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The Proton Radius Puzzle M-

@ 2010: CREMA collaboration measure Lamb Shift in muonic hydrogen
o Results: r, = 0.84184 £ 0.00067 fm

@ Average electron scattering measurement: ~ 0.877 fm
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The Proton Radius Puzzle Today
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@ Lepton universality?
e Radiative corrections (Two Photon Exchange (TPE))?
o Differences between spectroscopy and scattering?
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The MUon Scattering Experiment (MUSE)

@ The MUon Scattering Experiment (MUSE) was direclty inspired by the proton radius
puzzle

e Goals:

o Precision measurement of r, via ep and pp scattering
e Precision study of TPE in ep and up scattering
e Direct test of lepton universality

@ Housed at the 1M1 beamline at the Paul Scherrer Institute

Kyle Salamone MLLM STT Tracking February 28, 2025

3/

17



Experimental Setup MU~
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The Straw Tube Trackers (STT)

@ Scattered particle tracking detector in
MUSE

@ Mirrored setup:

e 20 planes of straws (10 horizontal, 10
vertical)

e ~ 3000 straws total!

e Smaller front chamber, larger rear
chamber

e 5.1mm straw radius, 60 and 90 cm long

e Definition: set of 5 planes (so the 5

vertical horizontal, for example): " half
chamber”
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The Straw Tube Trackers (STT)

@ "Standard” set of drift tubes
e Measures time — distance, not (x, y, z)
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STT Tracking: Left Right Ambiguity

@ Tracking is not straightforward: Left Right Ambiguity
o Makes y? distribution in minimization complex
e Many local minima for minimizer to get stuck in
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Machine Learning Approach

@ ldea: train a neural network to help resolve this ambiguity

@ Few approaches to consider:
o CNN to predict left/right alone
e NN to predict ¢ in local straw frame

@ Disclaimer: this is a work in progress!

AN
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Input Data

@ For training: use Monte Carlo data Z;j;es
o Generated 2 datasets: training and validation 31,1.61751,4,

o Testing will be done later on run data o B1RE),
e Started with perfect radii, moved on to digitized /smeared
@ Each "event” in the network:

o At least 2 straws on a half chamber triggered by a primary

particle
e Direct input: 5 length 89 arrays; all 0 and radius of hit straws
o Give the hit radius as well as the truth ¢ Ho(Gp Bl By

9,1,2.21e8,

3,12,0.93321,
4,12,0.252731,
1,13,1.9
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NN Structure

class LeftRightLearner(nn.Module):
def __init_ (self):
@ Structure of I/O per(LeftRightLearner, self).__init_ ()
elf.fc = nn.Sequential(

@ 5 arrays of length 89 (maximum straw in U e e, SRS

plar1e) nn.BatchNormld(2048),
@ All Os (for loss masking) except for fired Mo,
: . . . nn.Linear (2048, 1024),
straws; these have their hit radii . nn.BatchNormid(1024),
@ Concatenate all 5 arrays to form input nn.ReLU()
© Output: ¢ in radians, same concatenated M- LRE(ER, 2205),
f nn.BatchNormld(256),
orm nn.RelLU(),

@ Training time for 100 epochs: ~ 12 : LS, SR
minutes def forward(self, x):
elf.fc(x)
return x % (2*torch.pi)
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Custom Loss Function M-

@ Instead of ordinary MSE, defined my own
@ Needed for angular differences wrapping around
e For ordinary MSE: 1° and 359° have huge loss, but for this network it should be 2°

def MaskedCLLoss(truth, predicted):
mask = (truth != 0)

t, pred = truth[mask], predicted[mask]

t, pred = t % (2*torch.pi), pred % (2*torch.pi)
loss = torch.mean(1l-torch.cos(t-pred))

return loss
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Training Tools

@ Complex structure - use a learning rate scheduler

@ Tested a few, chose " CosineAnnealingWarmRestarts”
Method of torch.optim.Ir_scheduler

o After Ty epochs, resets the learning rate

e This resetting happens every To + Tg * T €pochs
e Can set minimum learning rate

@ Very large datasets - running using cuda
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Results

Loss vs Epoch Truth vs Prediction (correlation: 0.505)
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@ NN seems to be progressing in right direction, but exists plenty of room for improvement

@ Structure of NN is rather complex, potentially can be simplified
e As well, may replace the hit radius on input with simply 1
@ Bigger picture: implemtation in tracking code

e Since we know r and ¢ — (x,y) in local frame, can convert this to a hit in global frame
e Write a simpler minimizer to take this information and fit a seed to these positions, give this
seed to minimizers
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Conclusions/Future

@ Proof of concept for using NN to assist STT tracking showing proimise

@ Will be tested on real data soon

@ Future work:

o Test on real data
e Optimize network
e Implement in tracking code

@ Any comments/suggestions are welcome!
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