Jets&HF working group report at Early Science workshop

Olga Evdokimov, Rongrong Ma 04/25/2025

Production at LO

- Structure function, (n)PDF
- Cold nuclear matter effect
- Hadronization
- ...

- (n)PDF
- Fragmentation function
- Asymmetries
- ...

Validate PYTHIA8 for charm production

Amritanshu Thakur (Panjab)

Ratio of H1 Data / Pythia

Next: compare to other charm hadron measurements at HERA

D0 topological reconstruction

Reminder

- Topological variables
 DCA_π, DCA_κ, DCA₁₂
 - DCA_π, DCA_K, DCA₁₂
 DCA_{D0}, decay length, cos(θ)
- Calculated based on helix swimming in a constant magnetic field
 - $\circ \quad \text{Adopted from STAR code} \\$
 - B = -1.7 T

Truth vs. Real PID: PID efficiency

ep

Rongrong Ma (BNL)

• Lose up to 50% D⁰ signal counts with realistic PID

Secondary vertex: invariant mass

Bishoy Dongwi (SBU)

ACTS::AdaptiveMultiVertexFinder

• Next: evaluate efficiency and improve S/B ratio; tackle D⁰ reconstruction

Simulation setup for e+Au

- BeAGLE v103, e+Au
- Energy: 10x100
- $Q^2_{min} > 1 \text{ GeV}^2$
- With beam effects: applied afterburner for eAu 10x110 configuration
- Two samples
 - HF-enriched sample
 - Select events with $D^0 \rightarrow \pi + K$
 - DIS sample
- ePIC geometry: 25.03.1

Simulation output

Event generator	Decay channel	# of D0 events and x-sec	Luminosity	# of sampled DIS events and x-sec	Output location
BeAGLE v103 eAu, 10x100 Q ² > 1	$D^0 \rightarrow \pi + K$	N = 25333	0.29 fb ⁻¹	N = 9940000	/eic/u/rongrong/g pfs02/BeAGLE/ D0/eAu_10x100 _Q2min1/Geo25 .03.1
BeAGLE v103 eAu, 10x100 Q ² > 1	DIS	N = 31000 σ = 0.3413 ub	0.91e-3 fb ⁻¹		/eic/u/rongrong/g pfs02/BeAGLE/ DIS/eAu_10x100 _Q2min1/Geo25 .03.1

Fit D0 signal in e+Au collisions: all pairs

Fit D0 signal in e+Au collisions: w/ topological cuts

Expected running scenario

	Species	Energy (GeV)	Luminosity/year (fb-1)	Electron polarization	p/A polarization		
YEAR 1	e+Ru or e+Cu	10 x 115	0.9	NO (Commissioning)	N/A		
YEAR 2	e+D e+p	10 x 130	11.4 4.95 - 5.33	LONG	NO TRANS		
YEAR 3	e+p	10 x 130	4.95 - 5.33	LONG	TRANS and/or LONG		
YEAR 4	e+Au e+p	10 x 100 10 x 250	0.84 6.19 - 9.18	LONG	N/A TRANS and/or LONG		
YEAR 5	e+Au e+3He	10 x 100 10 x 166	0.84 8.65	LONG	N/A TRANS and/or LONG		
Note: the eA luminosity is per nucleon							

- Focus on e+Au @ 10x100
 - ep: *L* ~ 10 fb⁻¹
 - eAu: $L \sim 1 \text{ fb}^{-1}$

Can we agree on a number?

Projection: D0 significance

• Very preliminary results

Projection: D0 R_{eAu}

Rongrong Ma (BNL)

• Very preliminary results

Hadron-in-jets: Collins Asymmetry

Kevin Adkins (Morehead)

ep @ 10x100, *L* = 100 fb⁻¹

• Next: include Q² binning

By Brian Page (BNL)

Summary & Outlook

• Heavy flavor

- PYTHIA8 well reproduces D* spectrum measured at HERA
- Further study of D^0 reconstruction in ep collisions (secondary vertexing, etc.)
- First look at of D⁰ measurement in e+Au collisions, which is promising
- Next
 - Accumulate more statistics for e+Au
 - Detailed study of tracking performance in e+Au; refine signal extraction
 - Explore other topics: D^0 in jets, L_c/D^0 ratio, etc

Jets

- Binning in *x* for hadron-in-jet Collins asymmetry.
- Next
 - Hardon-in-jet Collins: further bining in Q²
 - Further exploration of jet physics for early science

Charm structure function

ePIC HF&Jet WG Mtg, 2024/09/10

X. Dong/LBNL

Gluon nPDF

Fragmentation & hadronization

 Difference seen in e+e/p and p+p. How would that happen?

 Does charm quark fragment differently in e+p and e+A?

Parton propagation in a nucleus

How does nuclear environment alter parton propagation?

Jets

- Higher hadron beam energies open up phase space for more energetic jets which are easier to interpret theoretically however, contributions will be possible at the lower energies proposed for the first several years
- Polarized runs starting in years 2 and 3 will allow first looks at jet-based TMD measurements complimentary to SIDIS
- Substructure studies for probing vacuum/medium fragmentation require good statistics

