Light Meson Structure from Early EIC Physics

Stephen JD Kay University of York

ePIC Early Science Workshop 25/04/25

Stephen JD Kay, Garth Huber, Love Preet

T

Stephen JD Kay

• Form factors \rightarrow Momentum space distributions of partons • Insights into emergent hadronic mass (EHM)

University of York

• Measurements $p(e, e'\pi^+n)$ and $p(e, e'K^+\Lambda/\Sigma)$ at the EIC can potentially extend the Q^2 reach of F_{π}/F_{K}

25/04/25

- Form factors → Momentum space distributions of partons
 Insights into emergent hadronic mass (EHM)
- Measurements $p(e, e'\pi^+n)$ and $p(e, e'K^+\Lambda/\Sigma)$ at the EIC can potentially extend the Q^2 reach of F_{π}/F_K
- A challenging measurement however

Stephen JD Kay

Need clean identification of exclusive reactions

University of York

 $\,\circ\,$ Access form factors by isolating σ_L at lowest possible -t

25/04/25

- Form factors → Momentum space distributions of partons
 Insights into emergent hadronic mass (EHM)
- Measurements $p(e, e'\pi^+n)$ and $p(e, e'K^+\Lambda/\Sigma)$ at the EIC can potentially extend the Q^2 reach of F_{π}/F_{K}
- A challenging measurement however

Stephen JD Kay

Need clean identification of exclusive reactions

University of York

- $\,\circ\,$ Access form factors by isolating σ_L at lowest possible -t
- $\circ~$ Conventional L-T separation not possible \rightarrow low enough ϵ not accessible at the EIC

25/04/25

1 / 12

• Need to use a model to isolate $d\sigma_L/dt$ from $d\sigma_{uns}/dt$

- Form factors → Momentum space distributions of partons
 Insights into emergent hadronic mass (EHM)
- Measurements $p(e, e'\pi^+n)$ and $p(e, e'K^+\Lambda/\Sigma)$ at the EIC can potentially extend the Q^2 reach of F_{π}/F_K
- A challenging measurement however

Stephen JD Kay

- Need clean identification of exclusive reactions
- $\,\circ\,$ Access form factors by isolating σ_L at lowest possible -t
- $\circ~$ Conventional L-T separation not possible \rightarrow low enough ϵ not accessible at the EIC

<u>25/04/25</u>

1 / 12

- $\,\circ\,$ Need to use a model to isolate $d\sigma_L/dt$ from $d\sigma_{\it uns}/dt$
- F_{π} measurement feasibility previously demonstrated

A. Bylinkin. et. al., NIMA 1052 (2023) 168238 https://doi.org/10.1016/j.nima.2023.168238

University of York

- Form factors → Momentum space distributions of partons
 Insights into emergent hadronic mass (EHM)
- Measurements $p(e, e'\pi^+n)$ and $p(e, e'K^+\Lambda/\Sigma)$ at the EIC can potentially extend the Q^2 reach of F_{π}/F_{K}
- A challenging measurement however

Stephen JD Kay

- Need clean identification of exclusive reactions
- $\,\circ\,$ Access form factors by isolating σ_L at lowest possible -t
- $\circ~$ Conventional L-T separation not possible \rightarrow low enough ϵ not accessible at the EIC

25/04/25

1 / 12

- $\,\circ\,$ Need to use a model to isolate $d\sigma_L/dt$ from $d\sigma_{uns}/dt$
- F_{π} measurement feasibility previously demonstrated
- Improvements with ePIC demonstrated previously
 - No 10x130 early science config previously

University of York

- Form factors → Momentum space distributions of partons
 Insights into emergent hadronic mass (EHM)
- Measurements $p(e, e'\pi^+n)$ and $p(e, e'K^+\Lambda/\Sigma)$ at the EIC can potentially extend the Q^2 reach of F_{π}/F_K
- A challenging measurement however
 - Need clean identification of exclusive reactions
 - $\,\circ\,$ Access form factors by isolating σ_L at lowest possible -t
 - $\circ~$ Conventional L-T separation not possible \rightarrow low enough ϵ not accessible at the EIC

25/04/25

1 / 12

- $\,\circ\,$ Need to use a model to isolate $d\sigma_L/dt$ from $d\sigma_{\it uns}/dt$
- F_{π} measurement feasibility previously demonstrated
- Improvements with ePIC demonstrated previously
 - No 10x130 early science config previously

University of York

- F_K studies still to be done
 - $\, \bullet \,$ Promising signs on Λ reconstruction in ZDC though

See https://doi.org/10.48550/arXiv.2412.12346

Stephen JD Kay

• 10 GeV e^- on 130 GeV p (10x130) is a new configuration

25/04/25

2 / 12

• New simulation, and therefore new input files, needed

Stephen JD Kay

- 10 GeV e^- on 130 GeV p (10x130) is a new configuration
- New simulation, and therefore new input files, needed
- Used DEMPgen v1.2.3 to generate new files
 - $\circ~$ 10x130 added as new configuration
 - Assume $\int \mathcal{L} = 5 \ fb^{-1}$ in projections

Used $\mathcal{L} \approx 0.2629 \times 10^{33} cm^{-2} s^{-1}$, based upon assumptions on per fill $\int \mathcal{L}$ in Elke's slides

University of York

25/04/25

Stephen JD Kay

- 10 GeV e^- on 130 GeV p (10x130) is a new configuration
- New simulation, and therefore new input files, needed
- Used DEMPgen v1.2.3 to generate new files
 - 10x130 added as new configuration
 - Assume $\int \mathcal{L} = 5 \ \textit{fb}^{-1}$ in projections
- Ran $p(e, e'\pi^+ n)$ and $p(e, e'K^+\Lambda)$, split into three Q^2 ranges
 - ${}_{\odot}$ 3 ${}<$ Q^2 ${}<$ 10, 10 ${}<$ Q^2 ${}<$ 20 and 20 ${}<$ Q^2 ${}<$ 35
 - Roughly \sim 300k generated per Q^2 range

Technically, actually a cut on the range of $\theta_{e'}$ values, directly feeds into Q^2

University of York

25/04/25

- 10 GeV e^- on 130 GeV p (10x130) is a new configuration
- New simulation, and therefore new input files, needed
- Used DEMPgen v1.2.3 to generate new files
 - 10×130 added as new configuration
 - Assume $\int \mathcal{L} = 5 \ \textit{fb}^{-1}$ in projections
- Ran $p(e, e'\pi^+n)$ and $p(e, e'K^+\Lambda)$, split into three Q^2 ranges
 - ${}_{\odot}$ 3 ${}<$ Q^2 ${}<$ 10, 10 ${}<$ Q^2 ${}<$ 20 and 20 ${}<$ Q^2 ${}<$ 35
 - Roughly \sim 300k generated per Q^2 range
- For π , processed with high acceptance (lower divergence) beam profile

• Only pion high acceptance analysed so far

- Submit as a request to simulation campaign (300k events total), but also ran independently
 - Used 10×130 epic-craterlake detector config
 - Plots shown are from own simulation

DEMP Kinematics - Truth Distributions

• Generated 10 GeV electrons on 130 GeV protons (10x130)

25/04/25

3 / 12

Stephen JD Kay University of York

DEMP Kinematics - Truth Distributions

- Generated 10 GeV electrons on 130 GeV protons (10x130)
- e' and π^+ hit the central detector, neutron in FF detectors
 - ZDC in particular critical for low -t neutrons

25/04/25

3 / 12

Beam effects not removed here.

Note, in η the ranges are $-1.15 < \eta_{e'} < -2.45$, $0 < \eta_{\pi^+} < 0.9$ and $4 < \eta_{\it n} < 5.1.$

Stephen JD Kay University of York

DEMP Kinematics - Truth Distributions

- Generated 10 GeV electrons on 130 GeV protons (10x130)
- e' and π^+ hit the central detector, neutron in FF detectors
 - ZDC in particular critical for low -t neutrons

University of York

• Note that the Z scale is a rate in Hz

Stephen JD Kay

25/04/25

• Need to select out e', π^+, n triple coincidence events

25/04/25

4 / 12

• To begin, require that simultaneously we have -

- Need to select out e', π^+, n triple coincidence events
- To begin, require that simultaneously we have -
 - One negatively charged track in the -z direction (the e')

<u>25</u>/04/25

4 / 12

- One positively charged track in the +z direction (π^+)
- A high energy reconstructed neutron in the ZDC
 - $E_n > 40 \ GeV$
 - $\theta_n^* < 4 mrad$

Stephen JD Kay

 $\theta^{\,*}$ is after a rotation of 25 mRad around the proton axis to remove the crossing angle

University of York

- Need to select out e', π^+, n triple coincidence events
- To begin, require that simultaneously we have -
 - One negatively charged track in the -z direction (the e')
 - One positively charged track in the +z direction (π^+)
 - A high energy reconstructed neutron in the ZDC
 - $E_n > 40 \ GeV$
 - $\theta_n^* < 4 mrad$
- Cut on difference between ZDC hit and p_{Miss} track angles

25/04/25

4 / 12

$$\circ -0.09^{\circ} < \Delta heta^* < 0.14^{\circ} \ |\Delta \phi^*| < 55^{\circ}$$

 $ec{P}_{Miss} = (ec{e} + ec{p}) - (ec{e}\prime_{Rec} + ec{\pi}_{Rec})$ - More on this in a moment

University of York

- Need to select out e', π^+, n triple coincidence events
- To begin, require that simultaneously we have -
 - One negatively charged track in the -z direction (the e')
 - One positively charged track in the +z direction (π^+)
 - A high energy reconstructed neutron in the ZDC
 - $E_n > 40 \ GeV$
 - $\theta_n^* < 4 mrad$
- Cut on difference between ZDC hit and p_{Miss} track angles

$$_{\circ}~-0.09^{\circ} < \Delta heta^{*} < 0.14^{\circ}$$

- $|\Delta \phi^*| < 55^\circ$
- Also cut on $-t_{eXBABE} < 1.4$ and $W_{rec} > 0$

University of York

• Using the TRECO convention for -t reconstruction methods

25/04/25

DEMP Analysis Overview - $\Delta \theta^*$ and $\Delta \phi^*$ Cuts

- P_{Miss} vector should correspond with hit location on the ZDC
- For a non-exclusive event, *P_{Miss}* vector should <u>not</u> correspond to a ZDC hit

<u>25/04/25</u>

5 / 12

• Effectively an additional "exclusivity" constraint

 $\Delta \theta^* = \theta^*_{PMiss} - \theta_{*ZDC} \text{ and } \Delta \phi^* = \phi^*_{PMiss} - \phi^*_{ZDC}$

Stephen JD Kay University of York

DEMP Analysis Overview - $\Delta \theta^*$ and $\Delta \phi^*$ Cuts

University of York

- P_{Miss} vector should correspond with hit location on the ZDC
- For a non-exclusive event, P_{Miss} vector should <u>not</u> correspond to a ZDC hit

• Effectively an additional "exclusivity" constraint

• Select $-0.09^\circ < \Delta heta^* < 0.14^\circ$ and $-55^\circ < \Delta \phi^* < 55^\circ$

•
$$\Delta \theta^* = \theta^*_{pMiss} - \theta^*_{ZDC}$$

• $\Delta \phi^* = \phi^*_{PMiss} - \phi^*_{ZDC}$

Stephen JD Kay

25/04/25

DEMP Analysis Overview - $\Delta \theta^*$ and $\Delta \phi^*$ Cuts

- P_{Miss} vector should correspond with hit location on the ZDC
- For a non-exclusive event, P_{Miss} vector should <u>not</u> correspond to a ZDC hit
 - Effectively an additional "exclusivity" constraint
- Select $-0.09^\circ < \Delta heta^* < 0.14^\circ$ and $-55^\circ < \Delta \phi^* < 55^\circ$

•
$$\Delta \theta^* = \theta^*_{pMiss} - \theta^*_{ZDC}$$

•
$$\Delta \phi^* = \phi^*_{PMiss} - \phi^*_{ZDC}$$

 Simulation is exclusive only, inclusive events spread over broader range

25/04/25

- Can reconstruct -t in multiple ways
- "Best" way for DEMP is $\rightarrow -t_{eXBABE} = (\vec{p} \vec{n}_{Corr})^2$

25/04/25

- Can reconstruct -t in multiple ways
- "Best" way for DEMP is $\rightarrow -t_{eXBABE} = (\vec{p} \vec{n}_{Corr})^2$
- \vec{n}_{Corr} uses \vec{P}_{Miss} , actual ZDC hit info and the exclusive nature of the reaction to "correct" the reconstructed neutron track

25/04/25

6 / 12

I.e. it is a neutron, so set the mass to the neutron mass. $\vec{P}_{Miss} = (\vec{e} + \vec{p}) - (\vec{e'}_{Rec} + \vec{\pi}_{Rec})$

University of York

Stephen JD Kay

University of York

- Can reconstruct -t in multiple ways
- "Best" way for DEMP is $\rightarrow -t_{eXBABE} = (\vec{p} \vec{n}_{Corr})^2$
- \vec{n}_{Corr} uses \vec{P}_{Miss} , actual ZDC hit info and the exclusive nature of the reaction to "correct" the reconstructed neutron track
- $-t_{eXBABE}$ correlates well with truth

Stephen JD Kay

25/04/25

- Can reconstruct -t in multiple ways
- "Best" way for DEMP is $\rightarrow -t_{eXBABE} = (\vec{p} \vec{n}_{Corr})^2$
- \vec{n}_{Corr} uses \vec{P}_{Miss} , actual ZDC hit info and the exclusive nature of the reaction to "correct" the reconstructed neutron track
- $-t_{eXBABE}$ correlates well with truth
- Far better than methods using uncorrected neutron track (t_{BABE}) and methods utilising electron information (t_{eX}) and electron P_T (t_{eXPT}) info

Stephen JD Kay

25/04/25

6 / 12

 $\sigma(eXBABE)=$ 13.36, $\sigma(eXPT)=$ 83.67, $\sigma(eX)=$ 111.87, $\sigma(BABE)=$ 43.01. All $e'\pi^+n$ triple coincidence events

University of York

DEMP Analysis Overview - Detection Efficiency

Stephen JD Kay

• What is the detection efficiency like for DEMP?

University of York

25/04/25

7 / 12

• All previous cuts applied and $5 < Q^2 < 35$ required

DEMP Analysis Overview - Detection Efficiency

• What is the detection efficiency like for DEMP?

University of York

- All previous cuts applied and $5 < Q^2 < 35$ required
- Detection efficiency is good, comparable to previous results
 - Crucially, efficiency is highest in low -t region

<u>25</u>/04/25

12

Stephen JD Kay

DEMP Analysis Overview - Detection Efficiency

- What is the detection efficiency like for DEMP?
 - All previous cuts applied and $5 < Q^2 < 35$ required
- Detection efficiency is good, comparable to previous results
 - Crucially, efficiency is highest in low -t region
- Without B0, rapid tail off beyond -t of 0.4

University of York

Stephen JD Kay

25/04/25

12

DEMP Analysis Results - Q^2 , -t Binning

- After applying cuts, bin in Q^2 and -t
 - -t bins 0.04 GeV/c wide

Stephen JD Kay

• Q^2 bins 2.5 GeV^2 wide below 10 GeV^2 , 5 GeV^2 above

25/04/25

8 / 12

University of York

DEMP Analysis Results - Q^2 , -t Binning

- After applying cuts, bin in Q^2 and -t
 - -t bins 0.04 GeV/c wide
 - Q^2 bins 2.5 GeV^2 wide below 10 GeV^2 , 5 GeV^2 above
- From rate per bin, extrapolate to number of events with $\int \mathcal{L} = 5 \ fb^{-1}$, project to F_{π}

DEMP Analysis Results - Comments on 5x41

• For 5x41 events, only very low -t events hit the ZDC

25/04/25

9 / 12

Stephen JD Kay University of York

DEMP Analysis Results - Comments on 5x41

- For 5x41 events, only very low -t events hit the ZDC
- Efficiency for $-t > 0.2 \ GeV/c$ in the ZDC is very low

25/04/25

9 / 12

Tracks from ZDC n hits projected to Z = 10m

University of York

Stephen JD Kay

DEMP Analysis Results - Comments on 5x41

- For 5x41 events, only very low -t events hit the ZDC
- Efficiency for $-t > 0.2 \ GeV/c$ in the ZDC is very low
- However, many of these events recoverable from the B0

25/04/25

9 / 12

Tracks from B0 n hits projected to Z = 10m

University of York

Stephen JD Kay

DEMP Analysis Results - F_{π} Projections

25/04/25

10 / 12

• ePIC opens up high Q² regime

Stephen JD Kay University of York

DEMP Analysis Results - F_{π} Projections

- ePIC opens up high Q² regime
- Error bars represent real projected error bars
 - 2.5% point-to-point
 - 12% scale
 - $\delta R = R$, $R = \sigma_L / \sigma_T$
 - *R* = 0.013 014 at lowest -*t* from VR model

University of York

25/04/25

10 / 12

Stephen JD Kay

DEMP Analysis Results - F_{π} Projections

- ePIC opens up high Q² regime
- Error bars represent real projected error bars
 - 2.5% point-to-point
 - 12% scale
 - $\delta R = R$, $R = \sigma_L / \sigma_T$
 - *R* = 0.013 014 at lowest -*t* from VR model

University of York

• Uncertainties dominated by R at low Q^2

25/04/25

10 / 12

Stephen JD Kay
DEMP Analysis Results - F_{π} Projections

- ePIC opens up high Q² regime
- Error bars represent real projected error bars
 - 2.5% point-to-point
 - 12% scale

Stephen JD Kay

- $\delta R = R$, $R = \sigma_L / \sigma_T$
- *R* = 0.013 014 at lowest -*t* from VR model
- Uncertainties dominated by *R* at low *Q*²

- Even from low ∫ L in early science programme, looks promising!
- How high in *Q*² will be possible?

University of York

25/04/25

- Need to look at 10x250 setting
- Planning to take a closer look at B0 information too
 - Access to higher -t
 - Need to look carefully at clusters

Stephen JD Kay

- Need to look at 10x250 setting
- Planning to take a closer look at B0 information too
 - Access to higher -t
 - Need to look carefully at clusters
- New URegina student, starting later in the year
 - Extending DEMPgen parametrisation to $\sim Q^2 = 50 \ GeV^2$ will be a priority, for pion and kaon channels

<u>25/04/25</u>

11 / 12

Also need a deuteron module in DEMPgen

University of York

 $\,\circ\,$ Needed for π^+/π^- ratio model validation tests

- Need to look at 10x250 setting
- Planning to take a closer look at B0 information too
 - Access to higher -t
 - Need to look carefully at clusters
- New URegina student, starting later in the year
 - Extending DEMPgen parametrisation to $\sim Q^2 = 50~GeV^2$ will be a priority, for pion and kaon channels

<u>25/04/25</u>

11 / 12

- Also need a deuteron module in DEMPgen
 - Needed for π^+/π^- ratio model validation tests
- Will add additional QA plots to output
 - Different Q^2 methods etc

Stephen JD Kay

Don't expect to see any major changes

- Need to look at 10x250 setting
- Planning to take a closer look at B0 information too
 - Access to higher -t
 - Need to look carefully at clusters
- New URegina student, starting later in the year
 - Extending DEMPgen parametrisation to $\sim Q^2 = 50 \ GeV^2$ will be a priority, for pion and kaon channels
- Also need a deuteron module in DEMPgen
 - $\,\circ\,$ Needed for π^+/π^- ratio model validation tests
- Will add additional QA plots to output
 - Different Q^2 methods etc
 - Don't expect to see any major changes
- $K^+\Lambda$ channel is on the agenda for later in the year

Stephen JD Kay

- 10on130 pion results look good, even with low $\int {\cal L}$ expected from early physics
 - More broadly, all early running settings look viable with $\int {\cal L} = 5 \ {\it fb}^{-1}$

University of York

• Need further generator updates to determine how high in Q^2 is actually viable

25/04/25

Stephen JD Kay

- ${\circ}$ 10on130 pion results look good, even with low $\int {\cal L}$ expected from early physics
 - More broadly, all early running settings look viable with $\int \mathcal{L} = 5 \ \textit{fb}^{-1}$

University of York

• Need further generator updates to determine how high in Q^2 is actually viable

25/04/25

12 / 12

• Still need deuteron studies

Stephen JD Kay

- ${\circ}$ 10on130 pion results look good, even with low $\int {\cal L}$ expected from early physics
 - More broadly, all early running settings look viable with $\int \mathcal{L} = 5 \ \textit{fb}^{-1}$
 - Need further generator updates to determine how high in Q^2 is actually viable
- Still need deuteron studies
- Also need to revisit $K^+\Lambda$
 - New ZDC reconstruction algorithm expected in main ePIC simulation soon

<u>25/04/25</u>

12 / 12

- $\,\circ\,$ Λ reconstruction in ZDC looks very promising
- Expect rapid results when it is available

Stephen JD Kay

- ${\circ}$ 10on130 pion results look good, even with low $\int {\cal L}$ expected from early physics
 - More broadly, all early running settings look viable with $\int \mathcal{L} = 5 \ \textit{fb}^{-1}$
 - Need further generator updates to determine how high in Q^2 is actually viable
- Still need deuteron studies
- Also need to revisit $K^+\Lambda$
 - New ZDC reconstruction algorithm expected in main ePIC simulation soon

<u>25/04/25</u>

- $\,\circ\,$ Λ reconstruction in ZDC looks very promising
- Expect rapid results when it is available
- New student will need some onboarding time

Thanks for listening, any questions?

stephen.kay@york.ac.uk

This research was supported by UK Research and Innovation: Science and Technology Facilities council (UKRI:STFC) grant ST/W004852/1 and the Natural Sciences and Engineering Research Council of Canada (NSERC) grant SAPPJ-2023-00041

Backup Zone

The TRECO Convention

• The *t*-Reconstruction $(t \text{RECO}) \rightarrow$ standardized nomenclature for methods used to reconstruct the Mandelstam variable *t*

eXBABE $p^{\mu}_{\gamma^{\star}}, p^{\mu}_{X}, p^{\mu}_{BA}, p^{\mu}_{BE}$

• Subscripts in -t refer to 4-momenta utilised in calculation as shown in table above

25/04/25

15 / 12

• $BA \rightarrow Ba$ ryon, $BE \rightarrow Proton Beam$

Stephen JD Kay

DEMP Analysis Overview - -t Reconstruction

University of York

- 5x41 events in the B0 still have good -t reconstruction
- Strong correlation with $-t_{MC}$
- Lower resolution that ZDC neutrons though

Stephen JD Kay

25/04/25

Stephen JD Kay

- Early science programme for ePIC is a current priority
- Proposed schedule has been presented and is evolving

Proposal for EIC Science Program in the First Years

Year - 1	Year - 2	Year - 3	Year - 4	Year - 5
tant etab Passa 1 EIC inscription destron commission destron olarization in paralel tan: 0 GeV electrons on 115 GeV/u early (or GeA) desms (Ru or Co.) uid your preferred science topic	Phase 1EIC + dectron polarization + telectron polarization in parallel 10 Gev polarized electrons on 130 GeV Ub Deuterium Physics: Add your preferred science topic Ren: Last weeks 10 GeV electrons and 130 GeV polarized proton Physics:	Phase 1 EIC + electron polarization + proton polarization New Capability Commission running with hadron Service 10 GeV polarized electrons on 13 GeV transverse polarized Physicia Add your preferred science topic Run: Last weeks switch to longitudinal proton polarization Add your preferred science topic	Phase 1 EIC electron polarization + proton polarization + proton polarization New Capability: Commission hadron accelerator to Commission hadron accelerator to Commission hadron accelerator to Commission hadron accelerator to the commission hadron accelerator to CeV Aut 10 GeV polarized electrons on 100 CPV Aut 10 GeV electrons on 250 GeV transverse and nongludinal polarized protons Add your preferred science topic	Phase 1EIC electron polarization e proton polarization o operation of hadron spin rotators e operation of hadron spin rotators electron polarization electron of the spin spin spin spin spin spin 10 GeV polarized electrons on 100 GeV Aud your preferred science topic Run: 10 GeV electrons on 186 GeV transverse and longuidmat polarized He-3 Add your preferred science topic

<u>25/04/25</u>

17 / 12

Image - Modified from Elke's slides at ePIC User Group Meeting, Frascati 2025

Stephen JD Kav

- Early science programme for ePIC is a current priority
- Proposed schedule has been presented and is evolving
 - Opportunities early on for light meson form factors

Proposal for EIC Science Program in the First Years

<u>25/04/25</u>

Image - Modified from Elke's slides at ePIC User Group Meeting, Frascati 2025

Stephen JD Kay

- Early science programme for ePIC is a current priority
- Proposed schedule has been presented and is evolving
 - Opportunities early on for light meson form factors

Proposal for EIC Science Program in the First Years

Year 5	Year - 6	Year - 7
Phase 1 EIC	Phase 1 EIC	Phase 1 EIC
+ electron polarization	+ electron polarization	+ electron polarization
proton polarization operation of hadron spin rotators operation of hadron beams with not centered orbits	+ proton polarization + operation of hadron spin rotators + operation of hadron beams with not	+ proton polarization + operation of hadron spin rotators + operation of hadron beams with not
Run: 10 GeV polarized electrons on 100 GeV Au Physics: Add your professor taxing	centered orbits New Capability: Commission ESR & HSR at max. energy	centered orbits + operation of ESR & HSR at max. energy and beam currents
Run:	and beam currents	New Capability:
10 GeV electrons on 166 GeV transverse	Run:	Operate HSR with 41 GeV bypass
and longitudinal polarized He-3	18 GeV polarized electrons on 275 GeV/u	Run:
Physics:	polarized (longitudinal & transverse) proton	5 GeV polarized electrons on 41 GeV
Add your preferred science topic	beams	transverse polarized proton beams

<u>25/04/25</u>

17 / 12

Image - Modified from Elke's slides at ePIC User Group Meeting, Frascati 2025

Stephen JD Kay

- Early science programme for ePIC is a current priority
- Proposed schedule has been presented and is evolving
 - Opportunities early on for light meson form factors

Proposal for EIC Science Program in the First Years

Voor 5	Year - 6	Year - 7
hase 1 EIC electron polarization	Phase 1 EIC + electron polarization	Phase 1 EIC + electron polarization
proton polarization operation of hadron spin rotators operation of hadron beams with not intered orbits	+ proton polarization + operation of hadron spin rotators + operation of hadron beams with not	 + proton polarization + operation of hadron spin rotators + operation of hadron beams with not
in: GeV polarized electrons on 100 GeV ; tysics:	centered orbits New Capability: Commission ESR & HSP at max, energy	centered orbits + operation of ESR & HSR at max. energy and beam currents
n: GeV electrons on 166 GeV transverse	and beam currents Run: 18 CeV/ polarized electrons on 275 CeV//	New Capability: Operate HSR with 41 GeV bypass
d your preferred science topic	polarized (longitudinal & transverse) proton beams	5 GeV polarized electrons on 41 GeV

<u>25/04/25</u>

17 / 12

Image - Modified from Elke's slides at ePIC User Group Meeting, Frascati 2025

Stephen JD Kav

- Early science programme for ePIC is a current priority
- Proposed schedule has been presented and is evolving
 - Opportunities early on for light meson form factors

ep Luminosity for Phase-1

25/04/25

17 / 12

- Modest $\int {\cal L}$, $\sim 5~{\it fb}^{-1}$, in first few years
- New configurations to check for F_{π} studies

Image - Modified from Elke's slides at ePIC User Group Meeting, Frascati 2025

DEMP Kinematics - Reconstructed Distributions

University of York

Processed same 10x130 events through ElCrecon

25/04/25

18 / 12

Stephen JD Kay

DEMP Kinematics - Reconstructed Distributions

- Processed same 10x130 events through ElCrecon
- Selected events with E > 40 GeV in 1 cluster the ZDC
 - Used the "ReconstructedFarForwardZDCNeutrals" branch
 - Also applied a cut on θ^*

25/04/25

18 / 12

 θ^* is after a rotation of 25 mRad around the proton axis to remove the crossing angle University of York

Stephen JD Kay

DEMP Kinematics - Reconstructed Distributions

- Processed same 10x130 events through ElCrecon
- Selected events with E > 40 GeV in 1 cluster the ZDC
 - $\circ~$ Used the "ReconstructedFarForwardZDCNeutrals" branch
 - Also applied a cut on θ^*

Stephen JD Kay

• ZDC performance and -t reconstruction critical

University of York

25/04/25

DEMP Kinematics - Visualising with ePIC

• e' and π^+ hit the central detector

University of York

25/04/25

19 / 12

Stephen JD Kay

DEMP Kinematics - Visualising with ePIC

- e' and π^+ hit the central detector
- n very forward focused, ZDC or B0

25/04/25

19 / 12

University of York

Stephen JD Kay

- Charged pion (π^{\pm}) and kaon (K^{\pm}) form factors (F_{π}, F_{K}) are key QCD observables
 - Momentum space distributions of partons within hadrons

25/04/25

- Charged pion (π[±]) and kaon (K[±]) form factors (F_π, F_K) are key QCD observables
 - Momentum space distributions of partons within hadrons

25/04/25

20 / 12

University of York

Stephen JD Kay

Stephen JD Kay

- Charged pion (π[±]) and kaon (K[±]) form factors (F_π, F_K) are key QCD observables
 - Momentum space distributions of partons within hadrons

• Meson wave function can be split into $\phi_\pi^{
m soft}$ $(k < k_0)$ and $\phi_\pi^{
m hard}$, the hard tail

<u>25/04/25</u>

20 / 12

- Charged pion (π[±]) and kaon (K[±]) form factors (F_π, F_K) are key QCD observables
 - Momentum space distributions of partons within hadrons

- Meson wave function can be split into $\phi_\pi^{
 m soft}$ $(k < k_0)$ and $\phi_\pi^{
 m hard}$, the hard tail
 - Can treat $\phi^{\rm hard}_{\pi}$ in pQCD, cannot with $\phi^{\rm soft}_{\pi}$
 - Form factor is the overlap between the two tails (right figure)

25/04/25

Stephen JD Kay

- Charged pion (π[±]) and kaon (K[±]) form factors (F_π, F_K) are key QCD observables
 - Momentum space distributions of partons within hadrons

- Meson wave function can be split into $\phi_\pi^{
 m soft}$ $(k < k_0)$ and $\phi_\pi^{
 m hard}$, the hard tail
 - $\bullet\,$ Can treat $\phi^{\rm hard}_{\pi}$ in pQCD, cannot with $\phi^{\rm soft}_{\pi}$
 - Form factor is the overlap between the two tails (right figure)
- F_{π} and F_{K} of special interest in hadron structure studies

25/04/25

Stephen JD Kay

- Charged pion (π[±]) and kaon (K[±]) form factors (F_π, F_K) are key QCD observables
 - Momentum space distributions of partons within hadrons

- Meson wave function can be split into $\phi_\pi^{
 m soft}$ $(k < k_0)$ and $\phi_\pi^{
 m hard}$, the hard tail
 - Can treat $\phi_\pi^{\rm hard}$ in pQCD, cannot with $\phi_\pi^{\rm soft}$
 - Form factor is the overlap between the two tails (right figure)

<u>25</u>/04/25

20 / 12

- F_{π} and F_{K} of special interest in hadron structure studies
 - π Lightest QCD quark system, simple
 - K Another simple system, contains strange quark

To access F_π at high Q², must measure F_π indirectly
 Use the "pion cloud" of the proton via p(e, e'π⁺n)

25/04/25

21 / 12

Stephen JD Kay University of York

- To access F_{π} at high Q^2 , must measure F_{π} indirectly
 - Use the "pion cloud" of the proton via $p(e, e'\pi^+n)$
- At small -t, the pion pole process dominates σ_L

University of York

21 / 12

25/04/25

Stephen JD Kay

Stephen JD Kay

• To access F_{π} at high Q^2 , must measure F_{π} indirectly

• Use the "pion cloud" of the proton via $p(e, e'\pi^+ n)$

• At small -t, the pion pole process dominates σ_L

University of York

• In the Born term model, F_{π}^2 appears as -

$$rac{d\sigma_L}{dt} \propto rac{-tQ^2}{(t-m_\pi^2)} g_{\pi NN}^2(t) F_\pi^2(Q^2,t)$$

21 / 12

25/04/25

• To access F_{π} at high Q^2 , must measure F_{π} indirectly

• Use the "pion cloud" of the proton via $p(e, e'\pi^+ n)$

• At small -t, the pion pole process dominates σ_L

University of York

• In the Born term model, F_{π}^2 appears as -

$$rac{d\sigma_L}{dt} \propto rac{-tQ^2}{(t-m_\pi^2)} g_{\pi NN}^2(t) F_\pi^2(Q^2,t)$$

We do not use the Born term model

Stephen JD Kay

21 / 12

<u>25</u>/04/25

• To access F_{π} at high Q^2 , must measure F_{π} indirectly

• Use the "pion cloud" of the proton via $p(e, e'\pi^+ n)$

- At small -t, the pion pole process dominates σ_L
- In the Born term model, F_{π}^2 appears as -

$$rac{d\sigma_L}{dt} \propto rac{-tQ^2}{(t-m_\pi^2)} g_{\pi NN}^2(t) F_\pi^2(Q^2,t)$$

- We do not use the Born term model
- Drawbacks of this technique -

Stephen JD Kay

- Isolating σ_L experimentally challenging
- Theoretical uncertainty in F_{π} extraction
 - Model dependent (smaller dependency at low -t)

21 / 12

<u>25</u>/04/25

• To access F_{π} at high Q^2 , must measure F_{π} indirectly

• Use the "pion cloud" of the proton via $p(e, e'\pi^+ n)$

- At small -t, the pion pole process dominates σ_L
- In the Born term model, F_{π}^2 appears as -

$$rac{d\sigma_L}{dt} \propto rac{-tQ^2}{(t-m_\pi^2)} g_{\pi NN}^2(t) F_\pi^2(Q^2,t)$$

- We do not use the Born term model
- Drawbacks of this technique -
 - Isolating σ_L experimentally challenging
 - Theoretical uncertainty in F_{π} extraction
 - Model dependent (smaller dependency at low -t)
 - Measure Deep Exclusive Meson Production (DEMP)

21 / 12

25/04/25

Stephen JD Kay

Hadron Mass Budgets

- Only the portion in red is directly from the Higgs current
- Multiple mechanisms at play to give hadrons their mass
 - Mass generation mechanisms intricately connected to structure

<u>25</u>/04/25

22 / 12

- The simple $q\bar{q}$ valence structure of mesons makes them an excellent testing ground
- What can we examine to look at their structure?

University of York

Image - G. Huber, modified figure from paper listed.

Stephen JD Kav
Connecting Pion Structure and Mass Generation

- Calculating the pion PDA, ϕ_{π} , without incorporating DCSB produces a broad, concave shape
- Incorporating DCSB changes $\phi_{\pi}(x)$ and brings F_{π} calculation much closer to the data
 - "Squashes down" PDA
- Pion structure and hadron mass generation are interlinked

ZDC Neutron Reconstruction

ePIC ZDC design updated significantly recently

University of York

 Most events in ZDC have more than 1 cluster, select large energy deposition events

25/04/25

24 / 12

Plot from L. Preet, University of Regina

ZDC Neutron Reconstruction

Stephen JD Kay

- ePIC ZDC design updated significantly recently
- Most events in ZDC have more than 1 cluster, select large energy deposition events
- New "ReconstructedFarForwardZDCNeutrons" branch
 - Reconstructed events combine clusters already
- Select region of uniform acceptance ($heta^* < 4 \ mRad$) to analyse

25/04/25

24

12

Plot from L. Preet, University of Regina θ^* and * are after a rotation of 25 mRad around the proton axis to remove the crossing angle.

University of York

ZDC Neutron Reconstruction - Does it make sense?

University of York

- Selected reconstructed neutrons should actually hit the ZDC
 - Quick to check!
- Events all fall on face of ZDC
- Hexagonal pattern seen, consequence of ZDC reconstruction algorithm
- Next step, reconstruct -t and apply further cuts
- Not straightforward!

25

12

25/04/25

Plots from L. Preet, University of Regina

DEMPgen

- DEMPgen Deep Exclusive Meson Production event generator
- Fixed target (JLab) and colliding beams (EIC) modes
- Feed in an input .json file
 - Specify conditions
 - Beam energies, number of events etc
- Several reactions available

o ...

Stephen JD Kay

• Further details in recent paper

https://doi.org/10.1016/j.cpc.2024.109444

University of York

26 / 12

<u>25/04/25</u>

DEMPgen - Parametrisation

- DEMPgen uses parameterised Regge-based models
 - For $p(e, e'\pi^+ n)$, use CKY model
 - σ_L and σ_T across broad kinematic range applicable to EIC
 - $5 < Q^2 < 35$, 2 < W < 10, 0 < -t < 1.2
 - Ranges currently being revisited
 - Upgrades from kaon parameterisation being incorporated

25/04/25

27

-12

Authors of model are - T.K. Choi, K.J. Kong and B.G. Yu - CKY

University of York

DEMPgen - Parametrisation

- DEMPgen uses parameterised Regge-based models
 - For $p(e, e'\pi^+ n)$, use CKY model
 - σ_L and σ_T across broad kinematic range applicable to EIC
 - $5 < Q^2 < 35$, 2 < W < 10, 0 < -t < 1.2
 - Ranges currently being revisited
 - Upgrades from kaon parameterisation being incorporated

25/04/25

27 / 12

Authors of model are - T.K. Choi, K.J. Kong and B.G. Yu - CKY

University of York

<u>Stephen</u> JD Kay

DEMPgen - Parametrisation

- DEMPgen uses parameterised Regge-based models
 - For $p(e, e'\pi^+ n)$, use CKY model
 - σ_L and σ_T across broad kinematic range applicable to EIC
 - $5 < Q^2 < 35$, 2 < W < 10, 0 < -t < 1.2
 - Ranges currently being revisited
 - Upgrades from kaon parameterisation being incorporated

25/04/25

27 / 12

• Kaon reactions \rightarrow Use VGL model

Stephen JD Kay

Authors of model are - M.Vanderhaeghen, M. Guidal and J.-M.Laget - VGL

University of York

Isolating σ_L from σ_T in an e-p Collider

• For a collider -

$$\epsilon = \frac{2(1-y)}{1+(1-y)^2}$$
 with $y = \frac{Q^2}{x(s_{tot} - M_N^2)}$

• y is the fractional energy loss

• Systematic uncertainties in σ_L magnified by $1/\Delta\epsilon$

• Ideally, $\Delta \epsilon > 0.2$

- To access $\epsilon < 0.8$ with a collider, need y > 0.5
 - Only accessible at small s_{tot}
 - Requires low proton energies ($\sim 10~GeV$)
- Conventional L-T separation not practical, need another way to determine σ_L

28 / 12

σ_L Isolation with a Model at the EIC

- QCD scaling predicts $\sigma_L \propto Q^{-6}$ and $\sigma_T \propto Q^{-8}$
- At the high Q^2 and Waccessible at the EIC, phenomenological models predict $\sigma_L \gg \sigma_T$ at small -t
- Can attempt to extract σ_L by using a model to isolate dominant $d\sigma_L/dt$ from measured $d\sigma_{UNS}/dt$
- Examine π^+/π^- ratios as a test of the model

Predictions are assuming $\epsilon > 0.9995$ with the kinematic ranges seen earlier T.Vrancx, J. Ryckebusch, PRC 89(2014)025203

29 / 12

<u>25</u>/04/25

Stephen JD Kay

University of York

Background Events

- Main source of background is SIDIS, $p(e, e'\pi^+)X$, events
- Compare SIDIS events for same beam energy
- Very few fall in comparable $\Delta \theta$ and $\Delta \phi$ range

Plot from L. Preet, University of Regina

University of York

25/04/25

30 / 12

- Need data at lowest possible -t for form factor extraction

$$-t_{truth} = \left(ec{\gamma^*} - ec{\pi^+}
ight)^2$$

31 / 12

Stephen JD Kay

- Need data at lowest possible -t for form factor extraction
- Can calculate -t via -

$$-t_{truth} = \left(ec{\gamma^*} - ec{\pi^+}
ight)^2 \quad -t_{rec} = \left(ec{\gamma^*} - ec{\pi^+}
ight)^2$$

• Ok, easy then, same thing for the reconstructed info!

University of York

25/04/25

31 / 12

- Need data at lowest possible -t for form factor extraction
- Can calculate −t via -

$$-t_{truth} = \left(ec{\gamma^*} - ec{\pi^+}
ight)^2 \quad -t_{rec} = \left(ec{\gamma^*} - ec{\pi^+}
ight)^2$$

• Ok, easy then, same thing for the reconstructed info!

<u>25/04/25</u>

31 / 12

University of York

Plots from L. Preet, University of Regina

Stephen JD Kay

- Need data at lowest possible -t for form factor extraction
- Can calculate -t via -

$$-t_{truth} = \left(\vec{\gamma^*} - \vec{\pi^+}\right)^2$$

25/04/25

31 / 12

• So, maybe a different approach?

University of York

- Need data at lowest possible -t for form factor extraction
- Can calculate −t via -

$$-t_{truth}=\left(ec{\gamma^*}-ec{\pi^+}
ight)^2 \quad -t_{rec}=(ec{p}-ec{n})^2$$

- So, maybe a different approach?
- Use the proton beam and detected neutron

University of York

<u>25/04/25</u>

31 / 12

Plots from L. Preet, University of Regina

- Need data at lowest possible -t for form factor extraction
- Can calculate −t via -

$$-t_{truth} = \left(ec{\gamma^*} - ec{\pi^+}
ight)^2 \quad -t_{rec} = (ec{p} - ec{n})^2$$

• Not great, not terrible. Try again

25/04/25

31 / 12

University of York

Plots from L. Preet, University of Regina

- Need data at lowest possible -t for form factor extraction
- Can calculate −t via -

$$-t_{truth} = \left(\vec{\gamma^*} - \vec{\pi^+}
ight)^2 \quad -t_{rec} = \left(P_{\mathcal{T},\gamma^*} - P_{\mathcal{T},\pi^+}
ight)^2$$

• Use P_T approach

University of York

25/04/25

31 / 12

Plots from L. Preet, University of Regina

- Need data at lowest possible -t for form factor extraction
- Can calculate −t via -

$$-t_{truth} = \left(ec{\gamma^*} - ec{\pi^+}
ight)^2 \quad -t_{rec} = \left(P_{\mathcal{T},\gamma^*} - P_{\mathcal{T},\pi^+}
ight)^2$$

- Use P_T approach
- Even worse! Back to the proton and neutron

University of York

<u>25/04/25</u>

31 / 12

Plots from L. Preet, University of Regina

Stephen JD Kay

- Need data at lowest possible -t for form factor extraction
- Can calculate -t via -

$$-t_{truth} = \left(\vec{\gamma^*} - \vec{\pi^+}\right)^2$$

• Exploit what we know, ZDC hit angles, P_{Miss} from π^+ , e' and the mass of the remaining particle

25/04/25

31 / 12

 $P_{miss} = |\vec{p_e} + \vec{p_p} - \vec{p_{e'}} - \vec{p_{\pi^+}}|$, see previous paper for more details

University of York

- Need data at lowest possible -t for form factor extraction
- Can calculate -t via -

$$-t_{truth} = \left(\vec{\gamma^*} - \vec{\pi^+}\right)^2 \quad -t_{rec} = \left(\vec{p} - n\vec{c_{orr}}\right)^2$$

- Exploit what we know, ZDC hit angles, P_{Miss} from π^+ , e' and the mass of the remaining particle
- Correct neutron 4 vector using this info n_{corr}

University of York

25/04/25

31 / 12

Plots from L. Preet, University of Regina

Stephen JD Kay

 $P_{miss} = |\vec{p_e} + \vec{p_p} - \vec{p_{e'}} - \vec{p_{\pi^+}}|$, see previous paper for more details

- Utilise position info from ZDC and that reaction is exclusive
 - $\vec{P}_{Miss} = (\vec{e} + \vec{p}) (\vec{e'}_{Rec} + \vec{\pi}_{Rec})$
 - $\vec{n}_{Rec} \rightarrow$ Get from ZDC hit info, determine angles
 - θ_{nRec}
 - ϕ_{nRec}
- Make a new vector, \vec{n}_{Corr}
 - Use $|\vec{P}_{Miss}|$, θ_{nRec} , ϕ_{nRec} and set mass to neutron mass

25/04/25

32 / 12

- This is incorporated in the main analysis loop
- Can now use new 4-vector in t calculation

- Utilise position info from ZDC and that reaction is exclusive
 - $\vec{P}_{Miss} = (\vec{e} + \vec{p}) (\vec{e'}_{Rec} + \vec{\pi}_{Rec})$
 - $\vec{n}_{Rec} \rightarrow$ Get from ZDC hit info, determine angles
 - θ_{nRec}
 - ϕ_{nRec}
- Make a new vector, \vec{n}_{Corr}
 - Use $|\vec{P}_{Miss}|$, θ_{nRec} , ϕ_{nRec} and set mass to neutron mass

25/04/25

32 / 12

- This is incorporated in the main analysis loop
- Can now use new 4-vector in t calculation

- Utilise position info from ZDC and that reaction is exclusive
 - $\vec{P}_{Miss} = (\vec{e} + \vec{p}) (\vec{e'}_{Rec} + \vec{\pi}_{Rec})$
 - $\vec{n}_{Rec} \rightarrow$ Get from ZDC hit info, determine angles
 - θ_{nRec}
 - ϕ_{nRec}
- Make a new vector, \vec{n}_{Corr}
 - Use $|\vec{P}_{Miss}|$, θ_{nRec} , ϕ_{nRec} and set mass to neutron mass

25/04/25

32 / 12

- This is incorporated in the main analysis loop
- Can now use new 4-vector in t calculation

- Utilise position info from ZDC and that reaction is exclusive
 - $\vec{P}_{Miss} = (\vec{e} + \vec{p}) (\vec{e'}_{Rec} + \vec{\pi}_{Rec})$
 - $\vec{n}_{Rec} \rightarrow$ Get from ZDC hit info, determine angles
 - θ_{nRec}
 - ϕ_{nRec}
- Make a new vector, \vec{n}_{Corr}
 - Use $|\vec{P}_{Miss}|$, θ_{nRec} , ϕ_{nRec} and set mass to neutron mass • $P_x \rightarrow |\vec{P}_{Miss}| \times \sin(\theta_{nRec}) \times \cos(\phi_{nRec})...$

25/04/25

32 / 12

- This is incorporated in the main analysis loop
- Can now use new 4-vector in t calculation

Simulation Results - Neutron Reconstruction

- \vec{n}_{Corr} resolution very good
- Few % resolution

n Track Momentum Resolution Distribution (%)

Stephen JD Kay

University of York

25/04/25

33 / 12

- Exciting new study on the arXiv just before Christmas
 - o https://doi.org/10.48550/arXiv.2412.12346
 - S.J. Paul et. al.

Stephen JD Kay

 ${}_{\circ}$ Λ^0 and Σ^0 detection in the ZDC looks promising!

University of York

25/04/25

<u> 34</u> / 12

- Exciting new study on the arXiv just before Christmas
 - o https://doi.org/10.48550/arXiv.2412.12346
 - S.J. Paul et. al.
- ${\scriptstyle \circ }~\Lambda^0$ and Σ^0 detection in the ZDC looks promising!

University of York

- Position and angular resolution far exceed YR requirements for neutrons
- Performance very similar to neutron detection

34 / 12

<u>25</u>/04/25

Figure from - https://arxiv.org/abs/2412.12346

- Exciting new study on the arXiv just before Christmas
 - o https://doi.org/10.48550/arXiv.2412.12346
 - S.J. Paul et. al.
- ${\scriptstyle \circ }~\Lambda^0$ and Σ^0 detection in the ZDC looks promising!

University of York

- Acceptance for neutral decay improves with Λ^0 energy
- Depends strongly upon decay z_{vtx}

<u>25</u>/04/25

<u>34</u> / 12

Figure from - https://arxiv.org/abs/2412.12346

- Exciting new study on the arXiv just before Christmas
 - o https://doi.org/10.48550/arXiv.2412.12346
 - S.J. Paul et. al.
- ${\scriptstyle \circ }~\Lambda^0$ and Σ^0 detection in the ZDC looks promising!

University of York

- Acceptance for neutral decay improves with Λ^0 energy
- Depends strongly upon decay z_{vtx}
- Smear MC truth and apply acceptance in line with paper

Stephen JD Kay

- Potential for rapid F_K projections
- Need updated projections to lower Λ^0 energies for 10x100 or 5x41

<u>25</u>/04/25

34 / 12