ML for vertex and mass reconstruction for DarkLight@ARIEL

Sid Gupte, Win Lin Stony Brook University CFNS MLLM meeting 02/07/2025

Introduction

- Mass Reconstruction

Introduction

- Mass Reconstruction

Introduction

- Mass Reconstruction

<u>Analysis Steps</u>

Reconstruction for simulated source

using current fitting method

Machine learning!

Machine learning!

Machine learning!

- SeaWulf queue is long ...

Neural network:

- simple testing model 1

- linear network
- individual model for each output
- Use optimizer to find layers and neurons
- Activation function: Leaky ReLu

Choice of Activation Function

• During backpropagation, we perform gradient descent (or some variation of it) which looks as following:

$$W^{(l)} = W^{(l)} - \eta \cdot \frac{\partial L}{\partial W^{(l)}}$$

• The gradient wrt weights depends on derivative of the activation function:

$$\frac{\partial L}{\partial W^{(l)}} = \frac{\partial L}{\partial a^{(l)}} \cdot \boxed{\frac{\partial a^{(l)}}{\partial z^{(l)}}} \cdot \frac{\partial z^{(l)}}{\partial W^{(l)}}$$

Sigmoid Function

$$a(z) = \sigma(z) = \frac{1}{1 + e^{-z}}$$
$$\implies \frac{\partial a}{\partial z} = \sigma(z) (1 - \sigma(z))$$

Hyperbolic Tangent Function

$$a(z) = \operatorname{th}(z) = \frac{e^{z} - e^{-z}}{e^{z} + e^{-z}}$$
$$\implies \frac{\partial a}{\partial z} = 1 - \operatorname{th}^{2}(z)$$

ReLU (Rectified Linear Unit) Function

$$\operatorname{ReLU}(x) = \begin{cases} x, & \text{if } x > 0\\ 0, & \text{if } x \le 0 \end{cases}$$

- Output Range: 0 to infinite
- Advantage: fast; good for pattern recognition
- Disadvantage: dying ReLU

https://www.geeksforgeeks.org/activation-functions-neural-networks/

Leaky ReLU Function

Setting up for using GPU

import torch
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

Data

• • •

```
import pandas as pd
df_e = pd.DataFrame(electron_data, columns=['P', 'ip', 'oop', 'X', 'Y', 'dX', 'dY'])
df_e.head()
```

-										
⋺		Р	ip	оор	х	Y	dX	dY	Ħ	
	0	11.2456	-0.811484	-3.34895	-17.6243	-17.3677	-23.6235	0.895071	11.	
	1	10.5401	0.617530	-3.46603	-54.8449	11.6648	-21.3299	-0.561832		
	2	12.8834	0.496969	1.99661	69.9853	15.2980	-41.2681	-1.252310		
	3	12.5593	1.272000	-1.75516	50.7739	32.0927	-30.5484	-1.969000		
	4	12.0571	1.098930	2.23481	24.3938	32.0202	-38.7435	-2.639890		

Pandas DataFrames

Transforming the Data for using in the Neural Networks

• • •

```
X = df_e.drop(['P', 'ip', 'oop'], axis=1)
Y = df_e[['P']]
X = torch.tensor(X.values, dtype=torch.float32, device=device)
Y = torch.tensor(Y.values, dtype=torch.float32, device=device)
from sklearn.model_selection import train_test_split
X_train, X_val, Y_train, Y_val = train_test_split(X, Y, test_size=0.2, random_state=42, shuffle=False)
X_train = X_train.to(device)
Y_train = Y_train.to(device)
X_val = X_val.to(device)
Y_val = Y_val.to(device)
```

Hyperparameter Optimization

• • •

```
from torch import nn _____
                                                                           Load Neural Network Module from PyTorch
                       class MomentumNetwork(nn.Module):
                           def __init__(self, num_layers, hidden_sizes, lr):
                               super(). init ()
                               layers = []
                               layers.append(nn.Linear(4, hidden sizes[0]))
                               layers.append(nn.ReLU())
Base structure of Network
                               for i in range(num layers - 1):
                                   layers.append(nn.Linear(hidden_sizes[i], hidden_sizes[i + 1]))
                                   layers.append(nn.ReLU())
                               layers.append(nn.Linear(hidden_sizes[-1], 1))
                               self.linear_relu_stack = nn.Sequential(*layers)
                               self.lr = lr
                           def forward(self, x):
                               return self.linear relu stack(x)
```

• • •

num_layers = [2, 10] num_neurons = [4, 100] Parameter Space for Hyperparameter Optimization

def objective(trial):

```
num_layers = trial.suggest_int("num_layers", num_layers[0], num_layers[1])
hidden_sizes = [trial.suggest_int(f"hidden_size_{i}", num_neurons[0], num_neurons[1], step=16) for i in range(num_layers)]
lr = trial.suggest_loguniform("lr", 1e-5, 1e-2)
```

```
model = MomentumNetwork(num_layers, hidden_sizes, lr).to(device)
criterion = nn.MSELoss()
optimizer = optim.Adam(model.parameters(), lr=lr)
```

```
epochs = 100
```

```
for epoch in range(epochs):
    outputs = model(X_train)
    loss = criterion(outputs, Y_train)
    optimizer.zero_grad()
    loss.backward()
    optimizer.step()
```

```
with torch.no_grad():
    val_outputs = model(X_val)
    val_loss = criterion(val_outputs, Y_val)
```

```
return val_loss.item()
```

Setup the objective function for optimizer

Using OPTUNA for Optimization

!pip install optuna
import optuna

Run OPTUNA

 $num_trials = 30$

```
study = optuna.create_study(direction="minimize")
study.optimize(objective, n_trials=num_trials)
print("Best hyperparameters:", study.best_params)
```

Instantiating the Neural Network

• • •

num_layers = study.best_params['num_layers']
hidden_sizes = list(study.best_params.values())[1:-1]
lr = list(study.best_params.values())[-1]

Example setup for network:

•••

Network architecture

OptimizedMomentumNetwork(

(linear_relu_stack): Sequential(

- (0): Linear(in_features=4, out_features=20, bias=True)
- (1): LeakyReLU(negative_slope=0.01)
- (2): Linear(in_features=20, out_features=20, bias=True)
- (3): LeakyReLU(negative_slope=0.01)
- (4): Linear(in_features=20, out_features=68, bias=True)
- (5): LeakyReLU(negative_slope=0.01)
- (6): Linear(in_features=68, out_features=84, bias=True)
- (7): LeakyReLU(negative_slope=0.01)
- (8): Linear(in_features=84, out_features=84, bias=True)
- (9): LeakyReLU(negative_slope=0.01)
- (10): Linear(in_features=84, out_features=20, bias=True)
- (11): LeakyReLU(negative_slope=0.01)
- (12): Linear(in_features=20, out_features=100, bias=True)
- (13): LeakyReLU(negative_slope=0.01)

(14): Linear(in_features=100, out_features=1, bias=True)

Training the Network

•••

```
model = OptimizedMomentumNetwork().to(device)
criterion = nn.MSELoss()
optimizer = optim.Adam(model.parameters(), lr=lr)
```

```
epochs = 1500
losses = []
```

```
for epoch in range(epochs):
    outputs = model(X_train)
    loss = criterion(outputs, Y_train)
```

```
losses.append(loss.item())
```

```
optimizer.zero_grad()
loss.backward()
optimizer.step()
```


Save the Model!

torch.save(model.state_dict(), 'model_1.pth')

Load the Model

loaded_model = OptimizedMomentumNetwork().to(device)
loaded_model.load_state_dict(torch.load('model_1.pth'))
loaded_model.eval()

Running the Trained Model

Running the Loaded Model

•••

```
with torch.no_grad():
    Y_pred = model(X_val)
    loss = criterion(Y_pred, Y_val)
```

• • •

```
with torch.no_grad():
    Y_pred = loaded_model(X_val)
    loss = criterion(Y_pred, Y_val)
```

Prepare Data for Results

• • •

```
X_train_p = X_train.to('cpu')
Y_train_p = Y_train.to('cpu')
X_val_p = X_val.to('cpu')
Y_val_p = Y_val.to('cpu')
Y_pred_p = Y_pred.to('cpu')
diff_p = [Y_pred_p[i].item() - Y_val_p[i].item() for i in range(len(Y_val_p))]
```

Result

Tried with less physics effect and smearing

Tried with less physics effect and smearing

Conclusion and next step

- We are testing using ML for the vertex and mass reconstruction for DarkLight
- Will continue to investigate and try more complicated models and combine fit for all three outputs

Conclusion and next step

- We are testing using ML for the vertex and mass reconstruction for DarkLight
- Will continue to investigate and try more complicated models and combine fit for all three outputs

