

ePIC/EIC Early Science Workshop

Center for Frontiers in Nuclear Science Stony Brook University April 24 – 25 2025

Early science from SIDIS measurements

JUSTUS-LIEBIG-UNIVERSITÄT GIESSEN

<u>Stefan Diehl</u> (JLU Giessen + UCONN) Ralf Seidl (RIKEN)

04/25/2025

SIDIS process

Detect electron and final-state hadron(s): Additional benefit of flavor, spin and transverse momentum sensitivity via fragmentation functions

 $\frac{d^6\sigma}{dxdQ^2dzdP_{hT}d\phi_Sd\phi_h} \propto \sum_{\alpha,\overline{\alpha}} e_q^2 q(x,Q^2,k_t) \otimes D_{1,q}^h(z,Q^2,p_t)$

- z: Fractional hadron momentum relative to parton momentum (0<z<1)
- P_{hT}: Transverse hadron momentum wrt to virtual photon (convolution over intrinsic transverse momenta of PDFs and FFs)
- ϕ_S : Azimuthal angle of the nucleons (transverse) spin wrt to the scattering plane, along the virtual photon axis
 - Azimuthal angle of hadron wrt to scattering plane, along virtual photon axis

φ_h:

SIDIS early science perspectives

- SIDIS uses fragmentation functions to add flavor, spin and transverse momentum sensitivity to DIS measurements
 - ➔ Prerequisites: DIS + hadron momentum reconstruction + PID
 - → Kinematic variables x, Q², z, (P_{hT}, ϕ_S , ϕ_h) → Higher dimensional binning is required

Observable	DIS kine	species	energies	e/h pol	Z	P _{hT}	ϕ_{s}, ϕ_{h}	Lumi	ES grade
nPDFs + nFFs PDFs + FFs		e+A, (e+p/d)	10 x ~100	U/U		N	Ν	~fb ⁻¹	****
unpol. TMDs (start)		e+p	10 x ~100	U/U			Ν	∼fb ⁻¹	***
$H_T A_N$ moments		e+p	10 x 100	U/T				∼fb ⁻¹	***
TMD Evolution		e+p	10x100, (5x41, 18x275)	U/U				~fb ⁻¹	***
Sivers/Collins/IFF		e+p, (e+³He)	10x100, (5x41, 18x275)	U/T				~ 10 fb ⁻¹	**
Helicity distributions		e+p, (e+³He)	10x100, (5x41, 18x275)	L/L				~ 10 fb ⁻¹	**
Di-hadron SIDIS (g Sivers / saturation)		e+p, e+A	18x275, (10x100)	U/(T)				~ 10 fb ⁻¹	*

Stefan Diehl, JLU

04/25/2025

Unpolarized PDFs

- Unpolarized PDFs: Impact from plain DIS and SIDIS
- SIDIS (flavor sensitivity)
 - \rightarrow Sea quarks
- Also, potential access to intrinsic charm?

YR Figs 7.8, Aschenauer

Fragmentation Functions

- Fragmentation functions provide information on struck parton, its flavor and spin
- FFs are a staple of all SIDIS measurements
- Also their understanding will improve further with the EIC

YR Fig 7.84, Aschenauer

Nuclear PDFs

- Very precise nuclear PDFs will open the way to quantitative HI physics
- Currently no EIC SIDIS impact studies available
 → Simulations are planned (awaiting eA MC)

https://doi.org/10.1140/epjc/s10052-017-4725-9

Fragmentation in the nucleus

Does the it affect hadron/quark mass?

 Comparison of Multiplicity ratios for light and heavy hadrons and various parton energies nFFs

Expected impact from the EIC on light hadron nuclear FFs:

→ More sophisticated studies ongoing (transverse momentum broadening, h dependence, ...)

→ Similar studies for heavy flavor

Unpolarized TMDs

L. Rossi, Ph.D. Thesis, in preparation

- Significant impact at intermediate to low x with 10x100 only
- Probably still relevant improvements with limited early science data

Lorenzo Rossi (Pavia)

04/25/2025

EIC access to TMD evolution

- Sivers asymmetries are expected to decrease at higher scales, but only logarithmically
 They do NOT "disappear"
- At higher x, asymmetries of several percent are expected
 - ➔ Well accessible with EIC over wide range in x and Q²
 - ➔ Lower x the sea quark and gluon contributions can be studied (both mostly unknown)

Vladimirov et al.

Summary

- SIDIS gives access to the flavor of PDFs, helicity distributions and TMDs
- Naturally requires more variables in addition to DIS measurements
- Early physics feasibility:
 - \square nPDFs + nFF measurements 3D binning (x,Q²,z), no polarization needed
 - □ Early unpolarized TMD studies 4D binning, no polarization
 - TMD evolution 4D binning, no polarization, limited Q^2 range (depending on lumi)

Only start of program for:

- □ Polarized TMDs 5D binning, UT polarization, different energies + high luminosity
- □ Helicity distributions 3D binning, LL polarization, different energies + high luminosity

11