Key processes to access parton Orbital Angular Momentum at the EIC

ePIC/EIC Early Science Workshop

Shohini Bhattacharya

University of Connecticut April 24, 2025 In Collaboration with:

Duxin Zheng, Jian Zhou (PRL 133, 051901)

Renaud Boussarie, Yoshitaka Hatta (PRL 128, 182002/ PRD 111, 034019)

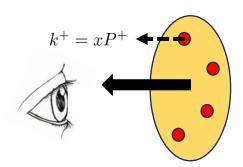
Outline

- Generalized TMDs & connection to spin physics
- Observable(s) for quark/gluon OAM & spin-orbit correlations
- Summary

Outline

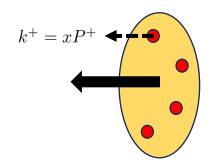
- Generalized TMDs & connection to spin physics
- Observable(s) for quark/gluon OAM & spin-orbit correlations
- Summary

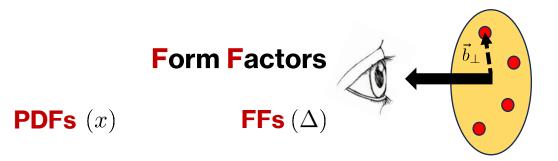
I will look at exclusive ep processes unless otherwise stated (EIC early science matrix: Years 2-4)



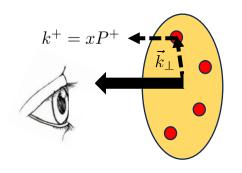
Parton Distribution Functions

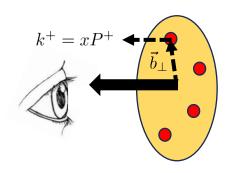
PDFs(x)

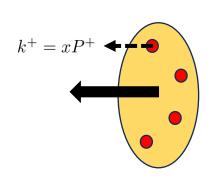


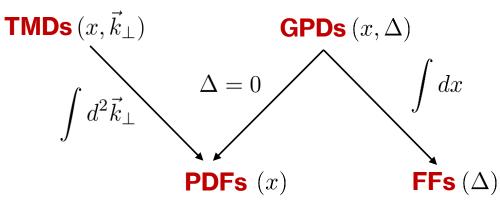


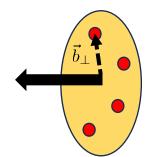
Transverse Momentum-dependent Distributions











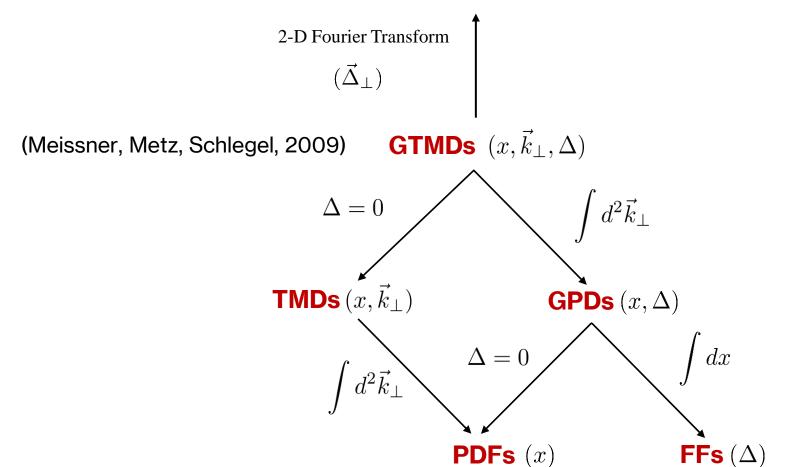
Generalized Transverse Momentum-dependent Distributions

PDFs (x)

 $\mathbf{FFs}\,(\Delta)$

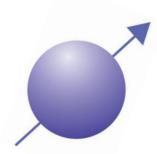
(Meissner, Metz, Schlegel, 2009) GTMDs (x,\vec{k}_\perp,Δ) $\Delta=0 \qquad \qquad \int d^2\vec{k}_\perp$ GPDs (x,Δ) $\Delta=0 \qquad \qquad \Delta=0$

Wigner functions $(x, \vec{k}_\perp, \vec{b}_\perp)$ (Belitsky, Ji, Yuan, 2003)



Jaffe-Manohar spin decomposition

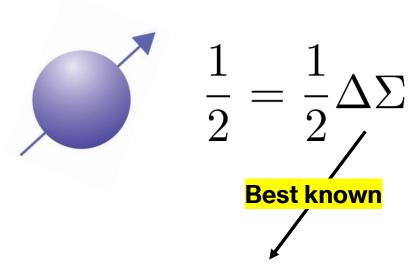
An incomplete story:



 $\frac{1}{2}$

Jaffe-Manohar spin decomposition

An incomplete story:

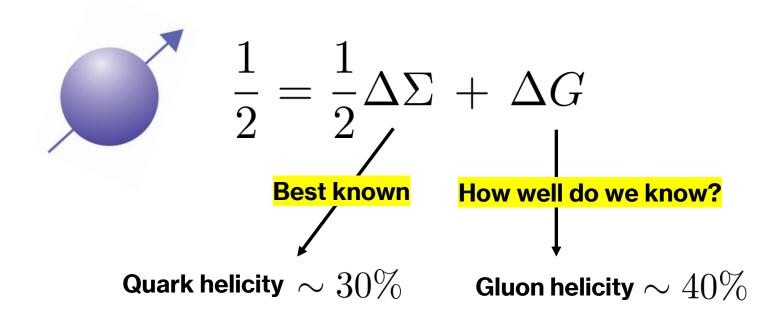


Quark helicity $\sim 30\%$

1881

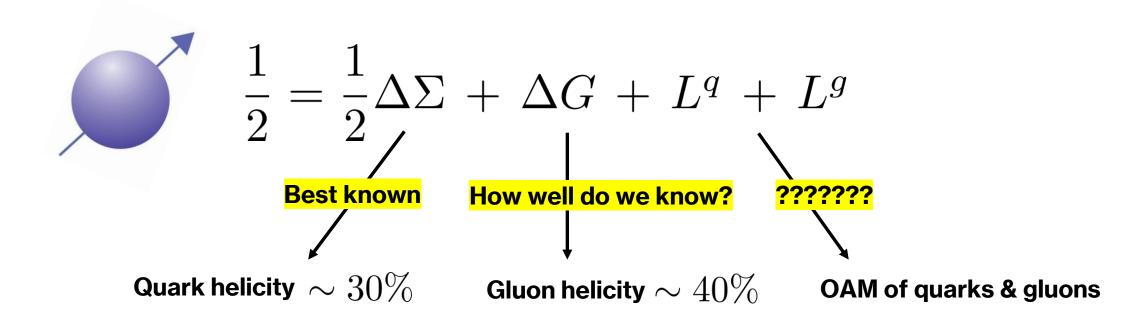
Jaffe-Manohar spin decomposition

An incomplete story:



Jaffe-Manohar spin decomposition

An incomplete story:



So far, no experimental constraints on OAM of quarks & gluons

Wigner functions in Quantum Mechanics

(Wigner, 1932)

Calculate from wave functions:

$$W(x,k) = \int \frac{dx'}{2\pi} e^{-ikx'} \psi(x + \frac{x'}{2}) \, \psi^*(x - \frac{x'}{2})$$

Expectation value of observables:

$$\langle \mathcal{O} \rangle = \int dx \int dk \mathcal{O}(x, k) W(x, k)$$

Wigner functions in Quantum Mechanics (Wigner, 1932)

Wigner functions in parton physics (Belitsky, Ji, Yuan, 2003)

Calculate from fourier transform of GTMD correlator:

Calculate from wave functions:

$$W(x,k) = \int \frac{dx'}{2\pi} e^{-ikx'} \psi(x + \frac{x'}{2}) \, \psi^*(x - \frac{x'}{2})$$

$$W^{[\Gamma]}(x, \vec{k}_{\perp}, \vec{b}_{\perp})$$

Expectation value of observables:

$$\langle \mathcal{O} \rangle = \int dx \int dk \mathcal{O}(x,k) W(x,k)$$

Application: Orbital Angular Momentum (OAM)

$$L_z^{q,g} = \int dx \int d^2k_{\perp} d^2b_{\perp} (\vec{b}_{\perp} \times \vec{k}_{\perp})_z W^{q,g} (x, \vec{b}_{\perp}, \vec{k}_{\perp})$$

(Lorce, Pasquini, 2011 / Hatta, 2011)

Wigner functions in Quantum Mechanics (Wigner, 1932)

Wigner functions in parton physics (Belitsky, Ji, Yuan, 2003)

Calculate from wave functions:

$$W(x,k) = \int \frac{dx'}{2\pi} e^{-ikx'} \psi(x + \frac{x'}{2}) \, \psi^*(x - \frac{x'}{2})$$

Expectation value of observables:

$$\langle \mathcal{O} \rangle = \int dx \int dk \mathcal{O}(x, k) W(x, k)$$

Calculate from fourier transform of GTMD correlator:

$$W^{[\Gamma]}(x, \vec{k}_{\perp}, \vec{b}_{\perp})$$

• Application: Relation between GTMD $F_{1,4}^{q,g}$ & OAM

$$L_z^{q,g} = -\int dx \int d^2 \vec{k}_{\perp} \frac{\vec{k}_{\perp}^2}{M^2} F_{1,4}^{q,g}(x, k_{\perp}, \xi = 0, \Delta_{\perp} = 0)$$

(Lorce, Pasquini, 2011 / Hatta, 2011)

Wigner functions in Quantum Mechanics (Wigner, 1932)

Wigner functions in parton physics (Belitsky, Ji, Yuan, 2003)

Calculate from way

$$W(x,k) = \int \frac{dx'}{2\pi}$$

Calculate from way $W(x,k) = \int \frac{dx'}{2\pi}$ Big question: Experimental observable?

Expectation value of observables:

$$\langle \mathcal{O} \rangle = \int dx \int dk \mathcal{O}(x, k) W(x, k)$$

• Application: Relation between GTMD $F_{1,4}^{q,g}$ & OAM

$$L_z^{q,g} = -\int dx \int d^2 \vec{k}_{\perp} \frac{\vec{k}_{\perp}^2}{M^2} F_{1,4}^{q,g}(x, k_{\perp}, \xi = 0, \Delta_{\perp} = 0)$$

(Lorce, Pasquini, 2011 / Hatta, 2011)

arXiv: 1612.02438 (2016)

Hunting the Gluon Orbital Angular Momentum at the Electron-Ion Collider

Xiangdong Ji,^{1,2} Feng Yuan,³ and Yong Zhao^{1,3}

arXiv: 1612.02438 (2016)

Hunting the Gluon Orbital Angular Momentum at the Electron-Ion Collider

Xiangdong Ji,^{1,2} Feng Yuan,³ and Yong Zhao^{1,3}

arXiv: 1702.04387 (2017)

Generalized TMDs and the exclusive double Drell-Yan process

Shohini Bhattacharya, Andreas Metz, and Jian Zhou²

arXiv: 1612.02438 (2016)

arXiv: 1702.04387 (2017)

Hunting the Gluon Orbital Angular Momentum at the Electron-Ion Collider

Xiangdong Ji,^{1,2} Feng Yuan,³ and Yong Zhao^{1,3}

Generalized TMDs and the exclusive double Drell-Yan process

Shohini Bhattacharya, Andreas Metz, and Jian Zhou²

arXiv: 1802.10550 (2018)

Exclusive double quarkonium production and generalized TM

Shohini Bhattacharya, ¹ Andreas Metz, ¹ Vikash Kumar Ojha, ² Jeng-Yuan Tsai, ¹

arXiv: 1807.08697 (2018)

Probing the Weizsäcker-Williams gluon Wigner distribution in pp collisions

Renaud Boussarie, Yoshitaka Hatta, Bo-Wen Xiao, 3,4 and Feng Yuan⁵

arXiv: 1612.02438 (2016)

arXiv: 1702.04387 (2017)

1881 1881

Hunting the Gluon Orbital Angular Momentum at the Electron-Ion Collider

Xiangdong Ji,^{1,2} Feng Yuan,³ and Yong Zhao^{1,3}

Generalized TMDs and the exclusive double Drell-Yan process

Shohini Bhattacharya, Andreas Metz, and Jian Zhou²

arXiv: 1802.10550 (2018)

Exclusive double quarkonium production and generalized TM

Shohini Bhattacharya, ¹ Andreas Metz, ¹ Vikash Kumar Ojha, ² Jeng-Yuan Tsai, ¹

arXiv: 1807.08697 (2018)

Probing the Weizsäcker-Williams gluon Wigner distribution in pp collisions

Renaud Boussarie, Yoshitaka Hatta, Bo-Wen Xiao, 3,4 and Feng Yuan⁵

arXiv: 1912.08182 (2019)

Probing the gluon Sivers function with an unpolarized target:
GTMD distributions and the Odderons

Renaud Boussarie, Yoshitaka Hatta, Lech Szymanowski, and Samuel Wallon^{3, 4}

arXiv: 1612.02438 (2016)

arXiv: 1702.04387 (2017)

Hunting the Gluon Orbital Angular Momentum at the Electron-Ion Collider

Xiangdong Ji,^{1,2} Feng Yuan,³ and Yong Zhao^{1,3}

arXiv: 1802.10550 (2018)

Exclusive double quarkonium production and generalized TM

Shohini Bhattacharya, Andreas Metz, Vikash Kumar Ojha, Jeng-Yuan Tsai, 1

Generalized TMDs and the exclusive double Drell-Yan process

Shohini Bhattacharya, Andreas Metz, and Jian Zhou²

arXiv: 1807.08697 (2018)

Probing the Weizsäcker-Williams gluon Wigner distribution in pp collisions

Renaud Boussarie, ¹ Yoshitaka Hatta, ² Bo-Wen Xiao, ^{3,4} and Feng Yuan ⁵

arXiv: 1912.08182 (2019)

Probing the gluon Sivers function with an unpolar GTMD distributions and the Odderons

Renaud Boussarie, Yoshitaka Hatta, Lech Szymanowski, and Sa

arXiv: 2106.13466 (2021)

Probing the gluon tomography in photoproduction of di-pions

Yoshikazu Hagiwara, Cheng Zhang, Jian Zhou, and Ya-jin Zhou

arXiv: 1612.02438 (2016)

Hunting the Gluon Orbital Angular Momentum at the Electron-Ion Collider

Xiangdong Ji,^{1,2} Feng Yuan,³ and Yong Zhao^{1,3}

arXiv: 1802.10550 (2018)

Exclusive double quarkonium production and generalized TM

Shohini Bhattacharya, Andreas Metz, Vikash Kumar Ojha, Jeng-Yuan Tsai, 1

arXiv: 1702.04387 (2017)

Generalized TMDs and the exclusive double Drell-Yan process

Shohini Bhattacharya, Andreas Metz, and Jian Zhou²

arXiv: 1807.08697 (2018)

Probing the Weizsäcker-Williams gluon Wigner distribution in pp collisions

Renaud Boussarie, Yoshitaka Hatta, Bo-Wen Xiao, 3,4 and Feng Yuan⁵

arXiv: 1912.08182 (2019)

Probing the gluon Sivers function with an unpolar GTMD distributions and the Odderons

Renaud Boussarie, Yoshitaka Hatta, Lech Szymanowski, and Sa

arXiv: 2106.13466 (2021)

Probing the gluon tomography in photoproduction of di-pions

Yoshikazu Hagiwara, Cheng Zhang, Jian Zhou, and Ya-jin Zhou

arXiv: 2201.08709 (2022/2024)

Signature of the gluon orbital angular momentum

Shohini Bhattacharya, 1, * Renaud Boussarie, 2, † and Yoshitaka Hatta 1, 3, ‡

arXiv: 1612.02438 (2016)

Hunting the Gluon Orbital Angular Momentum at the Electron-Ion Collider

Xiangdong Ji,^{1,2} Feng Yuan,³ and Yong Zhao^{1,3}

arXiv: 1802.10550 (2018)

Exclusive double quarkonium production and generalized TM

Shohini Bhattacharya, Andreas Metz, Vikash Kumar Ojha, Jeng-Yuan Tsai, 1

arXiv: 1702.04387 (2017)

Generalized TMDs and the exclusive double Drell-Yan process

Shohini Bhattacharya, Andreas Metz, and Jian Zhou²

arXiv: 1807.08697 (2018)

Probing the Weizsäcker-Williams gluon Wigner distribution in pp collisions

Renaud Boussarie, Yoshitaka Hatta, Bo-Wen Xiao, 3,4 and Feng Yuan⁵

arXiv: 1912.08182 (2019)

Probing the gluon Sivers function with an unpolar GTMD distributions and the Odderons

Renaud Boussarie, Yoshitaka Hatta, Lech Szymanowski, and Sa

arXiv: 2106.13466 (2021)

Probing the gluon tomography in photoproduction of di-pions

Yoshikazu Hagiwara, Cheng Zhang, Jian Zhou, and Ya-jin Zhou

arXiv: 2201.08709 (2022/2024)

Signature of the gluon orbital angular momentum

Shohini Bhattacharya,^{1,*} Renaud Boussarie,^{2,†} and Yoshitaka Hatta^{1,3,‡}

arXiv: 2205.00045 (2022)

Angular correlations in exclusive dijet photoproduction in ultra-peripheral PbPb collisions at $\sqrt{s_{NN}} = 5.02 \text{ TeV}$

arXiv

arXiv: 1612.02438 (2016)

Hunting the Gluon Orbital Angular Momentu Electron-Ion Collider

arXiv: 1802.10550 (2018)

arXiv: 1702.04387 (2017)

Generalized TMDs and the exclusive double Drell-Yan process

Shohini Bhattacharya, Andreas Metz, and Jian Zhou

Evelusive double quarkonium production and generalize

Exclusive double Drell-Yan:

Until now, this has been the sole known process sensitive to quark GTMDs

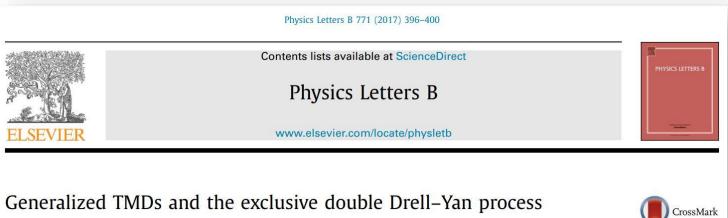
ction of di-pions

arXiv: 2201.08709 (2022/2024)

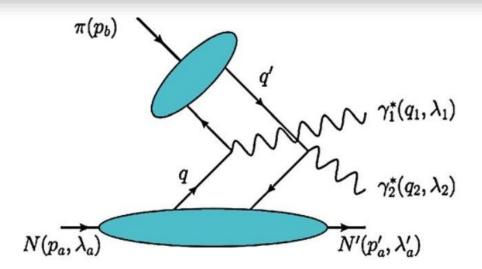
Signature of the gluon orbital angular momentum

arXiv: 2205.00045 (2022)

Angular correlations in exclusive dijet photoproduction in ultra-peripheral PbPb collisions at $\sqrt{s_{NN}} = 5.02 \text{ TeV}$



Shohini Bhattacharya ^a, Andreas Metz ^{a,*}, Jian Zhou ^b



MERSIN

Main findings

Example of an observable sensitive to OAM

$$\frac{1}{2} \left(\tau_{XY} - \tau_{YX} \right) = \frac{4}{M_a^2} \left(\varepsilon_{\perp}^{ij} \Delta q_{\perp}^i \Delta_{a\perp}^j \right) \text{Re.} \left\{ C^{(-)} \left[F_{1,1} \phi_{\pi} \right] C^{(+)} \left[\vec{\beta}_{\perp} \cdot \vec{k}_{a\perp} F_{1,4}^* \phi_{\pi}^* \right] \right\}$$

Main findings

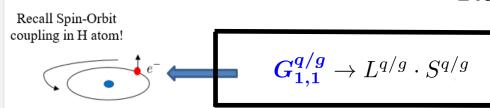
Example of an observable sensitive to OAM & spin-orbit correlation:

$$\frac{1}{2} \left(\tau_{XY} - \tau_{YX} \right) = \frac{4}{M_a^2} \left(\varepsilon_{\perp}^{ij} \Delta q_{\perp}^i \Delta_{a\perp}^j \right) \operatorname{Re.} \left\{ C^{(-)} \left[F_{1,1} \phi_{\pi} \right] C^{(+)} \left[\vec{\beta}_{\perp} \cdot \vec{k}_{a\perp} F_{1,4}^* \phi_{\pi}^* \right] - C^{(+)} \left[G_{1,4} \phi_{\pi} \right] C^{(-)} \left[\vec{\beta}_{\perp} \cdot \vec{p}_{a\perp} G_{1,1}^* \phi_{\pi}^* \right] \right\}$$

Spin-orbit entanglement in the Color Glass Condensate

Shohini Bhattacharya, 1, * Renaud Boussarie, 2, † and Yoshitaka Hatta 3, 4, ‡

2404.04208



See also: Lorce, Pasquini, 2011

Main findings

Challenges:

• Low count rate (Amplitude $\sim \alpha_{em}^2$)

Main findings

Challenges:

- Low count rate (Amplitude $\sim \alpha_{em}^2$)
- Sensitivity to GTMDs only in the ERBL region $-\xi < x < \xi$

OAM density:
$$L^{q/g}(x, \xi) = -\int d^2 \vec{k}_\perp \frac{\vec{k}_\perp^2}{M^2} \, F_{1,4}^{q,g}(x, k_\perp, \xi, \Delta_\perp = 0)$$

OAM:
$$L^{q/g} = \int dx \, L^{q/g}(x, \xi = 0)$$

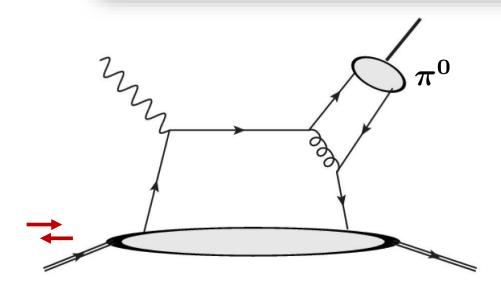
The challenge lies in extrapolating the distribution to the forward limit, where the OAM equation is applicable

Our work

PHYSICAL REVIEW LETTERS **133**, 051901 (2024)

Probing the Quark Orbital Angular Momentum at Electron-Ion Colliders Using Exclusive π^0 Production

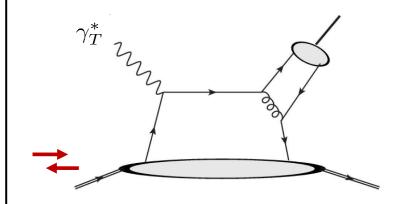
Shohini Bhattacharya, Duxin Zheng, and Jian Zhou



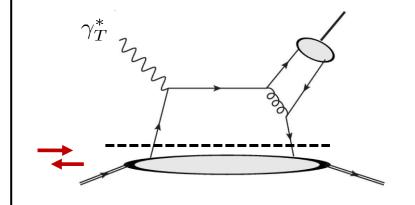
Main Observable:

Longitudinal single-target spin asymmetry

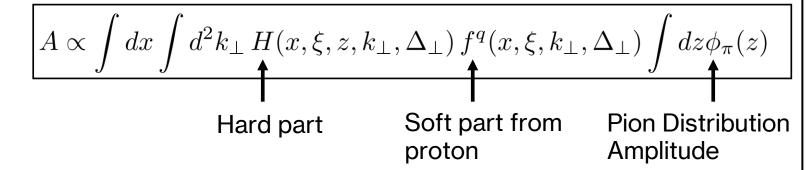
Scattering amplitude



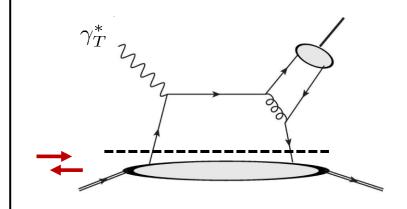
4 leading-order Feynman diagrams



Scattering amplitude:



Scattering amplitude

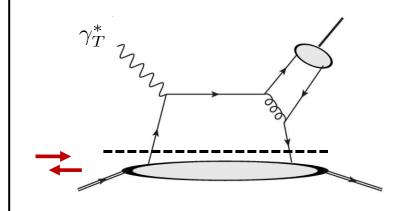


Scattering amplitude:

$$A \propto \int dx \int d^2k_{\perp} H(x, \xi, z, k_{\perp}, \Delta_{\perp}) f^q(x, \xi, k_{\perp}, \Delta_{\perp}) \int dz \phi_{\pi}(z)$$

$$H(k_{\perp}, \Delta_{\perp}) = H(k_{\perp} = 0, \Delta_{\perp} = 0) + \frac{\partial H(k_{\perp}, \Delta_{\perp} = 0)}{\partial k_{\perp}^{\mu}} \Big|_{k_{\perp} = 0} k_{\perp}^{\mu} + \frac{\partial H(k_{\perp} = 0, \Delta_{\perp})}{\partial \Delta_{\perp}^{\mu}} \Big|_{\Delta_{\perp} = 0} k_{\perp}^{\mu} + \dots$$

Scattering amplitude

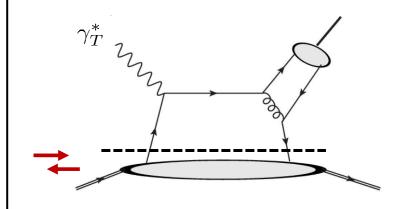


Scattering amplitude:

$$A \propto \int dx \int d^2k_{\perp} H(x,\xi,z,k_{\perp},\Delta_{\perp}) f^q(x,\xi,k_{\perp},\Delta_{\perp}) \int dz \phi_{\pi}(z)$$

$$H(k_{\perp}, \Delta_{\perp}) = H(k_{\perp} = 0, \Delta_{\perp} = 0) + \frac{\partial H(k_{\perp}, \Delta_{\perp} = 0)}{\partial k_{\perp}^{\mu}} \Big|_{k_{\perp} = 0} k_{\perp}^{\mu} + \frac{\partial H(k_{\perp} = 0, \Delta_{\perp})}{\partial \Delta_{\perp}^{\mu}} \Big|_{\Delta_{\perp} = 0} \Delta_{\perp}^{\mu} + \dots$$

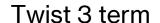
Scattering amplitude



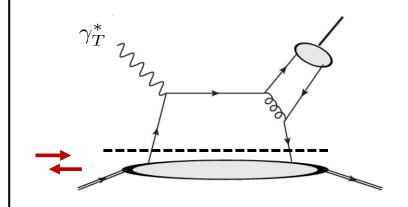
Scattering amplitude:

$$A \propto \int dx \int d^2k_{\perp} H(x, \xi, z, k_{\perp}, \Delta_{\perp}) f^q(x, \xi, k_{\perp}, \Delta_{\perp}) \int dz \phi_{\pi}(z)$$

$$H(k_{\perp}, \Delta_{\perp}) = H(k_{\perp} = 0, \Delta_{\perp} = 0) + \frac{\partial H(k_{\perp}, \Delta_{\perp} = 0)}{\partial k_{\perp}^{\mu}} \Big|_{k_{\perp} = 0} k_{\perp}^{\mu} + \frac{\partial H(k_{\perp} = 0, \Delta_{\perp})}{\partial \Delta_{\perp}^{\mu}} \Big|_{\Delta_{\perp} = 0} k_{\perp}^{\mu} + \dots$$



Scattering amplitude



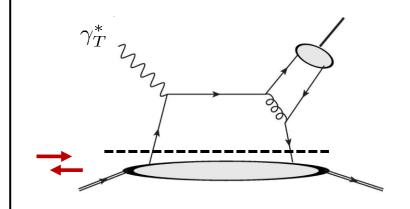
Scattering amplitude:

$$A \propto \int dx \int d^2k_{\perp} H(x, \xi, z, k_{\perp}, \Delta_{\perp}) f^{q}(x, \xi, k_{\perp}, \Delta_{\perp}) \int dz \phi_{\pi}(z)$$

$$H(k_{\perp}, \Delta_{\perp}) = H(k_{\perp} = 0, \Delta_{\perp} = 0) \left(+ \frac{\partial H(k_{\perp}, \Delta_{\perp} = 0)}{\partial k_{\perp}^{\mu}} \Big|_{k_{\perp} = 0} + \frac{\mathbf{k}_{\perp}^{\mu}}{\partial \Delta_{\perp}^{\mu}} + \frac{\partial H(k_{\perp} = 0, \Delta_{\perp})}{\partial \Delta_{\perp}^{\mu}} \Big|_{\Delta_{\perp} = 0} + \dots \right)$$

$$A \propto \int d^2 k_\perp k_\perp^2 \, ext{GTMD}$$

Scattering amplitude



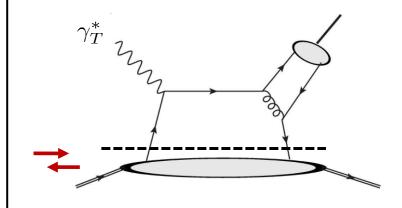
Scattering amplitude:

$$A \propto \int dx \int d^2k_{\perp} H(x, \xi, z, k_{\perp}, \Delta_{\perp}) f^{q}(x, \xi, k_{\perp}, \Delta_{\perp}) \int dz \phi_{\pi}(z)$$

Collinear twist-expansion of hard part:

$$H(k_{\perp}, \Delta_{\perp}) = H(k_{\perp} = 0, \Delta_{\perp} = 0) + \frac{\partial H(k_{\perp}, \Delta_{\perp} = 0)}{\partial k_{\perp}^{\mu}} \Big|_{k_{\perp} = 0} k_{\perp}^{\mu} + \underbrace{\left(\frac{\partial H(k_{\perp} = 0, \Delta_{\perp})}{\partial \Delta_{\perp}^{\mu}}\Big|_{\Delta_{\perp} = 0}\right)}_{\Delta_{\perp} = 0} + \dots$$

$$A \propto \mathbf{GPD}$$



Scattering amplitude:

$$A \propto \int dx \int d^2k_{\perp} H(x,\xi,z,k_{\perp},\Delta_{\perp}) f^q(x,\xi,k_{\perp},\Delta_{\perp}) \int dz \phi_{\pi}(z)$$

Collinear twist-expansion of hard part:

Consequently, the scattering amplitudes are a convolution of moments of GTMDs and GPDs and are of twist-3 nature

Angular correlations

Scattering amplitudes depend on different angular correlations:

$$\mathcal{M}_{1} = \frac{g_{s}^{2} e f_{\pi}}{2\sqrt{2}} \frac{(N_{c}^{2} - 1)2\xi}{N_{c}^{2} \sqrt{1 - \xi^{2}}} \delta_{\lambda \lambda'} \frac{\epsilon_{\perp} \times \Delta_{\perp}}{Q^{2}} \left\{ \mathcal{F}_{1,1} + \mathcal{G}_{1,1} \right\}$$

$$\mathcal{M}_{2} = \frac{g_{s}^{2} e f_{\pi}}{2\sqrt{2}} \frac{(N_{c}^{2} - 1)2\xi}{N^{2} \sqrt{1 - \xi^{2}}} \delta_{\lambda, -\lambda'} \frac{M \epsilon_{\perp} \cdot S_{\perp}}{Q^{2}} \left\{ \mathcal{F}_{1,2} + \mathcal{G}_{1,2} \right\} \qquad S_{\perp}^{\mu} = (0^{+}, 0^{-}, -i, \lambda)$$

$$2\sqrt{2} N_c^2 \sqrt{1-\xi^2}$$
 Q^2 Q^2 Q^2

$$\mathcal{M}_4 = \frac{ig_s^2 e f_{\pi}}{2\sqrt{2}} \frac{(N_c^2 - 1)2\xi}{N_c^2 \sqrt{1 - \xi^2}} \lambda \delta_{\lambda \lambda'} \frac{\boldsymbol{\epsilon}_{\perp} \cdot \boldsymbol{\Delta}_{\perp}}{Q^2} \left\{ \mathcal{F}_{1,4} + \mathcal{G}_{1,4} \right\}$$

Probing quark OAM Through π^0 production Compton Form Factors:

Angular correlations

Scattering amplitudes depend on different angular correlations:

$$\mathcal{M}_{1} = \frac{g_{s}^{2}ef_{\pi}}{2\sqrt{2}} \frac{(N_{c}^{2}-1)2\xi}{N_{c}^{2}\sqrt{1-\xi^{2}}} \delta_{\lambda\lambda'} \frac{\epsilon_{\perp} \times \Delta_{\perp}}{Q^{2}} \{\mathcal{F}_{1,1} + \mathcal{G}_{1,1}\}$$

$$\mathcal{M}_{2} = \frac{g_{s}^{2}ef_{\pi}}{2\sqrt{2}} \frac{(N_{c}^{2}-1)2\xi}{N_{c}^{2}\sqrt{1-\xi^{2}}} \delta_{\lambda,-\lambda'} \frac{M\epsilon_{\perp} \cdot \mathcal{E}_{\perp}}{Q^{2}} \{\mathcal{F}_{1,2} + \mathcal{G}_{1,2}\}$$

$$\mathcal{M}_{4} = \frac{ig_{s}^{2}ef_{\pi}}{2\sqrt{2}} \frac{(N_{c}^{2}-1)2\xi}{N_{c}^{2}\sqrt{1-\xi^{2}}} \lambda \delta_{\lambda\lambda'} \frac{\epsilon_{\perp} \cdot \Delta_{\perp}}{Q^{2}} \{\mathcal{F}_{1,4} + \mathcal{G}_{1,4}\}$$

$$\mathcal{F}_{1,1} = \int_{-1}^{1} dx \frac{x^{2} \int d^{2}k_{\perp} F_{1,1}^{u+d}(x,\xi,\Delta_{\perp},k_{\perp})}{(x+\xi-i\epsilon)^{2}(x-\xi+i\epsilon)^{2}} \times \int_{0}^{1} dz \frac{\phi_{\pi}(z)(1+z^{2}-z)}{z^{2}(1-z)^{2}}, \qquad (8)$$

$$\mathcal{G}_{1,1} = \int_{-1}^{1} dx \int_{0}^{1} dz \frac{\phi_{\pi}(z)(x^{2}+2x^{2}z+\xi^{2})}{z^{2}(x+\xi-i\epsilon)^{2}(x-\xi+i\epsilon)^{2}} \times \int d^{2}k_{\perp} \frac{k_{\perp}^{2}}{M^{2}} G_{1,1}^{u+d}(x,\xi,\Delta_{\perp},k_{\perp}), \qquad (9)$$

$$\mathcal{F}_{1,2} = \int_{-1}^{1} dx x \frac{\xi(1-\xi^{2}) \int d^{2}k_{\perp} k_{\perp}^{2} F_{1,2}^{u+d}(x,\xi,\Delta_{\perp},k_{\perp})}{M^{2}(x+\xi-i\epsilon)^{2}(x-\xi+i\epsilon)^{2}} \times \int_{0}^{1} dz \frac{\phi_{\pi}(z)(1+z^{2}-z)}{z^{2}(1-z)^{2}}, \qquad (10)$$

$$\mathcal{G}_{1,2} = \int_{-1}^{1} dx \int_{0}^{1} dz \frac{\phi_{\pi}(z)(x^{2}+2x^{2}z+\xi^{2})(1-\xi^{2})}{z^{2}(x+\xi-i\epsilon)^{2}(x-\xi+i\epsilon)^{2}} \times \int d^{2}k_{\perp} \frac{k_{\perp}^{2}}{M^{2}} G_{1,2}^{u+d}(x,\xi,\Delta_{\perp},k_{\perp}), \qquad (11)$$

$$\mathcal{F}_{1,4} = \int_{-1}^{1} dx \frac{x\xi \int d^{2}k_{\perp} k_{\perp}^{2} F_{1,4}^{u+d}(x,\xi,\Delta_{\perp},k_{\perp})}{M^{2}(x+\xi-i\epsilon)^{2}(x-\xi+i\epsilon)^{2}} \times \int_{0}^{1} dz \frac{\phi_{\pi}(z)(1+z^{2}-z)}{z^{2}(1-z)^{2}}, \qquad (12)$$

$$\mathcal{G}_{1,4} = \int_{-1}^{1} dx \int_{0}^{1} dz \frac{x(4\xi^{2}z+\xi^{2}-2x^{2}z+x^{2})}{z^{2}\xi(x+\xi-i\epsilon)^{2}(x-\xi+i\epsilon)^{2}} \phi_{\pi}(z) \times \int d^{2}k_{\perp} G_{1,4}^{u+d}(x,\xi,\Delta_{\perp},k_{\perp}). \qquad (13)$$

Angular correlations

Scattering amplitudes depend on different angular correlations:

$$\mathcal{M}_{1} = \frac{g_{s}^{2} e f_{\pi}}{2\sqrt{2}} \frac{(N_{c}^{2} - 1)2\xi}{N_{c}^{2} \sqrt{1 - \xi^{2}}} \delta_{\lambda \lambda'} \frac{\epsilon_{\perp} \times \Delta_{\perp}}{Q^{2}} \left\{ \mathcal{F}_{1,1} + \mathcal{G}_{1,1} \right\}$$

$$\mathcal{M}_{2} = \frac{g_{s}^{2} e f_{\pi}}{2\sqrt{2}} \frac{(N_{c}^{2} - 1)2\xi}{N_{c}^{2} \sqrt{1 - \xi^{2}}} \delta_{\lambda, -\lambda'} \frac{M \epsilon_{\perp} \cdot S_{\perp}}{Q^{2}} \left\{ \mathcal{F}_{1,2} + \mathcal{G}_{1,2} \right\}$$

$$\mathcal{M}_{4} = \frac{ig_{s}^{2}ef_{\pi}}{2\sqrt{2}} \frac{(N_{c}^{2}-1)2\xi}{N_{c}^{2}\sqrt{1-\xi^{2}}} \lambda \delta_{\lambda\lambda'} \frac{\epsilon_{\perp} \cdot \Delta}{Q^{2}} \left\{ \mathcal{F}_{1,4} + \mathcal{G}_{1,4} \right\}$$

Sensitivity to quark OAM

$$\mathcal{F}_{1,1} = \int_{-1}^{1} dx \frac{x^{2} \int d^{2}k_{\perp} F_{1,1}^{u+d}(x,\xi,\Delta_{\perp},k_{\perp})}{(x+\xi-i\epsilon)^{2}(x-\xi+i\epsilon)^{2}} \times \int_{0}^{1} dz \frac{\phi_{\pi}(z)(1+z^{2}-z)}{z^{2}(1-z)^{2}}, \qquad (8)$$

$$\mathcal{G}_{1,1} = \int_{-1}^{1} dx \int_{0}^{1} dz \frac{\phi_{\pi}(z)(x^{2}+2x^{2}z+\xi^{2})}{z^{2}(x+\xi-i\epsilon)^{2}(x-\xi+i\epsilon)^{2}} \times \int d^{2}k_{\perp} \frac{k_{\perp}^{2}}{M^{2}} G_{1,1}^{u+d}(x,\xi,\Delta_{\perp},k_{\perp}), \qquad (9)$$

$$\mathcal{F}_{1,2} = \int_{-1}^{1} dx x \frac{\xi(1-\xi^{2}) \int d^{2}k_{\perp} k_{\perp}^{2} F_{1,2}^{u+d}(x,\xi,\Delta_{\perp},k_{\perp})}{M^{2}(x+\xi-i\epsilon)^{2}(x-\xi+i\epsilon)^{2}} \times \int_{0}^{1} dz \frac{\phi_{\pi}(z)(1+z^{2}-z)}{z^{2}(1-z)^{2}}, \qquad (10)$$

$$\mathcal{G}_{1,2} = \int_{-1}^{1} dx \int_{0}^{1} dz \frac{\phi_{\pi}(z)(x^{2}+2x^{2}z+\xi^{2})(1-\xi^{2})}{z^{2}(x+\xi-i\epsilon)^{2}(x-\xi+i\epsilon)^{2}} \times \int d^{2}k_{\perp} \frac{k_{\perp}^{2}}{M^{2}} G_{1,2}^{u+d}(x,\xi,\Delta_{\perp},k_{\perp}), \qquad (11)$$

$$\mathcal{F}_{1,4} = \int_{-1}^{1} dx \frac{x\xi \int d^{2}k_{\perp} k_{\perp}^{2} F_{1,4}^{u+d}(x,\xi,\Delta_{\perp},k_{\perp})}{M^{2}(x+\xi-i\epsilon)^{2}(x-\xi+i\epsilon)^{2}} \times \int_{0}^{1} dz \frac{\phi_{\pi}(z)(1+z^{2}-z)}{z^{2}(1-z)^{2}}, \qquad (12)$$

$$\mathcal{G}_{1,4} = \int_{-1}^{1} dx \int_{0}^{1} dz \frac{x(4\xi^{2}z+\xi^{2}-2x^{2}z+x^{2})}{z^{2}\xi(x+\xi-i\epsilon)^{2}(x-\xi+i\epsilon)^{2}} \phi_{\pi}(z) \times \int d^{2}k_{\perp} G_{1,4}^{u+d}(x,\xi,\Delta_{\perp},k_{\perp}). \qquad (13)$$

Cross section

$$\begin{split} \frac{d\sigma}{dt dQ^2 dx_B d\phi} &= \frac{(N_c^2 - 1)^2 \alpha_{em}^2 \alpha_s^2 f_\pi^2 \xi^3 \Delta_\perp^2}{2N_c^4 (1 - \xi^2) Q^{10} (1 + \xi)} \left[1 + (1 - y)^2 \right] \\ &\times \left\{ \left[|\mathcal{F}_{1,1} + \mathcal{G}_{1,1}|^2 + |\mathcal{F}_{1,4} + \mathcal{G}_{1,4}|^2 + 2 \frac{M^2}{\Delta_\perp^2} |\mathcal{F}_{1,2} + \mathcal{G}_{1,2}|^2 \right] \right. \\ &+ \left. \lambda \sin(2\phi) \, 2a \, \mathrm{Re} \left[(i\mathcal{F}_{1,4} + i\mathcal{G}_{1,4}) \left(\mathcal{F}_{1,1}^* + \mathcal{G}_{1,1}^* \right) \right] \right\} \\ &+ \left. \lambda \sin(2\phi) \, 2a \, \mathrm{Re} \left[(i\mathcal{F}_{1,4} + i\mathcal{G}_{1,4}) \left(\mathcal{F}_{1,1}^* + \mathcal{G}_{1,1}^* \right) \right] \right\} \\ &+ \left. \lambda \sin(2\phi) \, 2a \, \mathrm{Re} \left[(i\mathcal{F}_{1,4} + i\mathcal{G}_{1,4}) \left(\mathcal{F}_{1,1}^* + \mathcal{G}_{1,1}^* \right) \right] \right\} \\ &+ \left. \lambda \sin(2\phi) \, 2a \, \mathrm{Re} \left[(i\mathcal{F}_{1,2} + i\mathcal{G}_{1,2}) \left(\mathcal{F}_{1,1}^* + \mathcal{G}_{1,1}^* \right) \right] \right\} \\ &+ \left. \lambda \sin(2\phi) \, 2a \, \mathrm{Re} \left[(i\mathcal{F}_{1,2} + i\mathcal{G}_{1,2}) \left(\mathcal{F}_{1,1}^* + \mathcal{G}_{1,1}^* \right) \right] \right\} \\ &+ \left. \lambda \sin(2\phi) \, 2a \, \mathrm{Re} \left[(i\mathcal{F}_{1,2} + i\mathcal{G}_{1,2}) \left(\mathcal{F}_{1,1}^* + \mathcal{G}_{1,1}^* \right) \right] \right\} \\ &+ \left. \lambda \sin(2\phi) \, 2a \, \mathrm{Re} \left[(i\mathcal{F}_{1,2} + i\mathcal{G}_{1,2}) \left(\mathcal{F}_{1,1}^* + \mathcal{G}_{1,1}^* \right) \right] \right\} \\ &+ \left. \lambda \sin(2\phi) \, 2a \, \mathrm{Re} \left[(i\mathcal{F}_{1,2} + i\mathcal{G}_{1,2}) \left(\mathcal{F}_{1,2}^* + \mathcal{G}_{1,2}^* \right) \right] \right\} \\ &+ \left. \lambda \sin(2\phi) \, 2a \, \mathrm{Re} \left[(i\mathcal{F}_{1,2} + i\mathcal{G}_{1,2}) \left(\mathcal{F}_{1,2}^* + \mathcal{G}_{1,2}^* \right) \right] \right. \\ &+ \left. \lambda \sin(2\phi) \, 2a \, \mathrm{Re} \left[(i\mathcal{F}_{1,2} + i\mathcal{G}_{1,2}) \left(\mathcal{F}_{1,2}^* + \mathcal{G}_{1,2}^* \right) \right] \right. \\ &+ \left. \lambda \sin(2\phi) \, 2a \, \mathrm{Re} \left[(i\mathcal{F}_{1,2} + i\mathcal{G}_{1,2}) \left(\mathcal{F}_{1,2}^* + \mathcal{F}_{1,2}^* \right) \right] \right. \\ &+ \left. \lambda \sin(2\phi) \, 2a \, \mathrm{Re} \left[(i\mathcal{F}_{1,2} + i\mathcal{G}_{1,2}) \left(\mathcal{F}_{1,2}^* + \mathcal{F}_{1,2}^* \right) \right] \right. \\ &+ \left. \lambda \sin(2\phi) \, 2a \, \mathrm{Re} \left[(i\mathcal{F}_{1,2} + i\mathcal{F}_{1,2}) \left(\mathcal{F}_{1,2}^* + \mathcal{F}_{1,2}^* \right) \right] \right. \\ &+ \left. \lambda \sin(2\phi) \, 2a \, \mathrm{Re} \left[(i\mathcal{F}_{1,2} + i\mathcal{F}_{1,2}) \left(\mathcal{F}_{1,2} + \mathcal{F}_{1,2} \right) \right] \right. \\ &+ \left. \lambda \sin(2\phi) \, 2a \, \mathrm{Re} \left[(i\mathcal{F}_{1,2} + i\mathcal{F}_{1,2}) \left(\mathcal{F}_{1,2} + \mathcal{F}_{1,2} \right) \right] \right. \\ \\ &+ \left. \lambda \sin(2\phi) \, 2a \, \mathrm{Re} \left[(i\mathcal{F}_{1,2} + i\mathcal{F}_{1,2} + i\mathcal{F}_{1,2}) \right] \right] \right. \\ \\ &+ \left. \lambda \sin(2\phi) \, 2a \, \mathrm{Re} \left[(i\mathcal{F}_{1,2} + i\mathcal{F}_{1,2} + i\mathcal{F}_{1,2}) \right] \right] \right. \\ \\ &+ \left. \lambda \sin(2\phi) \, 2a \, \mathrm{Re} \left[(i\mathcal{F}_{1,2} + i\mathcal{F}_{1,2} + i\mathcal{F}_{1,2}) \right] \right] \right. \\ \\ \left. \lambda \cos(2\phi) \, 2a \, \mathrm{Re} \left[(i\mathcal{F}_{1,2} + i$$

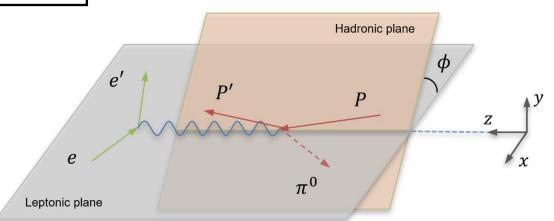
Cross section

$$\frac{d\sigma}{dt dQ^2 dx_B d\phi} = \frac{(N_c^2-1)^2 \alpha_{em}^2 \alpha_s^2 f_\pi^2 \xi^3 \Delta_\perp^2}{2N_c^4 (1-\xi^2) Q^{10} (1+\xi)} \left[1 + (1-y)^2\right]$$

$$\times \left\{ \left[|\mathcal{F}_{1,1} + \mathcal{G}_{1,1}|^2 + |\mathcal{F}_{1,4} + \mathcal{G}_{1,4}|^2 + 2\frac{M^2}{\Delta_{\perp}^2} |\mathcal{F}_{1,2} + \mathcal{G}_{1,2}|^2 \right] + \cos(2\phi)a \left[-|\mathcal{F}_{1,1} + \mathcal{G}_{1,1}|^2 + |\mathcal{F}_{1,4} + \mathcal{G}_{1,4}|^2 \right] \right\}$$

$$+\lambda \sin(2\phi) 2a \operatorname{Re}\left[\left(i\mathcal{F}_{1,4} + i\mathcal{G}_{1,4}\right) \left(\mathcal{F}_{1,1}^* + \mathcal{G}_{1,1}^*\right)\right]$$

$$\phi = \phi_{l_{\perp}} - \phi_{\Delta_{\perp}}$$



Cross section

$$\frac{d\sigma}{dt dQ^2 dx_B d\phi} = \frac{(N_c^2-1)^2 \alpha_{em}^2 \alpha_s^2 f_\pi^2 \xi^3 \Delta_\perp^2}{2N_c^4 (1-\xi^2) Q^{10} (1+\xi)} \left[1 + (1-y)^2\right]$$

$$\times \left\{ \left[|\mathcal{F}_{1,1} + \mathcal{G}_{1,1}|^2 + |\mathcal{F}_{1,4} + \mathcal{G}_{1,4}|^2 + 2\frac{M^2}{\Delta_{\perp}^2} |\mathcal{F}_{1,2} + \mathcal{G}_{1,2}|^2 \right] + \cos(2\phi)a \left[-|\mathcal{F}_{1,1} + \mathcal{G}_{1,1}|^2 + |\mathcal{F}_{1,4} + \mathcal{G}_{1,4}|^2 \right] \right\}$$

$$+\lambda \sin(2\phi) 2a \operatorname{Re}\left[\left(i\mathcal{F}_{1,4}+i\mathcal{G}_{1,4}\right)\left(\mathcal{F}_{1,1}^*+\mathcal{G}_{1,1}^*\right)\right]$$
 Surprise!

Probe quark Sivers function through an unpolarized target

$$\left| \operatorname{Im} \left[\boldsymbol{F_{1,2}} \right] \right|_{\Lambda=0} = - \boldsymbol{f_{1T}^{\perp}}$$

(Similar to the gluon GTMD $F_{1,2}$, as discussed in Boussarie, Hatta, Szymanowski, Wallon, 2019)

Cross section

$$\frac{d\sigma}{dt dQ^2 dx_B d\phi} = \frac{(N_c^2-1)^2 \alpha_{em}^2 \alpha_s^2 f_\pi^2 \xi^3 \Delta_\perp^2}{2N_c^4 (1-\xi^2) Q^{10} (1+\xi)} \left[1 + (1-y)^2\right]$$

$$\times \left\{ \left[|\mathcal{F}_{1,1} + \mathcal{G}_{1,1}|^2 + |\mathcal{F}_{1,4} + \mathcal{G}_{1,4}|^2 + 2\frac{M^2}{\Delta_{\perp}^2} |\mathcal{F}_{1,2} + \mathcal{G}_{1,2}|^2 \right] + \cos(2\phi)a \left[-|\mathcal{F}_{1,1} + \mathcal{G}_{1,1}|^2 + |\mathcal{F}_{1,4} + \mathcal{G}_{1,4}|^2 \right] \right\}$$

$$+\lambda \sin(2\phi) 2a \operatorname{Re}\left[\left(i\mathcal{F}_{1,4}+i\mathcal{G}_{1,4}\right)\left(\mathcal{F}_{1,1}^*+\mathcal{G}_{1,1}^*\right)\right]$$
 Surprise!

Probe quark Sivers function through an unpolarized target

$$\left|\operatorname{Im}\left[\boldsymbol{F_{1,2}}\right]\right|_{\Delta=0}=-\boldsymbol{f_{1T}^{\perp}}$$

Probe quark worm gear function through an unpolarized target $|\operatorname{Re}[G_{1,2}]|_{\Lambda=0} = g_{1T}$

$$\operatorname{Re}\left[\boldsymbol{G_{1,2}}\right]\Big|_{\Delta=0}=\boldsymbol{g_{1T}}$$

Cross section

$$\frac{d\sigma}{dt dQ^2 dx_B d\phi} = \frac{(N_c^2 - 1)^2 \alpha_{em}^2 \alpha_s^2 f_\pi^2 \xi^3 \Delta_\perp^2}{2N_c^4 (1 - \xi^2) Q^{10} (1 + \xi)} \left[1 + (1 - y)^2 \right]$$

$$\times \left\{ \left[|\mathcal{F}_{1,1} + \mathcal{G}_{1,1}|^2 + |\mathcal{F}_{1,4} + \mathcal{G}_{1,4}|^2 + 2\frac{M^2}{\Delta_{\perp}^2} |\mathcal{F}_{1,2} + \mathcal{G}_{1,2}|^2 \right] + \cos(2\phi)a \left[-|\mathcal{F}_{1,1} + \mathcal{G}_{1,1}|^2 + |\mathcal{F}_{1,4} + \mathcal{G}_{1,4}|^2 \right] \right\}$$

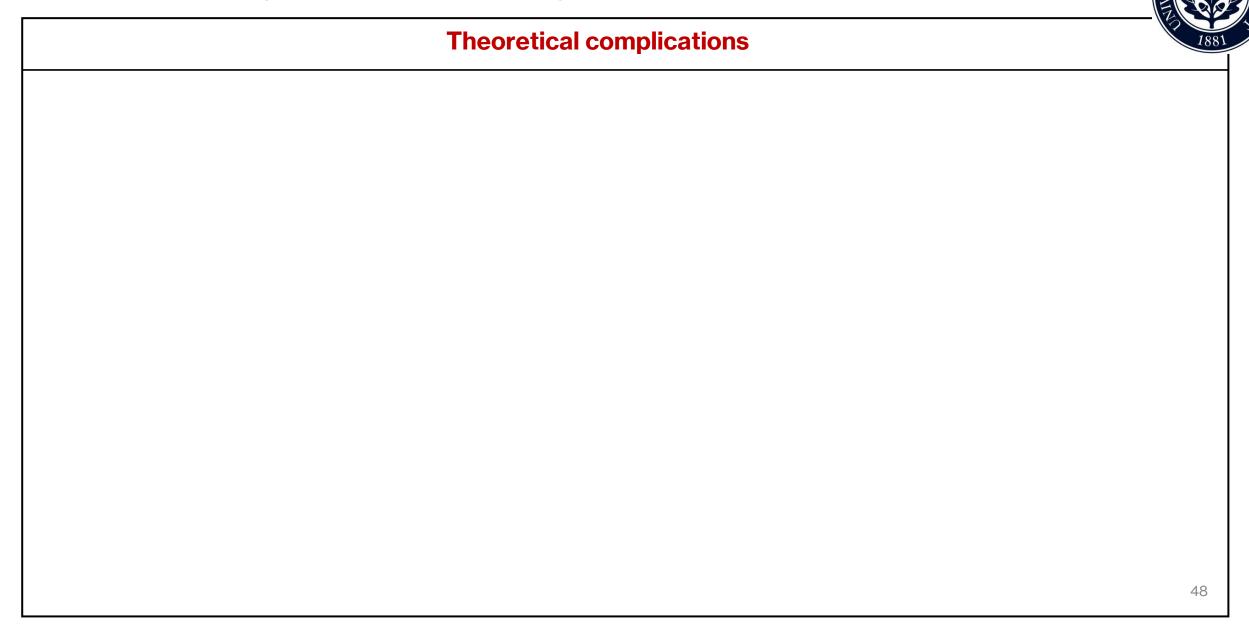
$$+\lambda \sin(2\phi) 2a \operatorname{Re}\left[\left(i\mathcal{F}_{1,4} + i\mathcal{G}_{1,4}\right) \left(\mathcal{F}_{1,1}^* + \mathcal{G}_{1,1}^*\right)\right]$$

Helicity flip terms persist even when $\Delta_{\perp} \to 0$

Cross section

$$\begin{split} \frac{d\sigma}{dt dQ^2 dx_B d\phi} &= \frac{(N_c^2 - 1)^2 \alpha_{em}^2 \alpha_s^2 f_\pi^2 \xi^3 \Delta_\perp^2}{2N_c^4 (1 - \xi^2) Q^{10} (1 + \xi)} \left[1 + (1 - y)^2 \right] \\ &\times \left\{ \left[|\mathcal{F}_{1,1} + \mathcal{G}_{1,1}|^2 + |\mathcal{F}_{1,4} + \mathcal{G}_{1,4}|^2 + 2 \frac{M^2}{\Delta_\perp^2} |\mathcal{F}_{1,2} + \mathcal{G}_{1,2}|^2 \right] \right. \\ &\left. + \lambda \sin(2\phi) \, 2a \, \text{Re} \left[(i\mathcal{F}_{1,4} + i\mathcal{G}_{1,4}) \left(\mathcal{F}_{1,1}^* + \mathcal{G}_{1,1}^* \right) \right] \right\} \end{split}$$

Since both unpolarized and polarized cross sections contribute at twist-3, the magnitudes of the asymmetries are not power-suppressed



Theoretical complications

End-point singularity & discontinuity:

$$\mathcal{F}_{1,4} = \int_{-1}^{1} dx \frac{x\xi \int d^{2}k_{\perp}k_{\perp}^{2} F_{1,4}^{u+d}(x,\xi,\Delta_{\perp},k_{\perp})}{M^{2}(x+\xi-i\epsilon)^{2}(x-\xi+i\epsilon)^{2}} \times \int_{0}^{1} dz \frac{\phi_{\pi}(z)(1+z^{2}-z)}{z^{2}(1-z)^{2}}$$

Model-dependent method:

$$\int_{\langle p_\perp^2 \rangle/Q^2}^{1-\langle p_\perp^2 \rangle/Q^2} dz \qquad \langle p_\perp^2 \rangle = 0.04 \, {\rm GeV}^2 \ \ {\rm determined\ based\ on\ a\ fit\ to\ CLAS\ data}$$

S. V. Goloskokov and P. Kroll, 2005

Theoretical complications

End-point singularity & discontinuity:

$$\mathcal{F}_{1,4} = \int_{-1}^{1} dx \frac{x\xi \int d^{2}k_{\perp}k_{\perp}^{2} F_{1,4}^{u+d}(x,\xi,\Delta_{\perp},k_{\perp})}{M^{2}(x+\xi-i\epsilon)^{2}(x-\xi+i\epsilon)^{2}} \times \int_{0}^{1} dz \frac{\phi_{\pi}(z)(1+z^{2}-z)}{z^{2}(1-z)^{2}}$$

Model-dependent method:

$$\int_{\langle \mathbf{p}_{\perp}^2 \rangle/\mathbf{Q}^2}^{1-\langle \mathbf{p}_{\perp}^2 \rangle/\mathbf{Q}^2} dz$$

$$\frac{1}{(x-\xi+i\epsilon)^2} \to \frac{1}{(x-\xi-\langle \mathbf{p}_{\perp}^2\rangle/\mathbf{Q^2}+i\epsilon)^2}$$

S. V. Goloskokov and P. Kroll, 2005

I. V. Anikin, O. V. Teryaev, 2003

Numerical results

Kinematics:

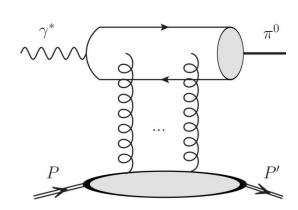
	$Q^2({ m GeV}^2)$	$\sqrt{s}_{ep}({ m GeV})$
EIC	10	100
EicC	3	16

Numerical results

Kinematics:

	$Q^2({ m GeV}^2)$	$\sqrt{s}_{ep}({ m GeV})$
EIC	10	100
EicC	3	16

• We focus on large skewness (ξ) region to suppress gluon contribution

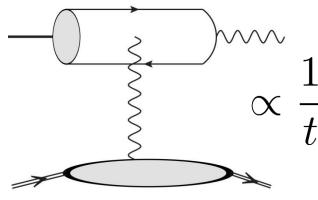


Numerical results

Kinematics:

	$Q^2({ m GeV}^2)$	$\sqrt{s}_{ep}({ m GeV})$
EIC	10	100
EicC	3	16

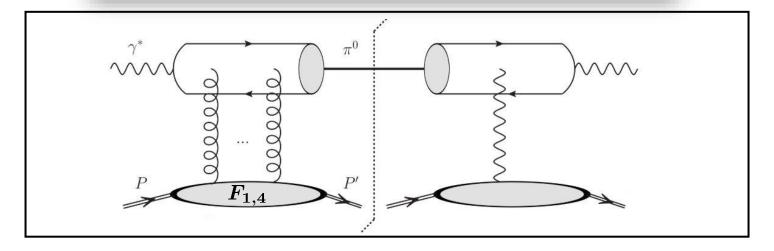
- We focus on large skewness (ξ) region to suppress gluon contribution
- We focus on large momentum transfer (t) region to suppress contribution from Primakoff process



Remark:

Accessing the gluon GTMD $F_{1,4}$ in exclusive π^0 production in ep collisions

Shohini Bhattacharya, Duxin Zheng, and Jian Zhou³



$$\frac{d\Delta\sigma}{dtdQ^{2}dx_{B}d\phi} = -\sin(2\phi)\frac{\alpha_{em}^{3}\alpha_{s}f_{\pi}^{2}(1-y)\xi x_{B}\mathcal{F}(t)}{3Q^{8}N_{c}} \left[\int_{0}^{1}dz \frac{\phi_{\pi}(z)}{z(1-z)} \right]^{2} \operatorname{Im} \left[\int_{-1}^{1}dz \frac{F_{1,4}^{(1)}(x,\xi,\Delta_{\perp})/M^{2}}{(x+\xi-i\epsilon)^{2}(x-\xi+i\epsilon)^{2}} \right]$$

The same azimuthal asymmetry, precisely mirroring what we observe in this study, also emerges from the interference between the Primakoff process and the contribution from the gluon GTMD

Model input for numerical estimations

Ingredients for non-perturbative functions:

• Model (H^q, \tilde{H}^q) according to the Double distribution approach (see Radyushkin, 9805342)

Example:

$$H^{q}(x, \boldsymbol{\xi}, \boldsymbol{t}) = \int_{-1}^{1} d\beta \int_{-1+|\beta|}^{1-|\beta|} d\alpha \delta(\beta + \boldsymbol{\xi}\alpha - x) \times \frac{3}{4}|\beta|^{-1.3 \, \boldsymbol{t}} \frac{\left[(1-|\beta|)^{2} - \alpha^{2} \right]}{(1-|\beta|)^{3}} q(|\beta|)$$

Model input for numerical estimations

Ingredients for non-perturbative functions:

• Model (H^q, \tilde{H}^q) according to the Double distribution approach (see Radyushkin, 9805342)

Example:

$$H^{q}(x, \boldsymbol{\xi}, \boldsymbol{t}) = \int_{-1}^{1} d\beta \int_{-1+|\beta|}^{1-|\beta|} d\alpha \delta(\beta + \boldsymbol{\xi}\alpha - x) \times \frac{3}{4}|\beta| - \underbrace{\frac{1.3 t}{1.3 t}}_{-1} \underbrace{\frac{[(1-|\beta|)^{2} - \alpha^{2}]}{(1-|\beta|)^{3}}} q(|\beta|)$$

The t-dependence is determined based on a fit to CLAS data

Model input for numerical estimations

Ingredients for non-perturbative functions:

• Model (H^q, \tilde{H}^q) according to the Double distribution approach (see Radyushkin, 9805342)

- Model for OAM:
 - 1. "OAM density": (Hatta, Yoshida, 1207.5332)

$$L^q_{can}(\mathbf{x}) = x \int_x^1 \frac{dx'}{x'} q(x') - x \int_x^1 \frac{dx'}{x'^2} \Delta q(x') + \text{ genuine twist-three}$$

Model input for numerical estimations

Ingredients for non-perturbative functions:

• Model (H^q, \tilde{H}^q) according to the Double distribution approach (see Radyushkin, 9805342)

- Model for OAM:
 - 1. "OAM density": (Hatta, Yoshida, 1207.5332)

$$L_{can}^q(\mathbf{x}) = x \int_x^1 \frac{dx'}{x'} \, q(x') \, - \, x \int_x^1 \frac{dx'}{x'^2} \, \Delta q(x') \, + \, \text{genuine twist-three}$$

Model input for numerical estimations

Ingredients for non-perturbative functions:

• Model (H^q, \tilde{H}^q) according to the Double distribution approach (see Radyushkin, 9805342)

- Model for OAM:
 - 1. "OAM density": (Hatta, Yoshida, 1207.5332)

$$L_{can}^q(\boldsymbol{x}) = x \int_x^1 \frac{dx'}{x'} \, q(x') \, - \, x \int_x^1 \frac{dx'}{x'^2} \, \Delta q(x') \, + \, \text{genuine twist-three}$$

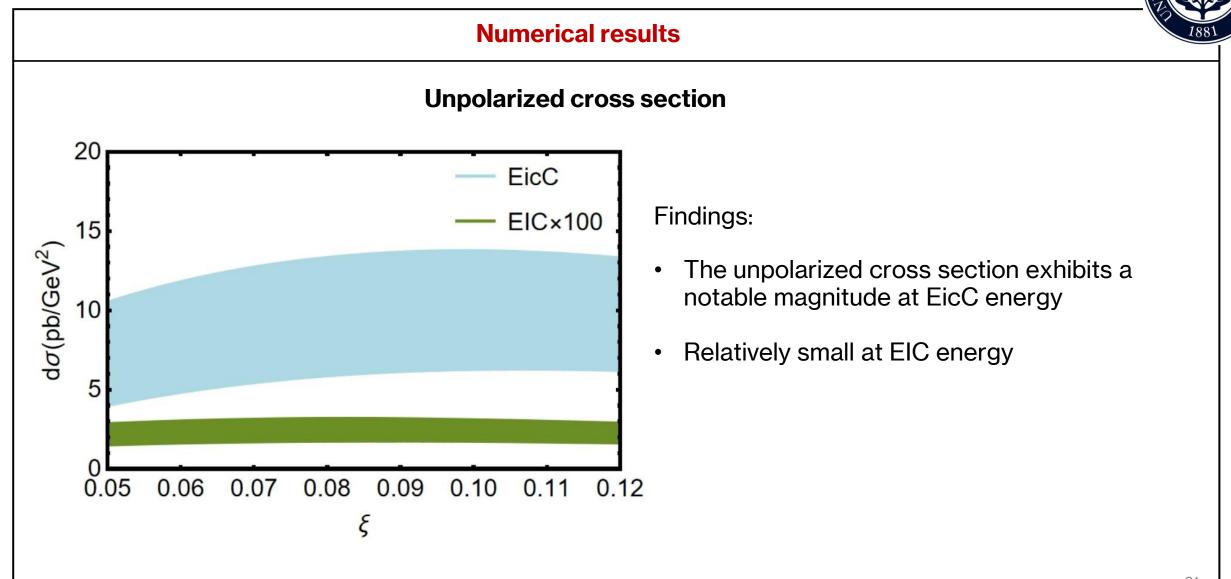
2. Use the Double distribution approach to construct $xL^q(x,\xi)e^{t/\Lambda}$ from $xL^q(x)$

Model input for numerical estimations

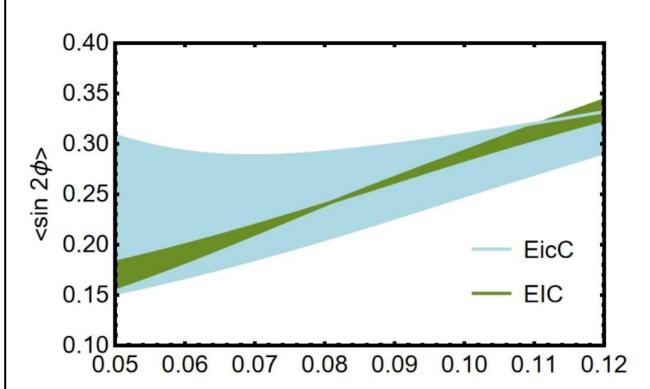
Ingredients for non-perturbative functions:

Pion distribution amplitude:

Asymptotic form
$$\phi_{\pi}(z) = 6z(1-z)$$



Asymmetry



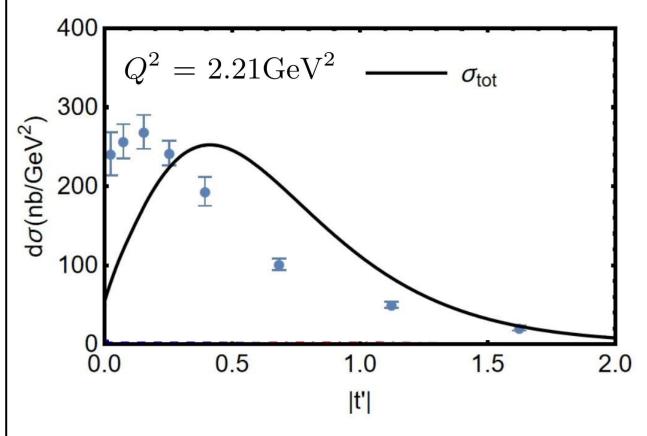
$$\langle \sin(2\phi) \rangle = \frac{\int \frac{d\Delta\sigma}{d\mathcal{P}.\mathcal{S}.} \sin(2\phi) d\mathcal{P}.\mathcal{S}.}{\int \frac{d\sigma}{d\mathcal{P}.\mathcal{S}.} d\mathcal{P}.\mathcal{S}.}$$

Findings:

The asymmetries are substantial for both EIC & EicC kinematics

Numerical results

Comparison with CLAS data

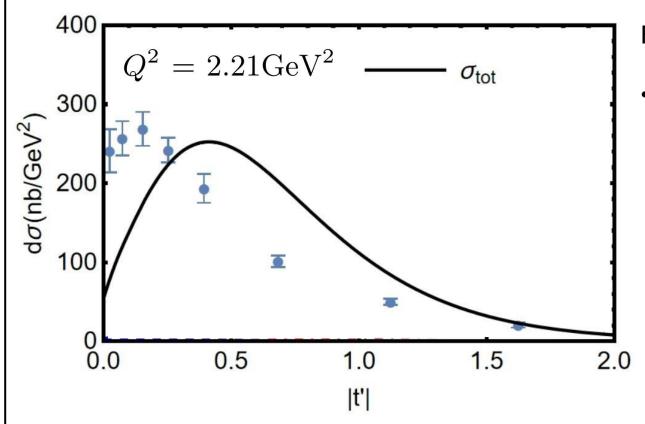


Unpolarized cross section:

$$\frac{d\sigma_T}{dt} + a \frac{d\sigma_L}{dt}$$

Numerical results

Comparison with CLAS data



Findings:

Our theoretical model is in reasonable agreement with experimental data

Developments

arXiv: 1612.02438 (2016)

Hunting the Gluon Orbital Angular Momentum at the Electron-Ion Collider

Xiangdong Ji,^{1,2} Feng Yuan,³ and Yong Zhao^{1,3}

arXiv: 1802.10550 (2018)

Exclusive double quarkonium production and generalized TM

Shohini Bhattacharya, ¹ Andreas Metz, ¹ Vikash Kumar Ojha, ² Jeng-Yuan Tsai, ¹

arXiv: 1702.04387 (2017)

Generalized TMDs and the exclusive double Drell-Yan process

Shohini Bhattacharya, ¹ Andreas Metz, ¹ and Jian Zhou

arXiv: 1807.08697 (2018)

Probing the Weizsäcker-Williams gluon Wigner distribution in pp collisions

Renaud Boussarie, ¹ Yoshitaka Hatta, ² Bo-Wen Xiao, ^{3,4} and Feng Yuan ⁵

arXiv: 1912.08182 (2019)

Probing the gluon Sivers function with an unpolar GTMD distributions and the Odderons

Renaud Berssarie, Yoshitaka Hatta, Lech Szymanowski, and Sa

arXiv: 2106.13466 (2021)

Probing the gluon tomography in photoproduction of di-pions

Yoshikazu Hagiwara, Cheng Zhang, Jian Zhou, and Ya-jin Zhou

arXiv: 2201.08709 (2022/2024)

Signature of the gluon orbital angular momentum

Shohini Bhattacharya,^{1,*} Renaud Boussarie,^{2,†} and Yoshitaka Hatta^{1,3,‡}

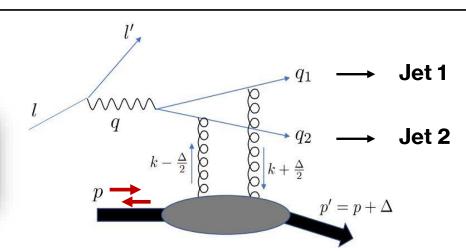
rXiv: 2205.00045 (2022)

ngular correlations in exclusive dijet photoproduction in ultra-peripheral PbPb collisions at $\sqrt{s_{NN}} = 5.02 \text{ TeV}$

Probing gluon OAM through exclusive di-jet production

Hunting the Gluon Orbital Angular Momentum at the Electron-Ion Collider

Xiangdong Ji,^{1,2} Feng Yuan,³ and Yong Zhao^{1,3}

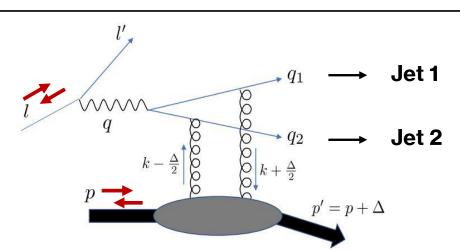


Main result: Single spin asymmetry as a probe of gluon OAM

PHYSICAL REVIEW LETTERS 128, 182002 (2022)

Signature of the Gluon Orbital Angular Momentum

Shohini Bhattacharya⁰, ^{1,*} Renaud Boussarie, ^{2,†} and Yoshitaka Hatta⁰, ^{1,3,‡}



Main result (double spin asymmetry):

Signature of gluon OAM is cosine angular modulation

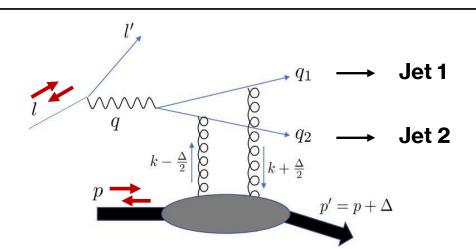
$$d\sigma^{\mathbf{asym}} \sim - \Re\left[\left\{\mathcal{H}_g^{(1)*}(\xi) + \frac{4q_{\perp}^2}{q_{\perp}^2 + \mu^2}\mathcal{H}_g^{(2)*}(\xi)\right\} \cos(\phi_{l_{\perp}} - \phi_{\Delta_{\perp}})\right] + \Re\left[\mathcal{H}_g^{(1)*}(\xi)\,\tilde{\mathcal{H}}_g^{(2)}(\xi)\right] \cos(\phi_{l_{\perp}} - \phi_{\Delta_{\perp}})$$

Probing gluon OAM through exclusive di-jet production

PHYSICAL REVIEW LETTERS 128, 182002 (2022)

Signature of the Gluon Orbital Angular Momentum

Shohini Bhattacharya⁰, ^{1,*} Renaud Boussarie, ^{2,†} and Yoshitaka Hatta⁰, ^{1,3,‡}



Gluon helicity contributes to the same angular modulation as that of OAM

$$d\sigma^{\mathbf{asym}} \sim - \Re \left[\left\{ \mathcal{H}_g^{(1)*}(\xi) + \frac{4q_\perp^2}{q_\perp^2 + \mu^2} \mathcal{H}_g^{(2)*}(\xi) \right\} \mathcal{L}_g(\xi) \right] \cos(\phi_{l_\perp} - \phi_{\Delta_\perp})$$

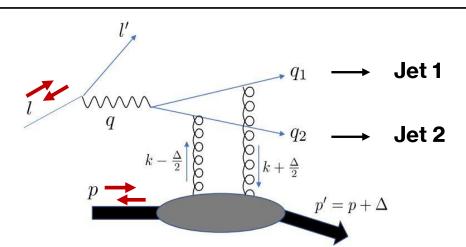
$$+ \Re \left[\mathcal{H}_g^{(1)*}(\xi) + \frac{4q_\perp^2}{q_\perp^2 + \mu^2} \mathcal{H}_g^{(2)*}(\xi) \right] \cos(\phi_{l_\perp} - \phi_{\Delta_\perp})$$

Probing gluon OAM through exclusive di-jet production

PHYSICAL REVIEW LETTERS 128, 182002 (2022)

Signature of the Gluon Orbital Angular Momentum

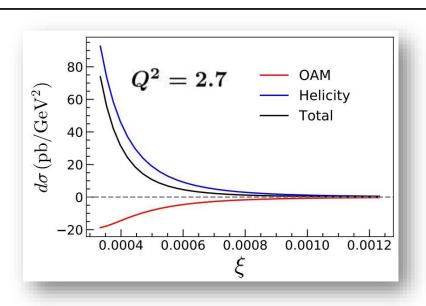
Shohini Bhattacharya⁰, ^{1,*} Renaud Boussarie, ^{2,†} and Yoshitaka Hatta⁰, ^{1,3,‡}

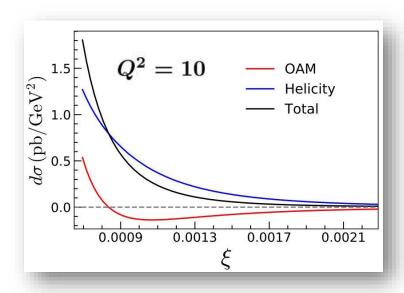


Our observable is a simultaneous probe of gluon OAM & it's helicity

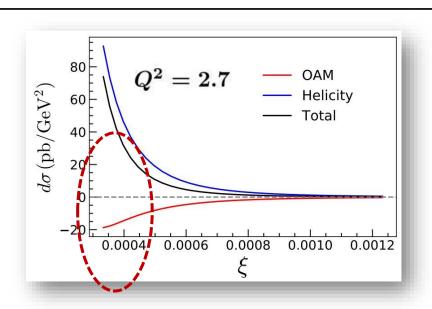
$$d\sigma^{\mathbf{asym}} \sim -\Re\left[\left\{\mathcal{H}_{g}^{(1)*}(\xi) + \frac{4q_{\perp}^{2}}{q_{\perp}^{2} + \mu^{2}}\mathcal{H}_{g}^{(2)*}(\xi)\right\} \cos(\phi_{l_{\perp}} - \phi_{\Delta_{\perp}})\right] + \Re\left[\mathcal{H}_{g}^{(1)*}(\xi)\tilde{\mathcal{H}}_{g}^{(2)}(\xi)\right] \cos(\phi_{l_{\perp}} - \phi_{\Delta_{\perp}})$$

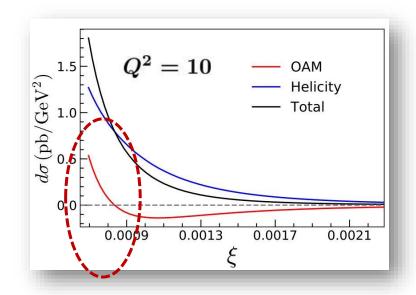
Interplay between OAM and helicity at small x





Interplay between OAM and helicity at small x





Schematic structure of our observable:

$$d\sigma^{\mathbf{asym}} \sim \mathcal{H}_g^{(1)*}(\xi) \left(\frac{\tilde{\mathcal{H}}_g^{(2)}(\xi)}{q_\perp^2 + Q^2/4} \frac{\mathcal{L}_g(\xi)}{q_\perp^2 + Q^2/4} \frac{\mathcal{L}_g(\xi)}{\mathcal{L}_g(x)} \right)$$

$$\Delta G(x) \qquad \qquad L_g(x)$$

Cancellation expected between helicity & OAM at small x

$$\Delta G(x) \approx -\frac{2}{1+c} L_g(x)$$

Boussarie, Hatta, Yuan (2019) Kovchegov, Manley (2023, 2024)

Contribution from spin-orbit correlation at small x?

Another non-negligible contribution to the process:

$$d\sigma^{asym} \sim \frac{4q_{\perp}^2}{q_{\perp}^2 + \mu^2} C_g^{(2)}(\xi) \tilde{\mathcal{H}}_g^{(2)}(\xi)$$

Spin-orbit correlation:
$$C^g(x) = \int d^2 \vec{k}_\perp \frac{\vec{k}_\perp^2}{M^2} G_{1,1}^g(x, \vec{k}_\perp^2)$$

Contribution from spin-orbit correlation at small x?

Another non-negligible contribution to the process:

$$d\sigma^{asym} \sim \frac{4q_{\perp}^2}{q_{\perp}^2 + \mu^2} C_g^{(2)}(\xi) \tilde{\mathcal{H}}_g^{(2)}(\xi)$$

First insight into the small-x behavior of spin-orbit correlation:

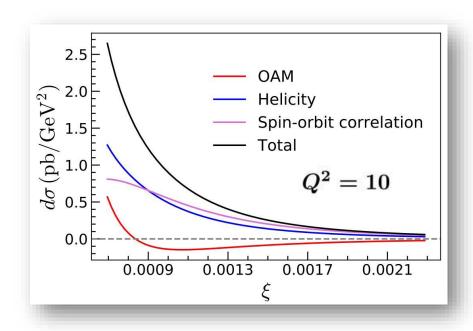
$$C^g(x) pprox -2x \int_x^1 rac{dx'}{x'^2} G(x') + \dots \propto -G(x)$$
 (SB, Boussarie, Hatta, 2404.04208, 2404.04209)

For a complete twist structure of spin-orbit correlation, see Hatta, Schoenleber, 2404.18872

1881

Probing gluon OAM & spin-orbit correlation at small x

Updated numerical results (SB, Boussarie, Hatta, 2404.04209):



PHYSICAL REVIEW D 111, 034019 (2025)

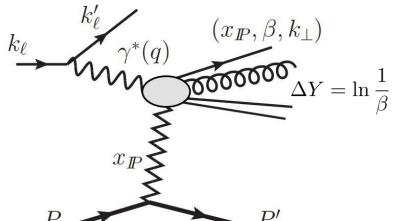
Exploring orbital angular momentum and spin-orbit correlations for gluons at the Electron-Ion Collider

Shohini Bhattacharya⁰, ^{1,2,*} Renaud Boussarie⁰, ³ and Yoshitaka Hatta^{0,4,2}

Spin-orbit correlation is more accurately constrained than **OAM** because the latter necessitates the precise determination of <u>both</u> unpolarized and polarized gluon distributions

1881

Probing gluon OAM through Semi Inclusive Diffractive Deep Inelastic Scattering



Hatta, Xiao, Yuan (2022)

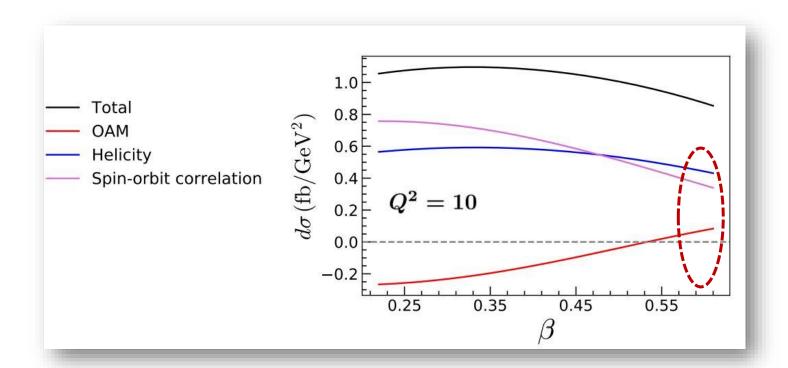
 Measure invariant mass of diffractively produced system instead of reconstructing jets

$$M_X^2 = rac{q_\perp^2}{z\bar{z}} = rac{1-eta}{eta}Q^2$$

Tag hadron species out of the diffractively produced system

Probing gluon OAM through Semi Inclusive Diffractive Deep Inelastic Scattering

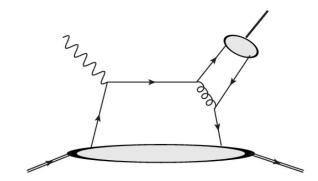
Numerical results (SB, Boussarie, Hatta, 2404.04209):



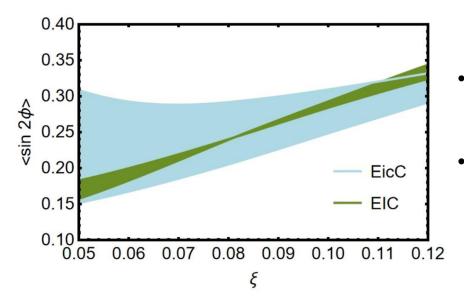
Challenging, yet there is <u>no</u> requirement to reconstruct jets & we still maintain sensitivity to OAM

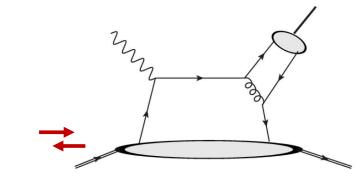
• Generalized TMDs/Wigner functions are the holy grail of spin physics

- Generalized TMDs/Wigner functions are the holy grail of spin physics
- Probe quark OAM via exclusive π^0 production in ep collisions
- Circumvent challenges associated with double Drell-Yan process



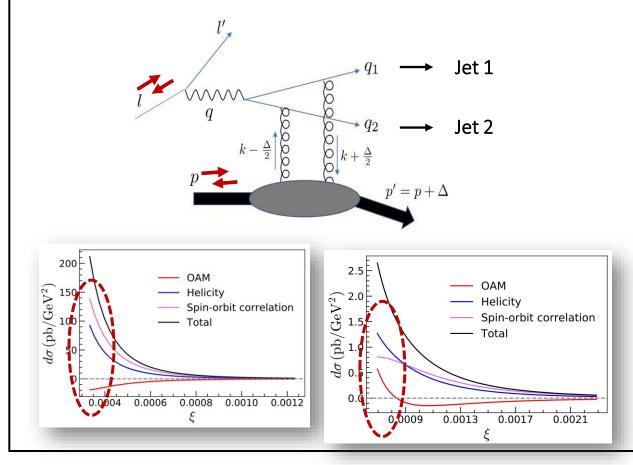
- Generalized TMDs/Wigner functions are the holy grail of spin physics
- Probe quark OAM via exclusive π^0 production in ep collisions
- Circumvent challenges associated with double Drell-Yan process

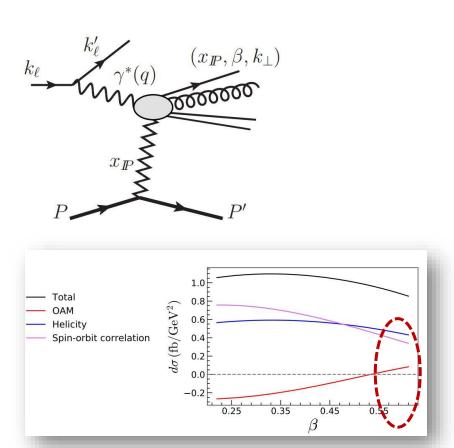




- Longitudinal <u>single-target spin asymmetry</u> is not power suppressed
- Asymmetry is substantial & thus exclusive π^0 production in ep collisions maybe a promising route to constrain quark OAM

• Probe **gluon OAM** via <u>double spin asymmetry</u> in exclusive di-jet production/ SID**D**IS in ep collisions





Backup slides

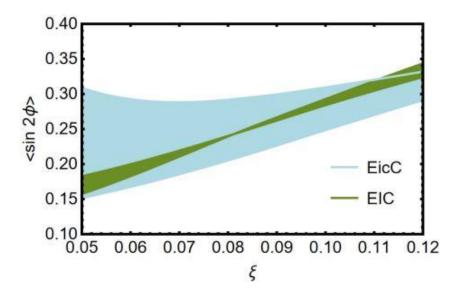


FIG. 3: The unpolarized cross section, as given by Eq. (15), is displayed in the top plot for EIC kinematics with $Q^2 = 10 \,\mathrm{GeV}^2$ and $\sqrt{s_{ep}} = 100 \,\mathrm{GeV}$, as well as for EicC kinematics with $Q^2 = 3 \,\mathrm{GeV}^2$ and $\sqrt{s_{ep}} = 16 \,\mathrm{GeV}$. The unpolarized cross section for the EIC case is re-scaled by a factor of 100. The bottom plot shows the average value of $\langle \sin(2\phi) \rangle$ given by Eq. (16). The variable t is integrated over the range $[-0.5 \,\mathrm{GeV}^2, -\frac{4\xi^2 M^2}{1-\xi^2}]$. The error bands are obtained by varying the value of $\sqrt{\langle p_\perp^2 \rangle}$ from 150 MeV to 250 MeV and the value of α' , which determines the t-dependence of the various distributions in the double distribution approach (see supplementary material), from 1.2 to 1.4.

We notice that other fitting for $g_{1T}^{(1)}(x)$ exist too [82]. Meanwhile, the k_{\perp} moment of $F_{1,2}$ can be related to the Qiu-Sterman function,

$$\int d^{2}k_{\perp} \frac{k_{\perp}^{2}}{M} \operatorname{Im}[F_{1,2}(x,\xi=0,\Delta_{\perp}=0,k_{\perp})]$$

$$= -\int d^{2}k_{\perp} \frac{k_{\perp}^{2}}{M} f_{1T}^{\perp}(x,k_{\perp}) = T_{F}(x,x)$$
(6)

where the Qiu-Sterman function is parametrized as [83],

$$T_F(x,x) = N_q \frac{(\alpha_q + \beta_q)^{(\alpha_q + \beta_q)}}{\alpha_q^{\alpha_q} \beta_q^{\beta_q}} x^{\alpha_q} (1-x)^{\beta_q} q(x)$$
(7)

with $\alpha_u = 1.051$, $\alpha_d = 1.552$, $\beta_u = \beta_d = 4.857$, and $N_u = 1.06$, $N_d = -0.163$. See also Refs. [84], [85], and [86] for the state-of-the-art extractions of the Sivers functions. Once the x-dependence of the k_{\perp} moments of $F_{1,2}$ and $G_{1,2}$ is reconstructed as explained above, we reconstruct their (ξ, t) -dependence in accordance with the double distribution