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A neural network is a universal model that solves a wide class of regression and 
classification problems
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Neural network and regression problem

 - training sample in a regression 
problem 

•  - feature description of the  
sample object


•  - the value of the target dependent 
variable at the  sample object


• We want to build surface  approximating 
the unknown target dependence

(xi, yi)
l
i=1

xi ∈ ℝd ith

yi ∈ ℝ1

ith

a(x)



Neural network and regression problem
Examples

Energy Calibration of Detectors

 - simulated or calibration data

 - mapping between measured signals and 

the true particle energy


Momentum Reconstruction

 - curvature of the track and detector 

characteristics

 - particle’s momentum 

xj
y

xj

y



Neural network and classification problem

 - training sample in a binary classification problem


•  - feature description of the  sample object 

•  - the value of the target dependent variable at the  sample 
object


• We want to build surface  dividing objects of one class from the other

(xi, yi)
l
i=0

xi ∈ ℝd ith

yi ∈ {−1; 1} ith

a(x)



Neural network and classification problem
Examples

Particle Identification

 - particle characteristics

 - if it is particle you are looking for


Background Rejection

 - Event topology, energy distributions, and particle multiplicities

 - Separate rare signal events from common background processes 

xj
y

xj
y



Neural network as universal model
• The neural network is considered a universal model, since it is capable of approximating any 

surfaces


• Theorem formulated in 1957 by Andrey Nikolaevich Kolmogorov


Any continuous function  on the d-dimentional unit cube is representable as  

 

Where  - vector of object description, functions  and  are continuous 
functions,  does not depend on the   

Unit cube - we can rescale

Nothing about how  and  look like

a(x)

a(x) =
2d+1

∑
i=1

σi

d

∑
j=1

fij(xj)

x = [x1, . . . xd]T σi fij
fij a

σi fij



Single layer neural 
networks



Single layer neural network as a single neuron

a(x, ω) = σ(ωTx) = σ
d

∑
j=1

ω(1)
j xj + ω(1)

0

•  - activation function (must be a 
continuous, monotonic and, preferably, 
differentiable function)


•  - vector of parameters (weights)


•  - vector of object description parameters

σ

ω

x
A neuron can be represented as a 
vertex of a graph: activation 
function, one output, many inputs



Activation Functions: Neural Network as a Linear Model

Linear regression
• 


•

σ = id

a(x, ω) = ωTx

Linear classification 
• 


•

σ = sign

a(x, ω) = sign(ωTx)



Activation functions: logistic regression model

• Activation function is following:





• This function determines the 
probability of belonging of some 
given object  to class  for 
given parameters 


a(x; ω) = σ(ωTx) =
1

1 + exp(−ωTx)

x y = 1
w

σ(ωTx) = P(y = 1 |w, x)



Activation functions: logistic regression model
If the number of classes is :


it is necessary to use a network of  neurons, each of which calculates the 
probability of belonging





to its class


Softmax is used as the activation function:


K

K

y = [y1, . . . , yK]T

σ = softmax(ωTx, . . . , ωT
K x) =

exp(ωT
k x)

∑K
i=1 exp(ωT

i x)



Activation functions: other examples



• like tanh(x) it tends to , but unlike it, 
it converges to these values not so 
quickly

softsign(x) =
x

1 + |x |

±1

to introduce non-linearity




• differentiable alternative to the 
threshold function 

tanh(x) =
exp(2x) − 1
exp(2x) + 1



Activation functions: other examples
• In deep learning networks, more 

complex neural networks use the 
Rectified linear unit (ReLu) rectifier 
function:





• This function behaves in the same 
way as a diode in radioelectric 
circuits. This function is not 
differentiable, but has the following 
differentiable approximation:


ReLu( f ) = max(0,f )

ln(1 + exp( f ))



Multilayer neural 
networks



Limits of applicability of single-layer networks

• Single-layer networks are only applicable for linearly separable samples



Two-layer neural network
• A two-layer neural network is a linear combination of  neurons (single-layer neural networks):





• In vector terms





• The vector  of neural network parameters is obtained by connecting all neural network parameters at all 
layers:





• Where





D

a(x, ω) = σ(2)
D

∑
i=1

ω(2)
i ⋅ σ(1) (

d

∑
i=1

ω(1)
ji xj + ω(1)

0i ) + ω(2)
0

a(x, ω) = σ(2) (ωT(2) ⋅ σ(1) ([ωT(1)

1 x, . . . , ωT(1)

D x]))
w

ω = {W(1), ω(2)}

W(1) = [ω(1)
0 , ω(1)

1 , . . . , ω(1)
d ]T ∈ R(d+1)×D

ω(1) = [ω(1)
0i , ω(1)

1i , . . . , ω(1)
di ]T ∈ Rd+1, ω(2) = [ω(2)

0 , ω(2)
1 , . . . , ω(2)

D ]T ∈ RD+1



Two-layer neural network

• Analogously, we can build 
as many layers as we want



Separating ability of multilayer neural network
• Theorem (Universal approximation theorem, K. Hornik, 1991) 


For any continuous function  there is a neural network  with linear output 
, where 

 

approximating  with a given accuracy 

The theorem holds for various activation functions, in particular for the sigmoid 
function and the hyperbolic tangent function. 


To obtain the required approximation, it is necessary to determine the optimal 
values of the parameters 

f(x) a(x)
a(x, W) = σ(M)(x)

f (k)(x) = ω(k)
0 + W(k)z(k−1)(x), z(k)(x) = σ(k)( f (k−1)(x))

f(x)

ω*





Feedforward Neural Networks (FNNs) 
• Configuration: Data flows in one direction, from input to output, without cycles.

• Structure:

◦ Input layer: Receives raw input data.

◦ Hidden layers: Perform transformations using weights, biases, and activation functions.

◦ Output layer: Provides the final predictions.


• Applications: Classification, regression, and basic pattern recognition.

• Examples:

◦ Single-layer perceptron (1 hidden layer).

◦ Multi-layer perceptron (MLP) with multiple hidden layers.



Recurrent Neural Networks (RNNs) 
• Configuration: Designed to process sequential 

data by maintaining a "memory" of past inputs.

• Structure:

◦ Input layer: Takes sequential data (e.g., time-

series).

◦ Hidden layers: Include recurrent connections 

that feed outputs back into the same layer.

◦ Output layer: Produces sequential predictions 

or classifications.

• Variants:

◦ Long Short-Term Memory (LSTM): Handles 

long-range dependencies.

◦ Gated Recurrent Units (GRUs): Simplified 

version of LSTMs.

• Applications: Language modeling, speech 

recognition, time-series forecasting



Autoencoders 
• Configuration: Networks designed for 

unsupervised learning, often for dimensionality 
reduction or feature learning.


• Structure:

◦ Encoder: Compresses input data into a lower-

dimensional representation.

◦ Bottleneck: A central layer with minimal nodes 

to enforce compact encoding.

◦ Decoder: Reconstructs the original input from 

the compressed representation.

• Variants:

◦ Variational Autoencoders (VAEs): Probabilistic 

encoding and generation.

◦ Denoising Autoencoders: Robust to noise in 

input data.

• Applications: Data compression, anomaly 

detection, and generative modeling



Sparse Neural Networks 
• Configuration: Not all connections between layers are used, reducing 

computational complexity.

• Applications: High-dimensional data, resource-constrained environments.



Markov Chain 
Configuration: A probabilistic model that describes a 
sequence of possible events where the probability of each 
event depends only on the state attained in the previous 
event (Markov property).

Structure:

• States: Represent possible conditions or configurations.

• Transition probabilities: Define the likelihood of moving 

from one state to another.

Key Assumption: The future state depends only on the 
current state and not on the sequence of past states.

Applications:

• Predicting stock prices.

• Natural language processing (e.g., text generation).

• Modeling weather patterns.


Example: A weather model where the current day's weather 
(sunny, rainy) determines tomorrow's probabilities.

Hopfield Network 
Configuration: A type of recurrent neural network with symmetric 
connections and no self-loops, primarily used as an associative memory 
system.

Structure:

• Neurons: Represent the state of the network.

• Weights: Symmetric connections between neurons (no cycles).

• Energy function: A scalar value used to measure the stability of the 

network.

Functionality:

• Stores patterns as stable states (local minima of the energy function).

• Retrieves patterns by converging to the nearest stored state when 

given partial or noisy input.

Applications:

• Pattern recognition.

• Associative memory retrieval.

• Noise reduction in data.


Limitations: Limited storage capacity, prone to spurious states.

Example: Recognizing an incomplete image by recalling a stored version.

 Boltzmann Machine 
Configuration: A stochastic, generative neural network that 
learns a probability distribution over its set of inputs.

Structure:

• Visible units: Represent the input data.

• Hidden units: Capture the dependencies between visible 

units.

• Connections: Undirected, weighted connections between 

nodes.

• Energy function: Determines the likelihood of a configuration; 

lower energy states are more probable.

Variants:

• Restricted Boltzmann Machine (RBM): A simplified version 

where visible and hidden units form a bipartite graph (no 
connections within a layer).


Applications:

• Feature learning and dimensionality reduction.

• Collaborative filtering (e.g., recommendation systems).

• Generative modeling.


Examples:

• Learning latent features of images.

• Netflix recommendation system using RBMs.



Deep Belief Networks (DBNs) 
• Configuration: Composed of 

stacked Restricted Boltzmann 
Machines (RBMs).


• Structure:

◦ Pre-training layers unsupervisedly, 

followed by fine-tuning for 
supervised tasks.


• Applications: Feature learning, 
classification, and regression.

Restricted Boltzmann Machine (RBM) 
• Configuration: 

RBM is a two-layer generative stochastic neural network designed for unsupervised learning. It 
models the joint probability of visible and hidden variables using an energy function.


• Structure:

◦ Two layers:

▪ Visible layer: Represents input features.

▪ Hidden layer: Captures latent patterns.


◦ Fully connected between visible and hidden layers, with no connections within a layer.

• Key Assumption: 

Visible units are conditionally independent given the hidden units, and vice versa. This 
independence simplifies computations.


• Applications:

◦ Feature learning and dimensionality reduction.

◦ Collaborative filtering (e.g., recommendation systems).

◦ Pretraining deep networks like Deep Belief Networks (DBNs).


• Example: 
A movie recommendation system: RBMs can learn patterns in 
user-movie interactions to predict unseen user preferences.



• Applications: Image recognition, object 
detection, and video processing.


• Examples: AlexNet, VGGNet, ResNet.

Convolutional Neural Networks (CNNs) 
• Configuration: Specialized for processing 

grid-like data (e.g., images).

• Structure:

◦ Convolutional layers: Extract spatial 

features using kernels/filters.

◦ Pooling layers: Reduce dimensionality 

while preserving key features.

◦ Fully connected layers: Combine features 

for classification or regression.



Generative Adversarial Networks (GANs) 
• Configuration: Consist of two networks (generator and discriminator) 

competing against each other.

• Structure:

◦ Generator: Creates fake data resembling the training data.

◦ Discriminator: Differentiates between real and fake data.

• Applications: Image synthesis, video generation, and data augmentation.

• Examples: DCGAN, StyleGAN.



Residual Networks (ResNets) 
• Configuration: Incorporates shortcut connections to address vanishing gradient 

problems.

• Structure:

◦ Residual blocks: Directly pass input to a deeper layer, skipping intermediate layers.

• Applications: Very deep networks for image and signal processing.

• Examples: ResNet-50, ResNet-101.



1. Depth: Number of layers; deeper networks model complex patterns but 
may require more data and training.


2. Width: Number of neurons per layer; wider networks capture more 
features but may overfit if too wide.


3. Connections: Fully connected vs. sparsely connected layers influence 
computational efficiency and learning.


4. Activation Functions: Non-linear functions enable learning complex 
relationships.


5. Regularization: Techniques like dropout and batch normalization improve 
generalization.


Each configuration serves specific purposes, and selecting the right 
architecture depends on the task, data type, and computational constraints.



Error function



Separating Surface: The Overfitting Problem
• The quality of the approximation of the target variable  by the function 

 depends on the choice of parameters 
y

a(x, ω) ω



Neural network error functions

• Let  be an error function that 
depends on both the configuration 

 of the neural network and its 
composition. The problem of finding 
the optimal parameters , those 
for which the neural network error is 
minimal, has the form:


•

Q(ω)

ω

ω*

ω* = argminωQ(ω)



Neural network error functions
The choice of error function depends on the specifics of the problem being solved:

• Classification problem


 


- «0-1 loss» 


• Classification problem. Differentiable 
function


Q(ω) =
l

∑
i=1

[sign a(xi, ω) = yi]

Q(ω) = −
l

∑
i=1

(yi ln a(xi, ω) + (1 − yi)ln(1 − a(xi, ω)))

• Regression problem

 


- is not differentiable


• Regression problem. Differentiable 
function


Q(ω) =
l

∑
i=1

|a(xi, ω) − yi |

Q(ω) =
l

∑
i=1

(a(xi, ω) − yi)2



Optimization of neural 
network parameters



Optimization problem

• Find optimal values of parameters:


• 


•  - error function


•  depends on the sample, the structure 
of the neural network (the number of 
layers, neurons and types of activation 
functions) and the value of the 
parameter vector 

ω* = argminωQ(ω)

Q

Q

ω



Optimization problem
Two types of algorithms to find the optimal 
values of parameters:


• Stochastic optimization algorithms:


• Randomly trying various 


• Genetic optimization algorithm 



• Simulated annealing, the values of w are 
set according to a schedule;


• Gradient descent algorithms.

ω1, ω2, . . .

ω1 → ω2 → . . .



Regularization and thinning 
of neural networks



Regularization
• To avoid overfitting, it is necessary to modify the optimization problem: introduce a 

penalty for large weight values:





•  is the regularization coefficient, which controls the rigidity of the constraints on the 
parameters 


• The smaller , the more accurately the function  describes the sample

ω* = argminω Q(ω) + τ∑
i,j,k

(ω(k)
ij )2

τ
ω

τ a(x)

 - Search area

 - Shift

 - Scattering



Regularization

• Regularization does not reduce 
the number of parameters or 
simplify the network structure


• As  increases, the parameters 
stop changing

τ



Network thinning
• To reduce the number of parameters, we can 

exclude some neurons or connections


• The principle of exclusion:


•  if the error function does not change, then the 
neural network can be simplified further


A parameter can be removed if:


• its value is close to zero


• the corresponding signal has a large dispersion, 
i.e. it reacts to noise in the data


• its removal practically does not change the error 
function



Building a neural network
• The neural network can operate in two modes:


• Training mode: In this mode, the structure of the neural network is set and its 
parameters are optimized.


• Operation mode: calculating the values of  for fixed parameter values


• To build a network you should specify:

• the number of layers

• the number of neurons in each layer

• the type of activation function in each layer

• the type of error function

• It is also desirable that the prepared sample does not contain gaps, and that the 

features are normalized

a(x, ω*)



Stabilization of network parameters

If a neural network is too complex, it will 
quickly overtrain

If the sample is complex or very noisy for the 
neural network, then the neural network will 
learn slowly

If the sample complexity 
corresponds to a neural network



Stabilization of network parameters

• It is worth to check the difference 
between the values of the error 
function during training and 
control 


• This difference should not be 
significant


•  If it is large, it means that the 
neural network has been 
overtrained and its complexity 
should be changed


