

Impact of EIC early science eP runs on unpolarized PDFs

EIC early science workshop - CFNS - Stony Brook

Peter Risse with A. Accardi, M. Cerutti, S. Li, J. Owens and S. Park

nCTEQ nuclear parton distribution functions

CTEQ-Jefferson Lab Collaboration

Disclaimer

Scenarios and assumptions are based on:

	Species	Energy (GeV)	Luminosity/year (fb-1)	Electron polarization	p/A polarization
YEAR 1	e+Ru or e+Cu	10 x 115	0.9	NO (Commissioning)	N/A
YEAR 2	e+D e+p	10 x 130	11.4 4.95 - 5.33	LONG	NO TRANS
YEAR 3	e+p	10 x 130	4.95 - 5.33	LONG	TRANS and/or LONG
YEAR 4	e+Au e+p	10 x 100 10 x 250	0.84 6.19 - 9.18	LONG	N/A TRANS and/or LONG
YEAR 5	e+Au e+3He	10 x 100 10 x 166	0.84 8.65	LONG	N/A TRANS and/or LONG

Note: the eA luminosity is per nucleon

nuclear PDF perspective on saturation and the need for eP baselines

1. have eA data e.g.: (e + Au) at 10x100 GeV

```
2. do same kinematics (e + P) run (and (e + D) run)
```

Benefits:

+ better control of different effects at the same kinematics \rightarrow crucial for "finding" saturation

```
+ extra: additional (e+P) data set \rightarrow extraction of F_L
```


Beat

First results from impact study on CJ global fit

Scenario A (e + D) at 10×130 GeV Scenario B (e + D) at 10×130 GeV + (e + P) at 10×130 GeV

Scenario C (e + D) at 10x130 GeV + (e + P) at 10x130 GeV + (e + P) at 10x250 GeV

small. & resion

nuclear PDF perspective on saturation and the need for eP baselines

- 1. have eA data e.g.: (e + Au) at 10×100 GeV
- 2. do same kinematics (e + P) run (and (e + D) run)

Benefits:

+ better control of different effects at the same kinematics \rightarrow crucial for "finding" saturation

+ extra: additional (e+P) data set \rightarrow extraction of F_L

Experimental data for global nuclear PDF fit

good coverage for intermediate- to high-x

- good coverage for low-x at high energies
 but: only (P + Pb) data
- \blacktriangleright missing coverage for low-x at low energies
 - \Rightarrow "saturation discovery region" for global fits!

Fitting without baseline at low energies

nPDF "saturation discovery region"

- assume high energy data with or without saturation
- 2. use theoretical prediction without saturation effects
 - \blacktriangleright currently no problem, since PDFs at low- Q^2 can go as low as they want
- **3**. new data at low- Q^2
 - \blacktriangleright tension between high- Q^2 and ${\rm low-}Q^2$ data at small-x

 \Rightarrow indicates saturation

nuclear PDFs need to become precise a small-x

Nuclear ratio of EPPS21 vs. nNNPDF3.0 vs. nCTEQ15HQ

The Proton baseline is a key ingredient for nPDFs

Example EPPS21: Bound Proton

 $f_i^{p/A}(x,Q_0^2) = R_i^{p/A}(x,Q_0^2) f_i^p(x,Q_0^2)$

Current status of free Proton PDFs at low Q^2

Extra: F_L at small-x

see also:

Prospects for measurements of the longitudinal proton structure function F_L at the Electron Ion Collider

Javier Jiménez-López *1, Paul R. Newman ^{†2}, and Katarzyna Wichmann ^{‡3}

large a resion

First results from impact study on CJ global fit

Scenario A (e + D) at 10x130 GeV Scenario B (e + D) at 10x130 GeV + (e + P) at 10x130 GeV Scenario C (e + D) at 10x130 GeV + (e + P) at 10x130 GeV + (e + P) at 10x250 GeV

Baseline newest CJ release: CJ22ht

Systematic uncertainties from higher-twist corrections

in DIS at large x

Matteo Cerutti ⁽¹⁾, ^{1,2,*} Alberto Accardi ⁽¹⁾, ^{1,2,†} I. P. Fernando ⁽²⁾, ^{3,‡}

Shujie Li⁰,^{4,5,§} J.F. Owens^{6,¶} and Sanghwa Park⁰^{2,**}

[accepted by PRD, arXiv:2501.06849]

eP runs: kinematics & statistics

Comments

- scenarios provided by Stephen Maple
- the results are preliminary
- each data set corresponds to 1yr of measurement
- uncertainties: statistical + systematic
- central value fixed to baseline

Scenario A		
Species: Energy: Luminosity:	(e+D) 10x130 GeV 11.4 fb $^{-1}$	

Scenario B			
Species:	(e+D)	(e+P)	
Energy:	10x130 GeV	10x130 GeV	
Luminosity:	11.4 fb ⁻¹	5.33 fb ⁻¹	

Scenario C

Species:	(e+D)	(e+P)	(e+P)
Energy:	10×130 GeV	10×130 GeV	10x250 GeV
Luminosity:	$11.4 \ \mathrm{fb}^{-1}$	5.33 fb $^{-1}$	$9.18~\mathrm{fb}^{-1}$

Impact of EIC early science eP runs on unpol. PDFs

Gluon PDF

only indirect sensitivity from DIS cross section \sim DGLAP evolution

- $\sim \textit{F}_{2}:$ suppressed by α_{S}
- $\sim F_L$: same order as quarks, but F_L is kinematically suppressed

Impact

- weak impact from (e + D) (expected)
- main impact from (e+P)
- \blacktriangleright reduced uncertainty overall by ${\sim}6\%$

Impact of EIC early science eP runs on unpol. PDFs

Up-quark PDF

leading order contribution to F_2

$$\left[F_{2}^{\gamma}, \ F_{2}^{\gamma Z}, \ F_{2}^{Z}\right] = x \sum_{q} \left[e_{q}^{2}, \ 2e_{q}g_{V}^{q}, \ g_{V}^{q\,2} + g_{A}^{q\,2}\right] \ (q + \overline{q})$$

Impact

- weak impact from (e + D) (expected)
- main impact from (e+P)
- reduced relative uncertainty by up to $\sim 40\%$ at large-x

Impact of EIC early science eP runs on unpol. PDFs

0.6

0.6

0.8

0.2 0.4

L baseline 2.5 +epic d130 1.0 e.0 Itio Offshell expansion of the Deuteron $ff(x,Q^2)$ Ĕ 0.8 ÷ 0.7 Rela within the "weak binding approximation": -1.60.6 $F_{2N}(x,Q^2,p^2) = F_{2N}^{\text{free}}(x,Q^2) \left[1 + \frac{p^2 - M^2}{M^2} \delta f(x) \right]$ 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.4 0.6 0.8 baseline 2.5 +epic_p130_d130 .0 Ë Free proton, neutron "offshell function" $ff(x, Q^2)$ structure function 0.8 0.5 0 ž -1.6Impact -1.50.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.4 haseling \blacktriangleright strong impact from (e + D)1.6 2.5 +epic_p130_p250_d130 2.0 e.0 gt. \blacktriangleright up to $\sim 20\%$ reduced relative uncertainty $\delta f(x,Q^2)$ Ĕ 0.8 0.3 ÷ 0.7 -0.5 \blacktriangleright weak impact from (e + P) (expected) Rela 0.0 -1.00. -01 -1.4

0.4 0.6

æ

0.8

0.2

0.2 0.4 0.6 0.8

Higher twist corrections (neutron)

"catch-all" function for residual power corrections

$$F_{2N}^{\text{mult}}(x,Q^2) = F_{2N}^{\text{TMC}}(x,Q^2) \left(1 + \frac{C(x)}{Q^2}\right)$$

important feature: suppressed by $1/{\ensuremath{Q}^2}$

Impact

- ▶ small impact from (e + D)
- ▶ small impact from (e + P)
- good result: disentanglement from other effects! important difference to JLab data
- \blacktriangleright C_p sees impact: reduced uncertainty by up to ${\sim}15\%$

Conclusion

nuclear PDF perspective on saturation and the need for eP baselines

1. have eA data e.g.: (e + Au) at 10x100 GeV

```
2. do same kinematics (e + P) run (and (e + D) run)
```

Benefits:

+ better control of different effects at the same kinematics \rightarrow crucial for "finding" saturation

```
+ extra: additional (e+P) data set 
ightarrow extraction of F_L
```


First results from impact study on CJ global fit

Scenario B as scenario A, plus sizeable impact on Gluon and Up-quark distribution

Scenario C similar to Scenario II but with more statistics additional (e + P) data set \rightarrow extraction of F_{L} Thank you!

backup

Structure of nuclei

- \blacktriangleright Nuclear binding energy $\sim 1\%$ of mass
- First approximation: nuclei consist of free protons & neutrons

$$F_2^A(x) \approx \neq ZF_2^{p,free}(x) + NF_2^{n,free}(x)$$

 \Rightarrow does not work

- Cross-sections in nuclear collisions are modified
- Can we translate these modifications into universal quantities?

$\Rightarrow \textbf{nuclear PDFs}$

Nuclear modification: free proton vs bound proton

