of jets observed at
RHIC and LHC

Jet 2

Jet 1

Nuclear modification factor

RAA ≡ dNAA/dpT
Ncoll dNpp/dpT
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Evidence of the QGP from jet quenching
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A Rutherford-like experiment

-rayα

Source (radium)

Discovery of the atomic nucleus
Jet 2

Jet 1

Probing the microscopic properties of the
QGP with jets
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Jet quenching: multiscale dynamics
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QCD factorization

The factorized cross section for inclusive jet production in proton–proton collisions,
differential in transverse momentum pT and rapidity y , is given by:

dσ

dpT dy
=

∑
a,b,c

∫
dxa dxb fa(xa, µ) fb(xb, µ)Hab→cX (ŝ, t̂, µ) Jc(pT ,R, µ)

where:

• fa,b(x , µ) are PDF’s

• Hab→cX is the hard function

• J(pT ,R, µ) is the inclusive jet
function

• R is the jet radius parameter

H

f

f

x1

x2

pT

R

[Dasgupta, Salam, Soyez (2015), Kang, Ringer, Vitev (2016)
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QCD factorization

• In the presence of the QGP the jet interacts elastically and inelastically with the
QGP scattering centers

• In addition to pT and R the jet function is function of intrinsic medium scales:
temperature T and medium size L, etc

J(pT ,R) → J(pT ,R,T , L)

• Are medium effects Perturbative O(αs)?
Sizable/computable power corrections?

Q2
med

Q2
∼ q̂L

(pTR)2

where q̂ = g4T 3 is the jet quenching
parameter.

• → It depends on the observable. 17 / 45
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Elementary processes: transverse momentum broadening

• Independent scattering approximation:

ξD ∼ 1

gT
≪ ℓmfp ∼ 1

g2T

• ξD is the Debye screening length and ℓmfp the mean-free-path.

• High energy approximation: q ≪ E

q⊥

ξD
ℓmfp

L
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Elementary processes: transverse momentum broadening

• Jet partons undergo Brownian motion in transverse momentum

⟨k2⊥⟩ ∼ q̂L

• q̂ ∼ m2
D/ℓmfp is the jet quenching transport coefficient:

q̂ ∼ ρ

∫
d2q⊥q

2
⊥
dσel
d2q⊥

∼ g4T

The LO the elastic cross-section is given by: dσel/d
2q⊥ ∼ 1

s |M2→2|2 ∼ g4/q2⊥
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Elementary processes: medium-induced gluon radiation

• Multiple scattering can
coherently induce radiation

ℓmfp ≪ tf (ω) ≲ L

• tf is the quantum mechanical
gluon formation time

tf ∼ ω

k2⊥
∼ ω

q̂ tf
∼

√
ω

q̂

q⊥

ℓmfp

L

tf

E = | ⃗p |
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Elementary processes: medium-induced gluon radiation

• Characteristic scales in the Landau-Pomerantchuk-Migdal effect: Suppression of
radiation due to coherent scattering: multiple scattering centers act coherently as
a single scattering.

• Maximum suppression achieved when tf ∼ L corresponding to the characteristic
frequency

ωc = q̂L2

• Other characteristic scales, Transverse momentum and radiation angle:

k2f =
√
q̂ ω < q̂L and θf =

(
q̂

ω

)1/4

> θc =
1√
q̂L3

• Ex: q̂ = 1 GeV2/fm, L = 5 fm, ωc = 125 GeV.
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Elementary processes: medium-induced gluon radiation

Three distinct regimes for medium
induced gluon radiation:

1 Hard single scattering regime:
ω > ωc and tf > L (long
formation time)

2 Multiple soft scattering:
T < ω < ωc and
ℓmfp < tf < L (long formation
time)

3 Bethe-Heitler regime: ω ∼ T
ωc ωωBH ∼ T

1/ ω

1/ω

ω
dI
dω

LPM
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Energy loss distribution

• At leading order the jet spectrum in the medium can be written as

dσmed

dpT
=

∫ ∞

0
dϵP(ϵ) δ(E − pT−ϵ)

dσvac
dpT

• where the jet cross-section in vacuum is a steep power spectrum with n ≫ 1
(typically n ∼ 5− 6)

dσvac
dpT

=
1

pnT

• P(ϵ) is the probability for a parent parton of energy E loses ϵ of its energy to the
QGP
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Poisson distribution

• In the soft radiation regime: tf ≪ L (leading power in L), multiple emissions are
frequent and uncorrelated → Poisson distribution – quasi-instantaneous radiation

Length enhancement of the rad. spect.

ω
dI

dω
= ᾱs

√
ωc

ω
∝ L

Require resummation of all orders in ᾱs

ω1 ω2 ω3

ϵ

E ∼ pT

L

tf

P(ϵ) =
∞∑
n=0

1

n!
e−⟨n⟩

n∏
i=1

dI

dωi
δ(ϵ−ω1 − ω2 − ...− ωn)

• The hard regime, ω ∼ ωc , treated order by order in ᾱs (no length enhancement)
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Energy loss distribution

• Multiple emission factorize and exponentiate in Laplace space

P̃(ν) =

∫
dϵP(ϵ)e−νϵ = exp

[
−
∫ ∞

0
dω

dI

dω

(
1− e−νω

)]
• Using the standard integral∫ ∞

0

dx

x1/2
(1− e−x) = Γ(−1/2) =

√
π

• which yields

P̃(ν) = e−
√

πᾱ2
sωcν → P(ϵ) =

√
ᾱ2
sωc

ϵ3
e−

πᾱ2
sωc
ϵ
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Poisson distribution

• P(ϵ) heavy tailed distribution: mean
energy loss sensitive to the hard sector
ϵ ∼ pT (x = ᾱ2

sωc/pT ≫ 1,
ωc = q̂L2)

⟨ϵ⟩ ≃ ᾱsωc ln(pT/ωc) ≫ ᾱ2
sωc

• However, when multiplied by the
initial jet spectrum 1/(pT+ϵ)n the
distribution is skewed towards the soft
sector:

ϵ <
pT
n

≪ pT

• Figure: n = 5, pT = 5ωs = 5ᾱ2
sωc .

0 2 4 6 8 10

0

0.02

0.04

0.06

0.08

x = ϵ/ωs

P(x)
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Nuclear modification factor

• The leading order jet spectrum

dσmed

dpT
=

∫ ∞

0
dϵP(ϵ) δ(E − pT−ϵ)

dσvac
dpT

• The Nuclear Modification factor reads

• Connecting with Laplace transform:

RAA ≃ P̃(ν = n/pT ) = exp

−
√

π n ᾱ2
sωc

pT



dσ
dpT

pT

1
pn

T

ϵ

suppression
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1
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ϵ

pT
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= e
− nϵ
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2)

• Connecting with Laplace transform:

RAA ≃ P̃(ν = n/pT ) = exp

−
√

π n ᾱ2
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sωc

pT

 0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

pT

RAA
̂q = 1 GeV2/fm

̂q = 2 GeV2/fm

̂q = 3 GeV2/fm

Suppression 

29 / 45



Table of Contents

1 Introduction

2 Elementary processes: momentum broadening and radiation

3 Radiative energy loss and RAA

4 Formalism: background field method

5 Radiative spectrum from field theory

30 / 45



Eikonal interaction with Aµ
bkg

• High energy approximation E ≫ k⊥ ∼ T

• Light-cone variables: p+ = 1
2(E + pz), p− = E − pz , p⊥

x+x−

z

L

t

Jet

1
p+ → 0
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Eikonal interaction with Aµ
bkg

• Eikonal interaction of the collinear jet particles with the background field (QGP).
Performing a multipole expansion as p+ → ∞:

g

∫ +∞

0
dk+ū(−p) /Abkg (k)u(p − k) ≃ g

∫ +∞

0
dk+pµA

µ
bkg (k)

∣∣∣
k+=0

+O(k+/p+) ,

enables us to apply the integral over k+ solely on the gauge field leading to∫ +∞

0
dk+Aµ

bkg (k) = Aµ
bkg (x

− = 0) .
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Eikonal interaction with Aµ
bkg

• Semi-Eikonal Dirac propagator: (i) neglect powersofk+/p+ and spin flip in the
interaction vertex (ii) keep track of the quantum-phase : p2⊥/p

+L ∼ 1

1

p2 + i0p+
∼ 1

p+

∫ +∞

0
dx+e

−i
p2⊥
2p+

x+

• The non-eikonal phase can be neglected for the jet but is responsible for the LPM
suppression of gluon radiation for k+ ≡ ω ≪ ωc

p2⊥
p+

L ∼ q̂L

p+
L =

ωc

k+
≫ 1
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Scalar propagator and 2+1D dynamcis

• Dirac propagator proportional to scalar propagator in the presence of A−
bkg (x

+, x⊥)

D(p, p0) = (2π)4δ(4)(p − p0)D0(p) +
/pγ+ /p0

2p+
[
Gscal(p, p0)− G 0

scal(p)δ(p − p0)
]
,

x0

x

+

+
+

A−
0

A−
0

A−
0

...

p0

p0 + q1

p0 + q1 + q2

p
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Scalar propagator and 2+1D dynamics

• The dynamics id that of a non-relativistic 2+1D quantum system

(x |G(t, t ′)|x ′) =
i

2E

∫
dx−

2π
e−iE(x−x ′)−Gscal(x , x

′),

• where the propagator obeys the Schrödinger equation (t = x+)[
i
∂

∂t
+

∂2
⊥

2E
+ gA(t, x)

]
(x |G(t − t ′)|x ′) = iδ(t − t ′)δ(x − x ′),

• A− ≡ Aa,−taij and Gij(t − t ′) are color matrices in the fundamental representation.
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Medium statistics

• Observables are computed for each fixed medium configuration and subsequently
averaged over an ensemble [ McLerran-Venugopalan model (1994)])

⟨med |O[Abkg ]|med⟩

• Independent multiple scattering approximation yields Gaussian statistics (at
leading order)

⟨med |A−
a (x

+,q)A−
b (y

+,q ′)|med⟩ = δabδ(x
+ − y+)δ(q − q ′) ρ

dσel
dq
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Operator definition of energy loss

• We are now equipped to provide a field theoretical definition for the energy loss
probability distribution

• Soft interactions are encoded in semi infinite Wilson-lines

U(n) ≡ P exp

[
ig

∫ ∞

0
ds n · A(ns)

]
where n̄ ∼ pµ/E ≡ (1, 0, 0, 1)

• The gauge field Aµ = Aµ
bkg + aµ describes both radiative and elastic processes
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Operator definition of energy loss

• The single parton energy loss probability distribution is defined as [YMT., Ringer,
Singh, Vaidya, 2409.05957 [hep-ph]]

P(ϵ) =
1

dR

∑
δ(ϵ− n̄ · kloss) trc

[
⟨med|U(n)|X ⟩⟨X |U†(n)|med⟩

]
,

• Energy loss kloss Measured on final state X (Includes the jet algorithm). U(n) and
U†(n) are Wilson-lines in the amplitude and c.c.
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Amplitude

x⊥ = 0
0+ L+x+

UF(x+,0+) UF(L+, x+)

𝒢ab
A (L+, x+)

tb

z⊥

ω, k⊥

• The amplitude involves quark Wilson-lines at x⊥ = 0 and non-eikonal gluon
propagator G.
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Amplitude squared

x⊥ = 0
0+

L+x+

UF(x+,0+) UF(L+, x+)

𝒢ab
A (L+, x+)

tb

z⊥

ω, k⊥

U†
F(x+,0+) U†

F(L+, x+)

𝒢ab′￼

A (L+, x+)
z′￼⊥

tb′￼

y+

• The amplitude involves quark Wilson-lines at x⊥ = 0 and non-eikonal gluon
propagator G. N.B.: interactions with the background field are implicit.
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Amplitude squared

x⊥ = 0
x+ Uab

A (L+, x+)

𝒢ab
A (L+, x+)

ω

y+

z⊥

• Thy color singlet in the intervals [0+, x+] and [y+, L+] do not contribute UU† = 1.

In the interval [x+, y+], we have a color octet state UF t
aU†

F = Uba
A ta (Fierz).

• Upon integrating over k⊥, the gluon propagators after y+ cancel out: gluon
radiation rate is determined only by the dynamics during the interval
∆x+ = y+ − x+.
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Radiative spectrum and medium averaging

• We are left with the evaluation of the expectation value of the Green’s function

K(z2, y
+, z1, x

+) =
1

N2
c − 1

⟨med |Trc
[
U†
0⊥

(y+, x+)(z2|G†(y+, x+)|z1)
]
|med⟩ .

[Wiedemann (2000) Blaizot, Dominguez, Iancu, MT (2013) ]
• that obeys the Schödinger equation[

i
∂

∂x+
+

∂2
x

2ω
+ i

Ncρ

2
σ(x)

]
K(x , x+; y , y+) = iδ(2)(x − y)δ(x+ − y+) , (1)

• with the imaginary potential (stochastic collisions)

σ(x) ∼ g4ρ

∫
d2q⊥
q4⊥

(
1− e−ix ·q) ≈ g4T 3x2 ln

1

x2m2
D

∼ q̂ x2

• Solutions: (1) order by order in opacity (powers of the density ρ) (2) to all orders
in opacity in the Harmonic-oscillator approximation σ ∼ q̂ x2.
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Analytic solutions vs. numerics

• Full: exact numerical solutions
[Andres, Dominguez and Gonzalez
Martinez (2021)]

• LO: Harmonic oscillator approximation
[Baier et al (1996) Zakharov,
Wiedemann (2001) ]

• NLO: Includes first Coulomb log
corrections [MT (2019) Barata, MT,
Soto-Ontoso, Tywoniuk (2021)]

• GLV: leading order in opacity
[Gyulassy, Levai, Vitev (2001)] .

10°2

10°1

100

101

w
d

I
dw

Full
LO+NLO
LO
GLV

10°3 10°2 10°1 100

w/wc0

0.5
1.0
1.5
2.0

R
at
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Lecture 2

• Energy dissipation in the QGP (Turbulent transport)

• Nonlinear dynamics of jet quenching

• Phenomenology
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