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Motivation and objective
● In high-energy physics, Monte Carlo (MC) simulations are widely employed to validate 

selection criteria, enhance and calculate experimental efficiency of real data analysis.

● However, complete event simulation using MC techniques is computationally expensive, 

requiring substantial processing time, and compatibility to data can be an issue that 

generates systematics uncertainties.

● Therefore, we aim to break the cost established by MC simulations by proposing the use of 

generative Machine Learning (ML) models for synthetic data generation. 

● We seek to optimize the performance and statistics of standard analyses of high-energy 

physics by synthesizing secondary decay particles.
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What exactly is Machine Learning?
● Definition: “A computer program is said to learn from experience E with respect to some 

class of tasks T and performance measure P, if its performance at tasks in T, as measured by 

P, improves with experience E.” - T. Mitchell

T. M. Mitchell. “Machine Learning”. McGraw-Hill international editions - computer science series. McGraw-Hill Education, 1997.
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What can we do with ML? Generative Models!
● Variational Autoencoders (Vae):

AMMARA, D.; DING, J.; TUTSCHKU, T. “Synthetic Data Generation in Cybersecurity: A Comparative Analysis”. 2024. arXiv: 2410.16326 [cs.CR].



● Conditional Tabular Generative Adversarial Network (Ctgan):

AMMARA, D.; DING, J.; TUTSCHKU, T. “Synthetic Data Generation in Cybersecurity: A Comparative Analysis”. 2024. arXiv: 2410.16326 [cs.CR].
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What can we do with ML? Generative Models!
● Tabular Denoising Diffusion Probabilistic Model (TabDDPM):

HO, J; et al. “Denoising Diffusion Probabilistic Models”. 2020. arXiv:2006.11239 [cs.LG]

https://arxiv.org/abs/2006.11239
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● The Ctgan model was configured with 4 fully connected layers with 256 neurons each for 

both the generator and discriminator. The embedding dimension was set to be equal to 32, 

with training performed over 500 epochs and 5 discriminator steps per generator update. 

Additional parameters were either optimized or kept consistent with the original 

implementation.

More in details: model’s architecture
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● The Ctgan model was configured with 4 fully connected layers with 256 neurons each for 

both the generator and discriminator. The embedding dimension was set to be equal to 32, 

with training performed over 500 epochs and 5 discriminator steps per generator update. 

Additional parameters were either optimized or kept consistent with the original 

implementation.

● The TabDDPM model employed 6 layers with 1024 neurons each.  A cosine noise scheduler 

was applied with the number of diffusion timesteps to 1000 and a learning rate of 0,003. The 

remaining parameters followed the original implementation.

● The Vae model architecture was optimized using the Optuna Python library for efficient 

hyperparameter tuning.

More in details: model’s architecture
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Methodology
● 2.5M-event Monte Carlo dataset of proton-proton collisions

● 16 features including kinematics and topological variables.

● We’re interested in 𝛴0 topology, for example.

● But work exclusively with background data.

● Improve model parameters. 

● Train your model. 

● Evaluate the results.
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Results - Ctgan Model
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Results - TabDDPM Model

● Early results! Only momentum coordinates of particles were used in training process!
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Summary
● We have explored and implemented generative models, including Variational Autoencoders 

(VAEs), Generative Adversarial Networks (GANs) and Diffusion Models.

● We have shown the ability of most of these models to learn complex, unstructured data while 

preserving first-order correlations and feature distributions.

● Therefore, we have demonstrated that CTGAN and TabDDPM can successfully generate 

millions of synthetic data points within seconds, thereby reducing generation time from hours 

to even days.
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Next Steps
● Engage in a PhD project.



THANK YOU!
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