
MLLM, CFNS

Neural Networks
Basic principles

A neural network is a universal model that solves a wide class of regression and
classification problems

Mariia Mitrankova
December 6th , 2024

Neural network and regression problem

 - training sample in a regression
problem

• - feature description of the
sample object

• - the value of the target dependent
variable at the sample object

• We want to build surface approximating
the unknown target dependence

(xi, yi)
l
i=1

xi ∈ ℝd ith

yi ∈ ℝ1

ith

a(x)

Neural network and regression problem
Examples

Energy Calibration of Detectors

 - simulated or calibration data

 - mapping between measured signals and

the true particle energy

Momentum Reconstruction

 - curvature of the track and detector

characteristics

 - particle’s momentum

xj
y

xj

y

Neural network and classification problem

 - training sample in a binary classification problem

• - feature description of the sample object

• - the value of the target dependent variable at the sample
object

• We want to build surface dividing objects of one class from the other

(xi, yi)
l
i=0

xi ∈ ℝd ith

yi ∈ {−1; 1} ith

a(x)

Neural network and classification problem
Examples

Particle Identification

 - particle characteristics

 - if it is particle you are looking for

Background Rejection

 - Event topology, energy distributions, and particle multiplicities

 - Separate rare signal events from common background processes

xj
y

xj
y

Neural network as universal model
• The neural network is considered a universal model, since it is capable of approximating any

surfaces

• Theorem formulated in 1957 by Andrey Nikolaevich Kolmogorov

Any continuous function on the d-dimentional unit cube is representable as

Where - vector of object description, functions and are continuous
functions, does not depend on the

Unit cube - we can rescale

Nothing about how and look like

a(x)

a(x) =
2d+1

∑
i=1

σi

d

∑
j=1

fij(xj)

x = [x1, . . . xd]T σi fij
fij a

σi fij

Single layer neural
networks

Single layer neural network as a single neuron

a(x, ω) = σ(ωTx) = σ
d

∑
j=1

ω(1)
j xj + ω(1)

0

• - activation function (must be a
continuous, monotonic and, preferably,
differentiable function)

• - vector of parameters (weights)

• - vector of object description parameters

σ

ω

x
A neuron can be represented as a
vertex of a graph: activation
function, one output, many inputs

Activation Functions: Neural Network as a Linear Model

Linear regression
•

•

σ = id

a(x, ω) = ωTx

Linear classification
•

•

σ = sign

a(x, ω) = sign(ωTx)

Activation functions: logistic regression model

• Activation function is following:

• This function determines the
probability of belonging of some
given object to class for
given parameters

a(x; ω) = σ(ωTx) =
1

1 + exp(−ωTx)

x y = 1
w

σ(ωTx) = P(y = 1 |w, x)

Activation functions: logistic regression model
If the number of classes is :

it is necessary to use a network of neurons, each of which calculates the
probability of belonging

to its class

Softmax is used as the activation function:

K

K

y = [y1, . . . , yK]T

σ = softmax(ωTx, . . . , ωT
K x) =

exp(ωT
k x)

∑K
i=1 exp(ωT

i x)

Activation functions: other examples

• like tanh(x) it tends to , but unlike it,
it converges to these values not so
quickly

softsign(x) =
x

1 + |x |

±1

to introduce non-linearity

• differentiable alternative to the
threshold function

tanh(x) =
exp(2x) − 1
exp(2x) + 1

Activation functions: other examples
• In deep learning networks, more

complex neural networks use the
Rectified linear unit (ReLu) rectifier
function:

• This function behaves in the same
way as a diode in radioelectric
circuits. This function is not
differentiable, but has the following
differentiable approximation:

ReLu(f) = max(0,f)

ln(1 + exp(f))

Multilayer neural
networks

Limits of applicability of single-layer networks

• Single-layer networks are only applicable for linearly separable samples

Two-layer neural network
• A two-layer neural network is a linear combination of neurons (single-layer neural networks):

• In vector terms

• The vector of neural network parameters is obtained by connecting all neural network parameters at all
layers:

• Where

D

a(x, ω) = σ(2)
D

∑
i=1

ω(2)
i ⋅ σ(1) (

d

∑
i=1

ω(1)
ji xj + ω(1)

0i) + ω(2)
0

a(x, ω) = σ(2) (ωT(2) ⋅ σ(1) ([ωT(1)

1 x, . . . , ωT(1)

D x]))
w

ω = {W(1), ω(2)}

W(1) = [ω(1)
0 , ω(1)

1 , . . . , ω(1)
d]T ∈ R(d+1)×D

ω(1) = [ω(1)
0i , ω(1)

1i , . . . , ω(1)
di]T ∈ Rd+1, ω(2) = [ω(2)

0 , ω(2)
1 , . . . , ω(2)

D]T ∈ RD+1

Two-layer neural network

• Analogously, we can build
as many layers as we want

Separating ability of multilayer neural network
• Theorem (Universal approximation theorem, K. Hornik, 1991)

For any continuous function there is a neural network with linear output
, where

approximating with a given accuracy

The theorem holds for various activation functions, in particular for the sigmoid
function and the hyperbolic tangent function.

To obtain the required approximation, it is necessary to determine the optimal
values of the parameters

f(x) a(x)
a(x, W) = σ(M)(x)

f (k)(x) = ω(k)
0 + W(k)z(k−1)(x), z(k)(x) = σ(k)(f (k−1)(x))

f(x)

ω*

Feedforward Neural Networks (FNNs)
• Configuration: Data flows in one direction, from input to output, without cycles.

• Structure:

◦ Input layer: Receives raw input data.

◦ Hidden layers: Perform transformations using weights, biases, and activation functions.

◦ Output layer: Provides the final predictions.

• Applications: Classification, regression, and basic pattern recognition.

• Examples:

◦ Single-layer perceptron (1 hidden layer).

◦ Multi-layer perceptron (MLP) with multiple hidden layers.

Recurrent Neural Networks (RNNs)
• Configuration: Designed to process sequential

data by maintaining a "memory" of past inputs.

• Structure:

◦ Input layer: Takes sequential data (e.g., time-

series).

◦ Hidden layers: Include recurrent connections

that feed outputs back into the same layer.

◦ Output layer: Produces sequential predictions

or classifications.

• Variants:

◦ Long Short-Term Memory (LSTM): Handles

long-range dependencies.

◦ Gated Recurrent Units (GRUs): Simplified

version of LSTMs.

• Applications: Language modeling, speech

recognition, time-series forecasting

Autoencoders
• Configuration: Networks designed for

unsupervised learning, often for dimensionality
reduction or feature learning.

• Structure:

◦ Encoder: Compresses input data into a lower-

dimensional representation.

◦ Bottleneck: A central layer with minimal nodes

to enforce compact encoding.

◦ Decoder: Reconstructs the original input from

the compressed representation.

• Variants:

◦ Variational Autoencoders (VAEs): Probabilistic

encoding and generation.

◦ Denoising Autoencoders: Robust to noise in

input data.

• Applications: Data compression, anomaly

detection, and generative modeling

Sparse Neural Networks
• Configuration: Not all connections between layers are used, reducing

computational complexity.

• Applications: High-dimensional data, resource-constrained environments.

Markov Chain
Configuration: A probabilistic model that describes a
sequence of possible events where the probability of each
event depends only on the state attained in the previous
event (Markov property).

Structure:

• States: Represent possible conditions or configurations.

• Transition probabilities: Define the likelihood of moving

from one state to another.

Key Assumption: The future state depends only on the
current state and not on the sequence of past states.

Applications:

• Predicting stock prices.

• Natural language processing (e.g., text generation).

• Modeling weather patterns.

Example: A weather model where the current day's weather
(sunny, rainy) determines tomorrow's probabilities.

Hopfield Network
Configuration: A type of recurrent neural network with symmetric
connections and no self-loops, primarily used as an associative memory
system.

Structure:

• Neurons: Represent the state of the network.

• Weights: Symmetric connections between neurons (no cycles).

• Energy function: A scalar value used to measure the stability of the

network.

Functionality:

• Stores patterns as stable states (local minima of the energy function).

• Retrieves patterns by converging to the nearest stored state when

given partial or noisy input.

Applications:

• Pattern recognition.

• Associative memory retrieval.

• Noise reduction in data.

Limitations: Limited storage capacity, prone to spurious states.

Example: Recognizing an incomplete image by recalling a stored version.

 Boltzmann Machine
Configuration: A stochastic, generative neural network that
learns a probability distribution over its set of inputs.

Structure:

• Visible units: Represent the input data.

• Hidden units: Capture the dependencies between visible

units.

• Connections: Undirected, weighted connections between

nodes.

• Energy function: Determines the likelihood of a configuration;

lower energy states are more probable.

Variants:

• Restricted Boltzmann Machine (RBM): A simplified version

where visible and hidden units form a bipartite graph (no
connections within a layer).

Applications:

• Feature learning and dimensionality reduction.

• Collaborative filtering (e.g., recommendation systems).

• Generative modeling.

Examples:

• Learning latent features of images.

• Netflix recommendation system using RBMs.

Deep Belief Networks (DBNs)
• Configuration: Composed of

stacked Restricted Boltzmann
Machines (RBMs).

• Structure:

◦ Pre-training layers unsupervisedly,

followed by fine-tuning for
supervised tasks.

• Applications: Feature learning,
classification, and regression.

Restricted Boltzmann Machine (RBM)
• Configuration: 

RBM is a two-layer generative stochastic neural network designed for unsupervised learning. It
models the joint probability of visible and hidden variables using an energy function.

• Structure:

◦ Two layers:

▪ Visible layer: Represents input features.

▪ Hidden layer: Captures latent patterns.

◦ Fully connected between visible and hidden layers, with no connections within a layer.

• Key Assumption: 

Visible units are conditionally independent given the hidden units, and vice versa. This
independence simplifies computations.

• Applications:

◦ Feature learning and dimensionality reduction.

◦ Collaborative filtering (e.g., recommendation systems).

◦ Pretraining deep networks like Deep Belief Networks (DBNs).

• Example: 
A movie recommendation system: RBMs can learn patterns in
user-movie interactions to predict unseen user preferences.

• Applications: Image recognition, object
detection, and video processing.

• Examples: AlexNet, VGGNet, ResNet.

Convolutional Neural Networks (CNNs)
• Configuration: Specialized for processing

grid-like data (e.g., images).

• Structure:

◦ Convolutional layers: Extract spatial

features using kernels/filters.

◦ Pooling layers: Reduce dimensionality

while preserving key features.

◦ Fully connected layers: Combine features

for classification or regression.

Generative Adversarial Networks (GANs)
• Configuration: Consist of two networks (generator and discriminator)

competing against each other.

• Structure:

◦ Generator: Creates fake data resembling the training data.

◦ Discriminator: Differentiates between real and fake data.

• Applications: Image synthesis, video generation, and data augmentation.

• Examples: DCGAN, StyleGAN.

Residual Networks (ResNets)
• Configuration: Incorporates shortcut connections to address vanishing gradient

problems.

• Structure:

◦ Residual blocks: Directly pass input to a deeper layer, skipping intermediate layers.

• Applications: Very deep networks for image and signal processing.

• Examples: ResNet-50, ResNet-101.

1. Depth: Number of layers; deeper networks model complex patterns but
may require more data and training.

2. Width: Number of neurons per layer; wider networks capture more
features but may overfit if too wide.

3. Connections: Fully connected vs. sparsely connected layers influence
computational efficiency and learning.

4. Activation Functions: Non-linear functions enable learning complex
relationships.

5. Regularization: Techniques like dropout and batch normalization improve
generalization.

Each configuration serves specific purposes, and selecting the right
architecture depends on the task, data type, and computational constraints.

Error function

Separating Surface: The Overfitting Problem
• The quality of the approximation of the target variable by the function

 depends on the choice of parameters
y

a(x, ω) ω

Neural network error functions

• Let be an error function that
depends on both the configuration

 of the neural network and its
composition. The problem of finding
the optimal parameters , those
for which the neural network error is
minimal, has the form:

•

Q(ω)

ω

ω*

ω* = argminωQ(ω)

Neural network error functions
The choice of error function depends on the specifics of the problem being solved:

• Classification problem

- «0-1 loss»

• Classification problem. Differentiable
function

Q(ω) =
l

∑
i=1

[sign a(xi, ω) = yi]

Q(ω) = −
l

∑
i=1

(yi ln a(xi, ω) + (1 − yi)ln(1 − a(xi, ω)))

• Regression problem

- is not differentiable

• Regression problem. Differentiable
function

Q(ω) =
l

∑
i=1

|a(xi, ω) − yi |

Q(ω) =
l

∑
i=1

(a(xi, ω) − yi)2

Optimization of neural
network parameters

Optimization problem

• Find optimal values of parameters:

•

• - error function

• depends on the sample, the structure
of the neural network (the number of
layers, neurons and types of activation
functions) and the value of the
parameter vector

ω* = argminωQ(ω)

Q

Q

ω

Optimization problem
Two types of algorithms to find the optimal
values of parameters:

• Stochastic optimization algorithms:

• Randomly trying various

• Genetic optimization algorithm

• Simulated annealing, the values of w are
set according to a schedule;

• Gradient descent algorithms.

ω1, ω2, . . .

ω1 → ω2 → . . .

Regularization and thinning
of neural networks

Regularization
• To avoid overfitting, it is necessary to modify the optimization problem: introduce a

penalty for large weight values:

• is the regularization coefficient, which controls the rigidity of the constraints on the
parameters

• The smaller , the more accurately the function describes the sample

ω* = argminω Q(ω) + τ∑
i,j,k

(ω(k)
ij)2

τ
ω

τ a(x)

 - Search area

 - Shift

 - Scattering

Regularization

• Regularization does not reduce
the number of parameters or
simplify the network structure

• As increases, the parameters
stop changing

τ

Network thinning
• To reduce the number of parameters, we can

exclude some neurons or connections

• The principle of exclusion:

• if the error function does not change, then the
neural network can be simplified further

A parameter can be removed if:

• its value is close to zero

• the corresponding signal has a large dispersion,
i.e. it reacts to noise in the data

• its removal practically does not change the error
function

Building a neural network
• The neural network can operate in two modes:

• Training mode: In this mode, the structure of the neural network is set and its
parameters are optimized.

• Operation mode: calculating the values of for fixed parameter values

• To build a network you should specify:

• the number of layers

• the number of neurons in each layer

• the type of activation function in each layer

• the type of error function

• It is also desirable that the prepared sample does not contain gaps, and that the

features are normalized

a(x, ω*)

Stabilization of network parameters

If a neural network is too complex, it will
quickly overtrain

If the sample is complex or very noisy for the
neural network, then the neural network will
learn slowly

If the sample complexity
corresponds to a neural network

Stabilization of network parameters

• It is worth to check the difference
between the values of the error
function during training and
control

• This difference should not be
significant

• If it is large, it means that the
neural network has been
overtrained and its complexity
should be changed

