Stephen Maple (U. Birmingham) & Tyler Kutz (JGU Mainz)

ePIC/EIC Early Science Workshop CFNS, Stony Brook University April 24-25, 2025

UNIVERSITY^{OF} BIRMINGHAM

Early inclusive physics at the EIC

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

Starting point: early science matrix

	Species	Energy (GeV)	Luminosity/year (fb-1)	Electron polarization	p/A polarization
YEAR 1	e+Ru or e+Cu	10 x 115	0.9	NO (Commissioning)	N/A
YEAR 2	e+D e+p	10 x 130	11.4 4.95 - 5.33	LONG	NO TRANS
YEAR 3	e+p	10 x 130	4.95 - 5.33	LONG	TRANS and/or LONG
YEAR 4	e+Au e+p	10 x 100 10 x 250	0.84 6.19 - 9.18	LONG	N/A TRANS and/or LONG
YEAR 5	e+Au e+3He	10 x 100 10 x 166	0.84 8.65	LONG	N/A TRANS and/or LONG
Note: the eA luminosity is per nucleon					

	Data	
Year 1		
Year 2		
Year 3		
Year 4		
Year 5		

Observables	Physics highlights

Year 1: unpolarized eA scattering (10x115 GeV)

- Nuclear PDFs:
 - Total/differential cross sections
 - Order of magnitude extension to low-x/shadowing region

4

	Data	Observables	Physics highlights
Year 1	Unpolarized <i>eA</i> , 10x115 GeV	Total/differential <i>eA</i> cross sections	Nuclear PDFs in low- <i>x</i> /shadowing regior
Year 2			
Year 3			
Year 4			
Year 5			
		·	i

Year 2: unpolarized eD and (transversely) polarized ep(10x130 GeV)

• Proton PDFs:

- Total/differential *ep* cross sections
- Surpass HERA integrated luminosity in <1 year
- Bridge gap between HERA, JLab
- Neutron structure:
 - F_2^D / F_2^p (historical "neutron proxy")
 - Spectator-tagged F_2^n
- Nuclear PDFs/medium modification:
 - F_2^A/F_2^D
- Proton spin:
 - Transverse double spin asymmetry A_{\perp}^{p} (small contribution to A_{1}^{p})

Year 2: unpolarized eD and (transversely) polarized ep (10×130 GeV)

• Proton PDFs:

- Total/differential *ep* cross sections
- Surpass HERA integrated luminosity in <1 year
- Bridge gap between HERA, JLab
- Neutron structure:
 - F_2^D/F_2^p (historical "neutron proxy")
 - Spectator-tagged F_2^n
- Nuclear PDFs/medium modification:
 - F_2^A / F_2^D
- Proton spin:
 - Transverse double spin asymmetry A^p₁ (small contribution to A_1^p)

	Data	Observables	Physics highlights
Year 1	Unpolarized <i>eA</i> , 10×115 GeV	Total/differential <i>eA</i> cross sections	Nuclear PDFs in low- <i>x</i> /shadowing regior
Year 2	Unpolarized <i>eD</i> , 10x130 GeV Polarized <i>ep</i> (transverse), 10x130 GeV	Total/differential <i>ep</i> cross sections, transverse spin asymmetry, cross section ratio	Proton PDFs at large- x/c F_2^D/F_2^p
Year 3			
Year 4			
Year 5			

Year

 A_1^n

30 and A_{A_1} 10x250 GeV)

	Data	Observables	Physics highlights
Year 1	Unpolarized <i>eA</i> , 10x115 GeV	Total/differential <i>eA</i> cross sections	Nuclear PDFs in low-x/shadowing regior
Year 2	Unpolarized <i>eD</i> , 10x130 GeV Polarized <i>ep</i> (transverse), 10x130 GeV	Total/differential <i>ep</i> cross sections, transverse spin asymmetry, cross section ratio	Proton PDFs at large- x/C F_2^D/F_2^p
Year 3	Polarized <i>ep</i> (longitudinal)	Longitudinal spin asymmetry	A_1^{p}
Year 4	Polarized <i>ep</i> , 10×250 GeV	Double spin asymmetries	A_1^p at low(er)-x
Year 5			

Year 5: unpolarized eAu (10x100 GeV), fully polarized $e^{3}He$ $(10 \times 166 \text{ GeV})$

- Neutron spin:
 - A_1^n from $A_1^{^{3}He}/A_1^p$
 - Double spectator-tagged A_1^n
- Light nuclear structure:

• $F_2^{^{3}He}/F_2^D$

- More heavy nuclear PDFs (maybe saturation?):
 - Total/differential *eAu* cross sections

10

	Data	Observables	Physics highlights
Year 1	Unpolarized <i>eA</i> , 10x115 GeV	Total/differential <i>eA</i> cross sections	Nuclear PDFs in low- <i>x</i> /shadowing regior
Year 2	Unpolarized <i>eD</i> , 10x130 GeV Polarized <i>ep</i> (transverse), 10x130 GeV	Total/differential <i>ep</i> cross sections, transverse spin asymmetry, cross section ratio	Proton PDFs at large- x/c F_2^D/F_2^p
Year 3	Polarized <i>ep</i> (longitudinal)	Longitudinal spin asymmetry	$\mathcal{A}_1^{ ho}$
Year 4	Unpolarized <i>eAu</i> , 10×100 GeV Polarized <i>ep</i> , 10×250 GeV	Total/differential <i>eAu</i> and <i>ep</i> cross sections, spin asymmetry	A ^p ₁ at low(er)-x, eA PDFs low-x, saturation?
Year 5	Unpolarized <i>eAu</i> 10×100 GeV, Polarized <i>e³He</i> , 10×166 GeV	Total/differential <i>eA</i> cross sections, spin asymmetry, cross section ratio	A_1^n , F_2^{He3}/F_2^D

11

Next steps for early science studies

- *ep* events at early-science energy in simulation campaigns
 - Replace 10x100 GeV with 10x130 GeV?
- *eA* events in simulation campaigns
 - eD (needed), $e^{3}He$ (done?), eAu (needed)
- QED radiative effects
- Photoproduction background
- More detailed assessment of systematics
 - Further development of electron ID
 - Realistic study of ECAL calibration with simulation

Points of discussion

- What about F_L and CC?
 - Limited by beam energies available in first 5 years
 - Important goals, but not early-science
- Where does calibration fit into this?
- How to divide luminosity between species?
- How should publications be staged (e.g., cross sections vs. impact papers)?

