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Standard Model of ML running:
linheriting ML Code

2Modity

3Create your training sample
4Get total nonsense

5Google for answers

6Eureka moment

/Try it

Repeat from step 5 until succeed
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ML running basics
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ML running basics

Training Set
(60%)
To train the To prevent To determine
models overfitting accuracy

Each ML model has multiple parameters:
Run with various sets then find the best
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ML running basics

Training Set
(60%)
To train the To prevent To determine
models overfitting accuracy

Each ML model has multiple parameters:
Run with various sets then find the best
FOR YOU
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Classification in ML
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Binary classification Multi-class classification
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samples = 10.5%
value = 2.47

\en

value=2.271
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samples = B.E%J
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samples = 14.1%)

University
Pclass = 1.5
samples = 19.1%
> 1 value = 0.563
value = 0.692

T Pclass = 2.5 SiblSpous = 2.5
True samples = 35.2% samples = 16.2%
[ Sex_male = 0.5 value = 0.358 value = 0.116 samples = lﬂ%j
5

N

amples = 100.0% value = -0.918
value = -0.0

\A samples = 9.9%}

False Pclass = 1.5 SiblSpous = 0.5 value = -0.23
samples = 64.8% samples = 13.7%

value = -0.195 value = -0.015
samples = 3.8%
value = 0.367
ef rl‘.'g,ilg.lra?t::?caat (x 1n, lerning rate 3.2): ::m;ﬂ;d;”fl ‘i% samples = 43_2%)
prob = 0 . . value = -0.243 value = -1.14
for 1estim 1n range (n estim):

;::nr'-:::-t:|+:ler_'r|i|'u_1 rate-*-rnytree{i-:-:tztir“:. ¥ 1n) samples = 7.9%
return 1. / ( 1. + np.exp( - prob ) ) value = -0.415
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d Sex_male = 0.5 h

squared error = 0.237
samples = 100.0%

True

\ value = -0.0 )

s

Example

Pclass = 2.5 R

squared _error = 0.191

samples = 35.2%

value = 0.358 )

Pclass = 1.5 R
squared error = 0.153

samples = 64.8%

_ value = -0.195

" Pclass =15
squared_error = 0.05
samples = 19.1%
value = 0.563

J

squared_error = 0.248
samples = 14.1%
~ SibSp=25 ) value = 0.692

squared_error = 0.25
samples = 16.2%

~  SibSp=05 )
squared error = 0.233
samples = 13.7%

_ squared_error = 0.139
_ velue=0.116 samples = 2.0%
value = -0.918

N~

~—

squared _error = 0.221
samples = 9.9%
value = -0.23

—

\_ value = -0.015 y

Parch < 0.5 A
squared error = 0.121
samples = 51.1%

squared_error = 0.249
samples = 3.8%
value = 0.367
squared error = 0.101
samples = 43.2%
value = -1.14

N~

N

\_ value = -0.243 y

https://www.kaggle.com/competitions/titanic/overview
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squared _error = 0.204
samples = 7.9%
value = -0.415
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Quality metrics

. rp ’ TP
precision = recall =
TP+ FP TP+ FN
10 -
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g 087 --- No skil
i Good Model
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TPR = 7 FPR = ikl
- “ FP+TN

TP + FN
ROC curve

Perfect

classifier
10e@

0.5

True positive rate

0.0 0.5 1.0
False positive rate
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ROC AUC Curve
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Quality metrics

ROC AUC Curve
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Quality metrics

ROC AUC Curve
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parameters = {
'loss": ["log
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TPR
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Choose wisely
1Specific to the analysis
2Less pars - better
3Don’t let machine

for you

4Multiple treshlods —

systmetic uncertainties

Y uri Mitrankov
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Regression
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5 _ :
— Zero one loss !;"
4 - Perceptron loss :
—— Hinge loss ing rat
—— Log loss
3 —— Exp loss |
v —— Square loss low learning rate
O
2 -
high learning rate
1 ' \
%‘ good learning rate
0 1 1 | -
~ ~ - ’ ! : 3 epoch
Yi*5i
—1 2
Choose params smartly W1, W,.., Wy = W1, W3,.., Wy

Choose loss func and solver
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Too low Just right Too high
1(8) 1(8) 1(6)
S
7,
A small learning rate The optimal learning Too large of a learning rate
requires many updates rate swiftly reaches the causes drastic updates
before reaching the minimum point which lead to divergent
minimum point *behaviors
MLLM Yuri Mitrankov 16
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Transforming loss function by adding
S5 : regularization term
!
2
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Random Forest
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Random Forest

Pros:
1. Robust to overfitting
2. Easy to use
3. Parallelizable

4. Classification and regression

Cons:
1. Harder to interpret

2. Slower and memory intense
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3. Less accurate for small dataset
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Random Forest QP stony Broak

n_estimators — Number of trees; increase for better performance but higher computation.
max_depth — Maximum depth of trees; controls overfitting (deeper trees capture more complexity).
min_samples_split — Minimum samples to split a node; higher values prevent overfitting.
min_samples_leaf — Minimum samples in a leaf; larger values create simpler models.

max_features — Controls how many features the model looks at when making each split; choosing fewer

features makes the model simpler and faster, while more features make it more accurate but slower.
bootstrap — Whether to sample data with replacement; affects diversity of trees.

criterion — Function to measure quality of a split (e.g., "gini" for classification, "mse" for regression).
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Sex_female = 0.5
samples = 100.0%
alue = [0.596, 0.404]

True

Random Forest

samples = 10.5%
value = [0.655, 0.345]

samples = 8.3%
value = [0.542, 0.458]

SiblSpous = 2.5
samples = 10.5%

value = [0.602, 0.398]

True

samples = 100.0%

Sex female = 0.5
value = [0.631, 0.369]

samples = 15.3%
value = [0.399, 0.601]

SiblSpous = 0.5
samples = 1.1%

value = [0.727, 0.273]]_-

samples = 0.7%
value = [0.625, 0.375]
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samples = 10.9%
value = [0.684, 0.316]

samples = 9.5%
value = [0.612, 0.388]

SiblSpous = 1.5
samples = 12.5%
value = [0.726, 0.274]

samples = 14.2%
value = [0.443, 0.557]

Pclass = 2.0
samples = 1.9%
value = [0.632, 0.368]
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Gradient Boosting
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Next is fixing

previous issues

12/06/2024

Gradient Boosting

Pros:
1. High accuracy

2. Handle complex tasks

Cons:
1. Hard to interpret
2. Slower training

3. Sensitive to overfitting

MLLM
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3. Robust to outlier and -9999

4. Classification and regression
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Dataset
® o o o O O | O O © O O ©
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e® o ° Lo 9o I | Lo o o -
o O
@ O O O
Train @ Test Train @ Test Train @ Test
Tree 1 Tree 2 Tree n
) Correct Prediction
| | Wrong Prediction
|W-| WE wWn |

v

Ensemble Prediction
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n_estimators — Number of boosting stages; too many can overfit, too few underfit.

learning_rate — Shrinks contribution of each tree; lower values -> more trees - more overfit or precision.
max_depth — Limits tree depth; helps control overfitting.

subsample — Fraction of data used for fitting each tree; reduces variance.

colsample_ bytree — Fraction of features used per tree; improves generalization. Or one can use max_features
min_samples_split — Minimum samples to split a node; prevents overfitting.

loss — Specifies the loss function to minimize (e.g., "squared error" for regression, "log loss" for classification).

criterion — Measures the quality of a split within each tree (e.g., "friedman mse" for regression).
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amples = 100.0%

Sex_male = 0.5
S
value = -0.0
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Pclass = 1.5
samples = 19.1%
value = 0.563

True samples = 35.2%Hsamples = 16.2%

Pclass = 2.5

value = 0.358

|

samples = 14.1%
value = 0.692

~—

T~a
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samples = 12.7%
value = -0.1

samples = 13.7%

\~

samples = 1.0%
value = 0.685

R

ParntChdrm = 1.5
value = -0.01

SiblSpous = 2.5 Pclass = 1.5

value = 0.116 samples = 2.0%

False
S

Pclass = 1.5

value = -0.195

amples = E4.B%Hsamples = 13.7%

value = -0.918

value = -0.852

N

value = -0.002

samples = 9.9%

T~a

ParntChdrn = 0.5

samples = 43.2%]

SiblSpous = 0.5 value = -0.23

PN

value = -0.015

value = 0.228

ParntChdrm = 0.5
samples = 51.1%
value = -0.243

False Pclass = 2.5
s
samples = 3.8%

amples = 35.2%

True | samples = 64.8% samples = 51.1%
Sex_female = 0.5 value = -0.127 value = -0.158
samples = 100.0%

I

samples = 7.9%
value = -0.278

value = 0.367

b

S

samples = 43.2%
value = -1.14

S~

N

samples = 7.9%
value = -0.415

-
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samples = 19.1%

0

Pclass = 1.5

value = 0.358

SiblSpous = 2.5
samples = 16.2%
value = 0.074

samples = 14.1%
value = 0.442

Py

-

samples = 2.0%
value = -0.77
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Outline

| asked ChatGPT to summarize ML in HEP:
& Classification and Particle Identification
€ Data Reconstruction

€ Anomaly Detection

€ Simulations and Optimization

€ Data Reduction and Selection

& Hyperparameter Tuning

& Experimental Designs
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| asked ChatGPT to summarize ML in HEP:
@ Classification and Particle Identification
€ Data Reconstruction

€ Anomaly Detection

€ Simulations and Optimization

& Data Reduction and Selection

& Hyperparameter Tuning S H H n ET

NEURAL NET-BASED ARTIFICIAL INTELLIGENCE

& Experimental Designs
SEVALERLE
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