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Color confinement

Question: Why do we observe only color neutral hadrons?

PDG, PTEP 2022, 083C01 (2022)
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Hadronization at the EIC

Unique opportunity due to the “simple”
kinematics and the surrounding nuclear
medium

We can import the tools from from Heavy-lons to
the the EIC!
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Alpha rays
Returned
a-rays

Atomic in thin
Strip of gold

Smallest atomic

nucleus

Highly hollow
atom in which
electrons are here

The Rutherford gold foil experiment
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DIS is the evolution of Rutherford’s idea

Hit the target with a very energetic projectile and see

what happens with it!
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Hadronization in Deep Inelastic Scattering
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Hadronization in Deep Inelastic Scattering
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Hadronization in practice: Lund string model

Question: how can we create hadrons from our initial partons?

N

q |

N 7

P. Skands, 1207.2389 (2012)

e quark
 antiquark
o pair creation

4:>§

The Lund string fragmentation model provides a
hadronization picture

For large charge separations, field lines seem to be
compressed to tubelike regions or strings

Confinement is realized as a linear string tension

between a quark/anti-quark pair
String fragments, forming new quark/anti-quark

pairs — color conserving process

Currently implemented in the PYTHIA event

generator (most used)



Effect of the nuclear medium on hadrons

Question: How do hadrons (strings) interact with

the medium?
medium
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Question: Do hadrons have time to interact with
the medium (at all)?

1
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Aqep

questions!

~ 1 fm {

We do not know the answer to these }

Question: Are the hadrons created in an eA
collision formed inside or outside the nuclei?

ra ~ AY® ~ 6 fm




Hadronization in practice: formation time

J. Mohs et al, J Phys G 47, 065101 (2020)

* Thetime between (initial) pair creation and
hadron recombination is the

* Natural laboratory to study in-medium
modifications to hadronization

~

Pre-hadronic cross-sections can mimic a
continuous formation process by increasing ove

time
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J. Mohs et al, J Phys G 47, 065101 (2020)
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But results are inconclusive

... and the analysis is too simplistic




Hadronization in practice: formation time

J. Mohs et al, J Phys G 47, 065101 (2020)
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Hadronization @ EIC: eHIJING+SMASH

Goal: Study formation time in eA collisions - h
* Need to build an event generator for :5," ',.; cold nuclear
. ..;.. v\)‘.
the SURGE Collaboration 58 — matter
smash
 eHIING simulates energetic jet "soft" o
partons produced from the initial "
hard scattering and how they /) HIJING A. Accardi, nucl-
undergo multiple collisions after "hard" th/0605010 (2006)
ot et
e eHIJING also includes nuclear Framework to study hadronization
effectsl / Loop over cross-section functional forms
Feed Bayesian analysis
e SMASH performs Create tabular SMASH Run eHIJING+SMASH AT PG
. . . i = — —
hadronization and hadronic time depeerent with cross- stk Gl allowable time-
cross-sections observables

re-scattering \_ section dependencies




Formation time with Gaussian Processes

Formalism A GP is a stochastic process (a collection of random
variables indexed by time or space), such that every finite
Goal: Create model_agnostic functional forms for the collection of those random variables has a multivariate

time-dependent pre-hadronic cross-sections
— Use Gaussian Processes

Collection of functions, behavior specified by a mean

and covariance kernel

5
Auxiliary variables ¢ help imposing physical

conditions (causality, etc...)
In applications to neutron stars, e.g.,
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Formation time with Gaussian Processes

Application to pre-hadronic cross-sections

Goal: Create model-agnostic functional forms for the

time-dependent pre-hadronic cross-sections \ v
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This mapping provides the desired properties:

dj(r >( ﬁ ]LU

We can obtain multiple functional forms that
satisfy the physical constraints for the scaling
factor using Gaussian Processes




Formation time with Gaussian Processes

Application to pre-hadronic cross-sections

J. Salinas San Martin et al., In Progress
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Formation time with Gaussian Processes

Bayesian analysis

1. Prior Distribution 2. Random Sample 3. Evaluate Likelihood 4. Accept/Reject 5. Posterior Distribution

Goal: Determine a scaling factor distribution that is

favored by experimental data _.I I = e 0 ..‘ ‘
\/ ‘

— We gain insight on pre-hadronic interactions E /

You supply You get back

[ We will use Bayesian parameter estimation analysis ]

Prior := Prior information about model parameters, Set of parameters that define a sampled f;

i.e., parameters that characterize the , ‘ , .
covariance matrix Pfo' (¢k> X Q(¢k>£(¢k,

Posterior := Credibility interval of f; | | | | |

Posterior Prior Likelihood

Likelihood := How well predictions from f; match

observed properties
D. Mroczek et al, 2309.02345 (2023)




Conclusions

 We want to study QCD color confinement
* Need to understand the hadronic phase: statistical (HRG) and dynamical pictures (SMASH)
* Focus on hadronization in an eA collision (does it happen in or out the medium?)

* The eHUJING+SMASH framework can be used to generate eA events

* Formation time dictates how pre-formed hadrons interact between
qq splitting and hadron formation

* Current knowledge on formation time dependence is scarce eHUING + SMASH wil

be the event

* Will use Gaussian Processes to test various functional forms of the el er o e
cross-section scaling factor

SURGE Collaboration

* Will use Bayesian parameter estimation analysis to determine a
credible interval for f; as a function of time
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Fig. 1. Nuclear modification factor for charged hadrons. Experimental data are for
HERMES@27GeV (16) and EMC@100/280GeV (17). The predictions for the two
EMC energies are given by the lower and upper bounds of the shaded band. The
cross section-evolution-scenarios in the calculations are: constant, linear, quadratic

(from left to right).




SMASH Hadron Transport

A dynamical picture of hadrons

Mass (GeV) os
] 03 07 1 14 i,
Time:7.6fm  ieialel " 1l smash

 We want to describe how hadron d.o.f. propagate, collide, and decay
* Monte-Carlo solutions of Boltzmann equations

J. Weil et al, PRC 94, 054905 (2016)
o 2
pua,uf'é(xvp) —I_sz 3§f@'(ﬂf,p) — Yeoll

Jilx,p) := single particle distribution for species ¢ C.

C

o1 := collision term

F* .= force experienced by individual particles

* Applicable at low densities: mean free path >> Acompeon
* Normally used standalone @ low energies and as afterburner @ higher energies in HICs
* SMASH is the state-of-the-art hadron transport approach

SMASH has two main limitations:

1. Default SMASH only includes ~ 400 hadrons — needs a better input (PDG2021+ ~ 800 hadrons)
2. Limitedto 1 — 2 decays (in reality, particles can decay to 3 and 4 other hadrons)




Simulations @ EIC: Event Generator

R

v HIJING

\

* eHIJING (electron-Heavy-lon-Jet-Interaction-Generator)
simulates energetic jet partons produced from the initial hard

scattering and how they undergo multiple collisions after

& The collision rate is proportional to the transverse-momentum-/

dependent (TMD) gluon density in the nuclei (i.e., considers

gluon density)

Hadronization

* Lund string model is used for hadronization

Target dynamics
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Fig. 1. Nuclear modification factor for charged hadrons. Experimental data are for
HERMES@27GeV (16) and EMC@100/280GeV (17). The predictions for the two
EMC energies are given by the lower and upper bounds of the shaded band. The
cross section-evolution-scenarios in the calculations are: constant, linear, quadratic

(from left to right).




Simulations @ EIC: Event Generator
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v HIJING
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* eHIJING (electron-Heavy-lon-Jet-Interaction-Generator)
simulates energetic jet partons produced from the initial hard

scattering and how they undergo multiple collisions after

& The collision rate is proportional to the transverse-momentum-/

dependent (TMD) gluon density in the nuclei (i.e., considers

gluon density)

Hadronization

* Lund string model is used for hadronization

Target dynamics
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Back-up
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FIG. 2. Flow chart of eHIJING Monte Carlo model. Block
colored in red are the key ingredients for including dynamic:

nuclear effects.



Back-up

Relative area (pAu/pp)

1.5

S = 200 GeV, NN — n°r°X STAR
26<n<4, ApE [g,%"]
. p™=253GeV/c — rcBK

T_

1 % highest E.A. % lowest E.A.

1.5

Relative area

0.5

STAR  |s, =200 GeV, NN — n’n®X
26<n<4, 80,3
py°=1.5-2 GeVic
Y. p$55°=1-1 .5 GeV/c
p Al Au
1 1 1 1 I 1 I
1 3 5
A3




	Slide 1: Hadronization in the EIC
	Slide 2: Color confinement
	Slide 3: Hadronization at the EIC
	Slide 11: Hadronization in Deep Inelastic Scattering
	Slide 12: Hadronization in Deep Inelastic Scattering
	Slide 13: Hadronization in practice: Lund string model
	Slide 14: Effect of the nuclear medium on hadrons
	Slide 15: Hadronization in practice: formation time
	Slide 16: Hadronization in practice: formation time
	Slide 17: Hadronization @ EIC: eHIJING+SMASH
	Slide 18: Formation time with Gaussian Processes
	Slide 19: Formation time with Gaussian Processes
	Slide 20: Formation time with Gaussian Processes
	Slide 21: Formation time with Gaussian Processes
	Slide 22: Conclusions
	Slide 23: Back-up
	Slide 24: SMASH Hadron Transport
	Slide 25: Simulations @ EIC: Event Generator
	Slide 27: Back-up
	Slide 28: Back-up
	Slide 29: Simulations @ EIC: Event Generator
	Slide 30: Hadronic resonances
	Slide 31: Hadronic resonances
	Slide 32: Hadronic resonances
	Slide 33: Hadronic interactions in SMASH
	Slide 34: Particles in the Strong Interaction
	Slide 35: Inside the proton: Deep Inelastic Scattering
	Slide 36: Inside the proton: DIS @ HERA
	Slide 37: Inside the proton: Electron-ion Collider
	Slide 38: Back-up
	Slide 39: Back-up
	Slide 40: Back-up
	Slide 41: Back-up
	Slide 42: Back-up
	Slide 43: Back-up
	Slide 44: Back-up
	Slide 45: Back-up

