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The off-forward bilocal correlator of two gluon field strength tensor is given by the expression,

The parametrization of the correlator gives various GTMDs. Here, we will talk about F-type GTMDs,

All GTMDs, in the above expression, are functions of  and are in general complex functions.(x, k2
⊥, Δ2

⊥, k⊥ ⋅ Δ⊥, ξ)

Generalized Transverse Momentum Dependent Distributions:

Until now, the most studied TMD is the spin-independent  type and its evolution can be studied through the 
standard BKFL evolution equation.
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Solutions to Evolution Equations :

The evolution of the TMD,  or  is done by the following evolution equation, ReF1,2 ℱ1,2
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In our work, we analytically solved the evolution equation for . We showed that all the IR singularities mutually 
cancel each other, making the equation consistent.
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We assume the solution for the evolution equation for the TMD  to be the Fourier Series in the azimuthal angle 
as,
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FIG 2: Eigen values of the two kernels, at their respective saddle points, as a function of ν.
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Thus, we found the intercept for  to be, ℱ1,2
ℱ1,2(x, k⊥) ∼ ( 1

x )
(4 ln 2−8/3)ᾱs

.

This term governs the leading small-  behaviour of .x ℱ1,2

This leads to an explicit  azimuthal dependence in the structure functions.cos 3ϕkΔ + cos ϕkΔ
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 will increase with energy and might not be suppressed at small- .ℱ1,2 x



In position space, if there is translation symmetry (assumption of a large nucleus), the dipole cross section depends 
on the positions of quarks and anti-quarks only through their separation , ,r = x − y i . e .

N (x, y) ≈ N (x − y); O(x, y) ≈ O (x − y) .

Dipole Picture



Forward-off forward Correspondence:

the evolution of the off-forward pomeron 
amplitude in the -space can be studied 
through the evolution of the sum of two 
bifurcated forward pomeron amplitudes.
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odderons more likely to be found in 
the non-forward scatterings.




