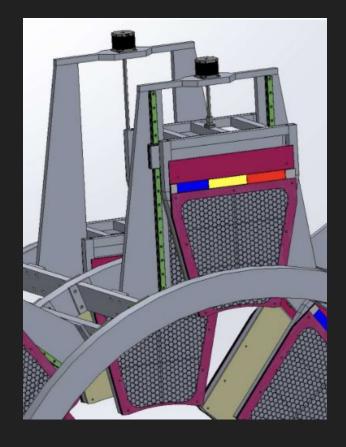
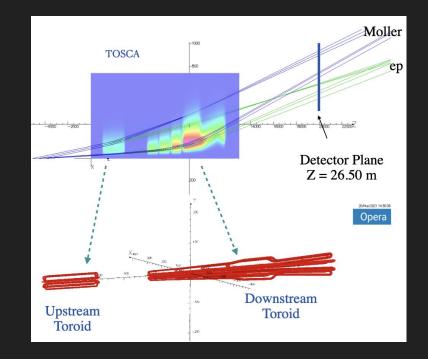
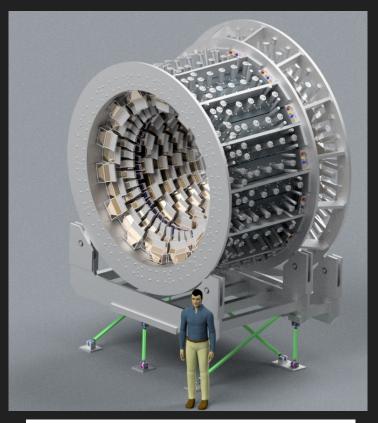

MOLLER Hardware Overview

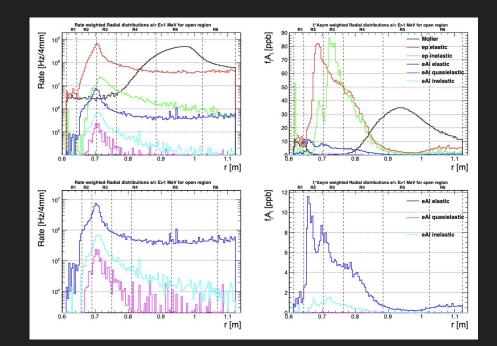

James Shirk



Tracking detector



- Verify acceptance of toroid magnets
- 2. Verify main (quartz) detector acceptance
- 3. Check if light output of quartz is position dependent
- 4. Study backgrounds


- 1. Verify acceptance of toroid magnets
- 2. Verify main (quartz) detector acceptance
- 3. Check if light output of quartz is position dependent
- 4. Study backgrounds

 $\mathcal{A} \equiv \frac{mG_F}{\sqrt{2}\pi\alpha} \frac{4E\sin^2\theta}{(3+\cos^2\theta)^2}$

- 1. Verify acceptance of toroid magnets
- 2. Verify main (quartz) detector acceptance
- 3. Check if light output of quartz is position dependent
- 4. Study backgrounds

- 1. Verify acceptance of toroid magnets
- 2. Verify main (quartz) detector acceptance
- 3. Check if light output of quartz is position dependent
- 4. Study backgrounds

Two modes of operation

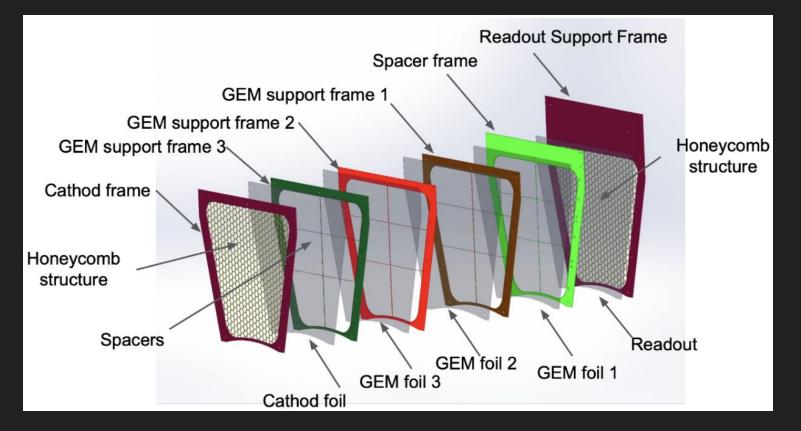
Counting Mode

- Can discern individual PMT 'counts' in the quartz detector
- Calibration mode
- Beam current O(10 nA)
- A portion will run with thin carbon targets instead of LH2
 - Verify vertex reconstruction
- GEM trackers used

Integration Mode

- Rate is high enough that PMT pulses overlap, measure 'integrated' voltage instead
- Data mode
- Beam current O(10 µA)
- GEM trackers will be taken out of acceptance

Two modes of operation


Counting Mode

- Can discern individual PMT 'counts' in the quartz detector
- Calibration mode
- Beam current O(10 nA)
- Portion will run with thin carbon targets instead of LH2
 - Verify vertex reconstruction
- GEM trackers used

Integration Mode

- Rate is high enough that PMT pulses overlap, measure 'integrated' voltage instead
- Data mode
- Beam current O(10 µA)
- GEM trackers will be taken out of acceptance

GEM CAD blowout

Run Several Tests

<u>Leakage current</u>

- 1. Do GEM foils have adequate resistance?
- 2. Does this resistance change over time?
- 3. How often do they discharge?

<u>Gain Analysis</u>

- How does the gain vary over the position of the detector?
- 2. Are any areas in our detector likely to be inefficient?
- 3. How does the gain change with voltage?

- Is our detector sensitive to ionizing particles?
- . What is the probability that an ionizing particle will pass through and be detected?

Run Several Tests

<u>Leakage current</u>

- 1. Do GEM foils have adequate resistance?
- 2. Does this resistance change over time?
- 3. How often do they discharge?

Gain Analysis

- How does the gain vary over the position of the detector?
- 2. Are any areas in our detector likely to be inefficient?
- 3. How does the gain change with voltage?

- Is our detector sensitive to ionizing particles?
- . What is the probability that an ionizing particle will pass through and be detected?

Run Several Tests

<u>Leakage current</u>

- 1. Do GEM foils have adequate resistance?
- 2. Does this resistance change over time?
- 3. How often do they discharge?

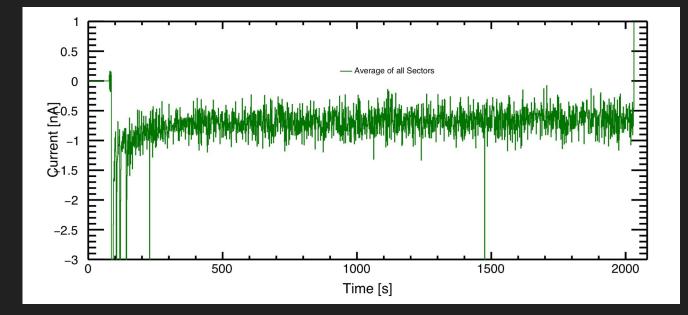
Gain Analysis

- How does the gain vary over the position of the detector?
- 2. Are any areas in our detector likely to be inefficient?
- 3. How does the gain change with voltage?

- 1. Is our detector sensitive to ionizing particles?
- What is the probability that an ionizing particle will pass through and be detected?

Leakage current

- 1. Put GEM in N2
- 2. Apply voltage between top and bottom
- 3. Measure current on picoammeter

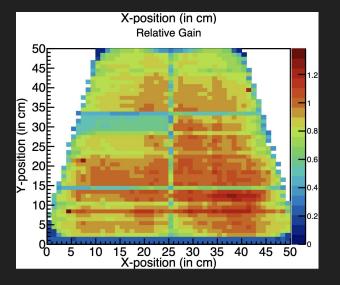

Gain Analysis

- 1. Put GEM in X-Ray box
- 2. Bring GEM to voltage
- Vary X-Ray position or detector and take measurements

- Use three scintillators to trigger detector
- Measure how many of the scintillator counts correspond to hit in detector

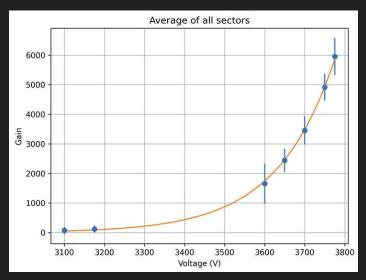
Leakage current

- 1. Put GEM in N2
- 2. Apply voltage between top and bottom
- 3. Measure current on picoammeter


<u>Leakage current</u>

- 1. Put GEM in N2
- Apply voltage between top and bottom
- Measure current on picoammeter

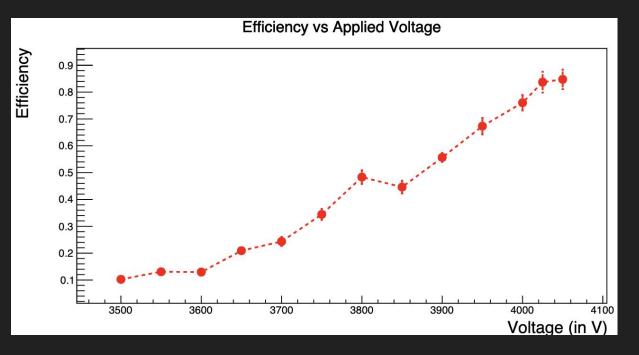
Gain Analysis


- 1. Put GEM in X-Ray box
- 2. Bring GEM to voltage
- Vary X-Ray position or detector and take measurements

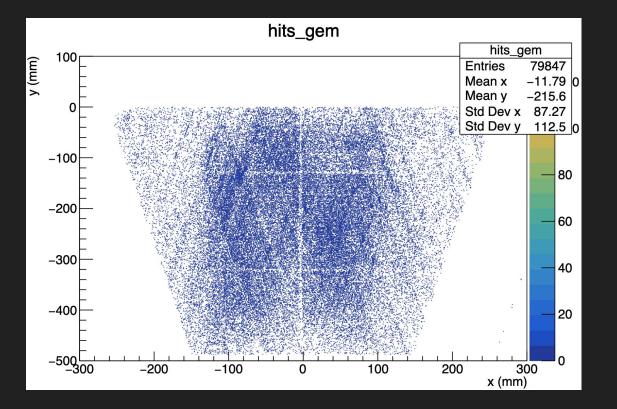
- Use three scintillators to trigger detector
- Measure how many of the scintillator counts correspond to hit in detector

Gain Analysis

- 1. Put GEM in X-Ray box
- 2. Bring GEM to voltage
- Vary X-Ray position or detector and take measurements


Leakage current

- 1. Put GEM in N2
- Apply voltage between top and bottom
- Measure current on picoammeter


Gain Analysis

- 1. Put GEM in X-Ray box
- 2. Bring GEM to voltage
- Vary X-Ray position or detector and take measurements

- 1. Use three scintillators to trigger detector
- 2. Measure how many of the scintillator counts correspond to hit in detector

- 1. Use three scintillators to trigger detector
- 2. Measure how many of the scintillator counts correspond to hit in detector

- 1. Use three scintillators to trigger detector
- 2. Measure how many of the scintillator counts correspond to hit in detector

Parameters of the Standard Model				[hide]
#	Symbol	Description	Renormalization scheme (point)	Value
1	m _e	Electron mass		0.511 MeV
2	mμ	Muon mass		105.7 MeV
3	mτ	Tau mass		1.78 GeV
4	m _u	Up quark mass	$\mu_{\rm MS}$ = 2 GeV	1.9 MeV
5	<i>m</i> d	Down quark mass	$\mu_{\rm MS}$ = 2 GeV	4.4 MeV
6	ms	Strange quark mass	$\mu_{\rm MS}$ = 2 GeV	87 MeV
7	m _c	Charm quark mass	$\mu_{\rm MS} = m_{\rm c}$	1.32 GeV
8	m _b	Bottom quark mass	$\mu_{\rm MS} = m_{\rm b}$	4.24 GeV
9	mt	Top quark mass	On shell scheme	173.5 GeV
10	θ ₁₂	CKM 12-mixing angle		13.1°
11	θ ₂₃	CKM 23-mixing angle		2.4°
12	θ ₁₃	CKM 13-mixing angle		0.2°
13	δ	CKM CP violation Phase		0.995
14	<i>g</i> ₁ or <i>g</i> '	U(1) gauge coupling	$\mu_{\rm MS} = m_{\rm Z}$	0.357
15	g ₂ or g	SU(2) gauge coupling	$\mu_{\rm MS} = m_{\rm Z}$	0.652
16	g_3 or g_s	SU(3) gauge coupling	$\mu_{\rm MS} = m_{\rm Z}$	1.221
17	$\theta_{\rm QCD}$	QCD vacuum angle		~0
18	v	Higgs vacuum expectation value		246 GeV
19	m _H	Higgs mass		125.09 ±0.24 GeV